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A Taste of Topology

1 Metric Spaces

It may seem paradoxical at first, but a specific math problem can be harder to solve

than some abstract generalization of it. For instance if you want to know how many

roots the equation

t5 − 4t4 + t3 − t+ 1 = 0

can have then you could use calculus and figure it out. It would take a while. But

thinking more abstractly, and with less work, you could show that every nth-degree

polynomial has at most n roots. In the same way many general results about functions

of a real variable are more easily grasped at an abstract level – the level of metric

spaces.

Metric space theory can be seen as a special case of general topology, and many

books present it that way, explaining compactness primarily in terms of open cov-

erings. In my opinion, however, the sequence/subsequence approach provides the

easiest and simplest route to mastering the subject. Accordingly it gets top billing

throughout this chapter.

A metric space is a set M , the elements of which are referred to as points of M ,

together with a metric d having the three properties that distance has in Euclidean

space. The metric d = d(x, y) is a real number defined for all points x, y ∈ M and

d(x, y) is called the distance from the point x to the point y. The three distance

properties are as follows: For all x, y, z ∈ M we have
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58 A Taste of Topology Chapter 2

(a) positive definiteness: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(b) symmetry: d(x, y) = d(y, x).

(c) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The function d is also called the distance function. Strictly speaking, it is

the pair (M,d) which is a metric space, but we will follow the common practice of

referring to “the metric space M ,” and leave to you the job of inferring the correct

metric.

The main examples of metric spaces are R, Rm, and their subsets. The metric

on R is d(x, y) = |x − y| where x, y ∈ R and |x − y| is the magnitude of x − y. The

metric on Rm is the Euclidean length of x− y where x, y are vectors in Rm. Namely,

d(x, y) =
√
(x1 − y1)2 + . . .+ (xm − ym)2

for x = (x1, . . . , xm) and y = (y1, . . . , ym).

Since Euclidean length satisfies the three distance properties, d is a bona fide

metric and it makes Rm into a metric space. A subset M ⊂ Rm becomes a metric

space when we declare the distance between points ofM to be their Euclidean distance

apart as points in Rm. We say that M inherits its metric from Rm and is a metric

subspace of Rm. Figure 27 shows a few subsets of R2 to suggest some interesting

metric spaces.

There is also one metric that is hard to picture but valuable as a source for

counterexamples, the discrete metric. Given any setM , define the distance between

distinct points of M to be 1 and the distance between every point and itself to be

0. This is a metric. See Exercise 4. If M consists of three points, say M = {a, b, c},
you can think of the vertices of the unit equilateral triangle as a model for M . See

Figure 28. They have mutual distance 1 from each other. If M consists of one, two, or

four points can you think of a model for the discrete metric on M? More challenging

is to imagine the discrete metric on R. All points, by definition of the discrete metric,

lie at unit distance from each other.

Convergent Sequences and Subsequences

A sequence of points in a metric space M is a list p1, p2, . . . where the points

pn belong to M . Repetition is allowed, and not all the points of M need to appear

in the list. Good notation for a sequence is (pn), or (pn)n∈N. The notation {pn}
is also used but it is too easily confused with the set of points making up the se-

quence. The difference between (pn)n∈N and {pn : n ∈ N} is that in the former case
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Figure 27 Five metric spaces – a closed outward spiral, a Hawaiian earring,

a topologist’s sine circle, an infinite television antenna, and Zeno’s maze

1 1

1

Figure 28 The vertices of the unit equilateral triangle form a discrete

metric space.
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the sequence prescribes an ordering of the points, while in the latter the points get

jumbled together. For example, the sequences 1, 2, 3, . . . and 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . .

are different sequences but give the same set of points, namely N.

Formally, a sequence in M is a function f : N → M . The nth term in the sequence

is f(n) = pn. Clearly, every sequence defines a function f : N → M and conversely,

every function f : N → M defines a sequence in M . The sequence (pn) converges

to the limit p in M if

∀ε > 0 ∃N ∈ N such that

n ∈ N and n ≥ N ⇒ d(pn, p) < ε.

Limits are unique in the sense that if (pn) converges to p and if (pn) also converges

to p′ then p = p′. The reason is this. Given any ε > 0, there are integers N and N ′

such that if n ≥ N then d(pn, p) < ε, while if n ≥ N ′ then d(pn, p′) < ε. Then for all

n ≥ max{N,N ′} we have

d(p, p′) ≤ d(p, pn) + d(pn, p
′) < ε+ ε = 2ε.

But ε is arbitrary and so d(p, p′) = 0 and p = p′. (This is the ε-principle again.)

We write pn → p, or pn → p as n → ∞, or

lim
n→∞

pn = p

to indicate convergence. For example, in R the sequence pn = 1/n converges to 0 as

n → ∞. In R2 the sequence (1/n, sinn) does not converge as n → ∞. In the metric

space Q (with the metric it inherits from R) the sequence 1, 1.4, 1.414, 1.4142, . . .

does not converge.

Just as a set can have a subset, a sequence can have a subsequence. For ex-

ample, the sequence 2, 4, 6, 8, . . . is a subsequence of 1, 2, 3, 4, . . .. The sequence

3, 5, 7, 11, 13, 17, . . . is a subsequence of 1, 3, 5, 7, 9, . . ., which in turn is a subsequence

of 1, 2, 3, 4, . . .. In general, if (pn)n∈N and (qk)k∈N are sequences and if there is a

sequence n1 < n2 < n3 < . . . of positive integers such that for each k ∈ N we have

qk = pnk then (qk) is a subsequence of (pn). Note that the terms in the subsequence

occur in the same order as in the mother sequence.

1 Theorem Every subsequence of a convergent sequence in M converges and it con-

verges to the same limit as does the mother sequence.
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Proof Let (qk) be a subsequence of (pn), qk = pnk , where n1 < n2 < . . .. Assume

that (pn) converges to p in M . Given ε > 0, there is an N such that for all n ≥ N

we have d(pn, p) < ε. Since n1, n2, . . . are positive integers we have k ≤ nk for all k.

Thus, if k ≥ N then nk ≥ N and d(qk, p) < ε. Hence (qk) converges to p.

A common way to state Theorem1 is that limits are unaffected when we pass to

a subsequence.

2 Continuity
In linear algebra the objects of interest are linear transformations. In real analysis

the objects of interest are functions, especially continuous functions. A function f

from the metric space M to the metric space N is just that; f : M → N and f sends

points p ∈ M to points fp ∈ N . The function maps M to N . The way you should

think of functions – as devices, not formulas – is discussed in Section 4 of Chapter 1.

The most common type of function maps M to R. It is a real-valued function of the

variable p ∈ M .

Definition A function f : M → N is continuous if it preserves sequential

convergence: f sends convergent sequences in M to convergent sequences in N ,

limits being sent to limits. That is, for each sequence (pn) in M which converges to

a limit p in M , the image sequence (f(pn)) converges to fp in N .

Here and in what follows, the notation fp is often used as convenient shorthand

for f(p). The metrics on M and N are dM and dN . We will often refer to either

metric as just d.

2 Theorem The composite of continuous functions is continuous.

Proof Let f : M → N and g : N → P be continuous and assume that

lim
n→∞

pn = p

in M . Since f is continuous, lim
n→∞

f(pn) = fp. Since g is continuous, lim
n→∞

g(f(pn)) =

g(fp) and therefore g ◦ f : M → P is continuous. See Figure 29 on the next page.

Moral The sequence condition is the easy way to tell at a glance whether a function

is continuous.
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Figure 29 The composite function g ◦ f

There are two “obviously” continuous functions.

3 Proposition For every metric space M the identity map id : M → M is continu-

ous, and so is every constant function f : M → N .

Proof Let pn → p in M . Then id(pn) = pn → p = id(p) as n → ∞ which gives

continuity of the identity map. Likewise, if f(x) = q ∈ N for all x ∈ M and if pn → p

in M then fp = q and f(pn) = q for all n. Thus f(pn) → fp as n → ∞ which gives

continuity of the constant function f .

Homeomorphism

Vector spaces are isomorphic if there is a linear bijection from one to the other.

When are metric spaces isomorphic? They should “look the same.” The letters Y

and T look the same; and they look different from the letter O. If f : M → N

is a bijection and f is continuous and the inverse bijection f−1 : N → M is also

continuous then f is a homeomorphism†(or a “homeo” for short) and M,N are

homeomorphic. We write M ∼= N to indicate that M and N are homeomorphic.
∼= is an equivalence relation: M ∼= M since the identity map is a homeomorphism

M → M ; M ∼= N clearly implies that N ∼= M ; and the previous theorem shows that

the composite of homeomorphisms is a homeomorphism.

Geometrically speaking, a homeomorphism is a bijection that can bend, twist,

stretch, and wrinkle the space M to make it coincide with N , but it cannot rip,

†This is a rare case in mathematics in which spelling is important. Homeomorphism != homomor-

phism.
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puncture, shred, or pulverize M in the process. The basic questions to ask about

metric spaces are:

(a) Given M and N , are they homeomorphic?

(b) What are the continuous functions from M to N?

A major goal of this chapter is to show you how to answer these questions in

many cases. For example, is the circle homeomorphic to the interval? To the sphere?

etc. Figure 30 indicates that the circle and the (perimeter of the) triangle are homeo-

morphic, while Figure 15 shows that (a, b), the semicircle, and R are homeomorphic.

Figure 30 The circle and triangle are homeomorphic.

A natural question that should occur to you is whether continuity of f−1 is actu-

ally implied by continuity of a bijection f . It is not. Here is an instructive example.

Consider the interval [0, 2π) = {x ∈ R : 0 ≤ x < 2π} and define f : [0, 2π) → S1

to be the mapping f(x) = (cosx, sinx) where S1 is the unit circle in the plane.

The mapping f is a continuous bijection, but the inverse bijection is not continuous.

For there is a sequence of points (zn) on S1 in the fourth quadrant that converges

to p = (1, 0) from below, and f−1(zn) does not converge to f−1(p) = 0. Rather it

converges to 2π. Thus, f is a continuous bijection whose inverse bijection fails to

be continuous. See Figure 31. In Exercises 49 and 50 you are asked to find worse

examples of continuous bijections that are not homeomorphisms.

To build your intuition about continuous mappings and homeomorphisms, con-

sider the following examples shown in Figure 32 – the unit circle in the plane, a trefoil

knot in R3, the perimeter of a square, the surface of a donut (the 2-torus), the surface
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Figure 31 f wraps [0, 2π) bijectively onto the circle.

of a ceramic coffee cup, the unit interval [0, 1], the unit disc including its boundary.

Equip all with the inherited metric. Which should be homeomorphic to which?

Figure 32 Seven metric spaces
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The (ε, δ)-Condition

The following theorem presents the more familiar (but equivalent!) definition

of continuity using ε and δ. It corresponds to the definition given in Chapter 1 for

real-valued functions of a real variable.

4 Theorem f : M → N is continuous if and only if it satisfies the (ε, δ)-condition:

For each ε > 0 and each p ∈ M there exists δ > 0 such that if x ∈ M and dM (x, p) < δ

then dN (fx, fp) < ε.

Proof Suppose that f is continuous. It preserves sequential convergence. From the

supposition that f fails to satisfy the (ε, δ)-condition at some p ∈ M we will derive

a contradiction. If the (ε, δ)-condition fails at p then there exists ε > 0 such that for

each δ > 0 there is a point x with d(x, p) < δ and d(fx, fp) ≥ ε. Taking δ = 1/n

we get a sequence (xn) with d(xn, p) < 1/n and d(f(xn), fp) ≥ ε, which contradicts

preservation of sequential convergence. For xn → p but f(xn) does not converge

to fp, which contradicts the fact that f preserves sequential convergence. Since

the supposition that f fails to satisfy the (ε, δ)-condition leads to a contradiction, f

actually does satisfy the (ε, δ)-condition.

To check the converse, suppose that f satisfies the (ε, δ)-condition at p. For each

sequence (xn) in M that converges to p we must show f(xn) → fp in N as n → ∞.

Let ε > 0 be given. There is δ > 0 such that dM (x, p) < δ ⇒ dN (fx, fp) < ε.

Convergence of xn to p implies there is an integer K such that for all n ≥ K we have

dM (xn, p) < δ, and therefore dN (f(xn), fp) < ε. That is, f(xn) → fp as n → ∞. See

also Exercise 13.

3 The Topology of a Metric Space
Now we come to two basic concepts in a metric space theory – closedness and open-

ness. Let M be a metric space and let S be a subset of M . A point p ∈ M is a limit

of S if there exists a sequence (pn) in S that converges to it.†

†A limit of S is also sometimes called a limit point of S. Take care though: Some mathematicians

require that a limit point of S be the limit of a sequence of distinct points of S. They would say that

a finite set has no limit points. We will not adopt their point of view. Another word used in this

context, especially by the French, is “adherence.” A point p adheres to the set S if and only if p

is a limit of S. In more general circumstances, limits are defined using “nets” instead of sequences.

They are like “uncountable sequences.” You can read more about nets in graduate-level topology

books such as Topology by James Munkres.



66 A Taste of Topology Chapter 2

Definition S is a closed set if it contains all its limits.†

Definition S is an open set if for each p ∈ S there exists an r > 0 such that

d(p, q) < r ⇒ q ∈ S.

5 Theorem Openness is dual to closedness: The complement of an open set is a

closed set and the complement of a closed set is an open set.

Proof Suppose that S ⊂ M is an open set. We claim that Sc is a closed set. If

pn → p and pn ∈ Sc we must show that p ∈ Sc. Well, if p -∈ Sc then p ∈ S and, since

S is open, there is an r > 0 such that

d(p, q) < r ⇒ q ∈ S.

Since pn → p, we have d(p, pn) < r for all large n, which implies that pn ∈ S,

contrary to the sequence being in Sc. Since the supposition that p lies in S leads to

a contradiction, p actually does lie in Sc, proving that Sc is a closed set.

Suppose that S is a closed set. We claim that Sc is open. Take any p ∈ Sc. If

there fails to exist an r > 0 such that

d(p, q) < r ⇒ q ∈ Sc

then for each r = 1/n with n = 1, 2, . . . there exists a point pn ∈ S such that

d(p, pn) < 1/n. This sequence in S converges to p ∈ Sc, contrary to closedness of S.

Therefore there actually does exist an r > 0 such that

d(p, q) < r ⇒ q ∈ Sc

which proves that Sc is an open set.

Most sets, like doors, are neither open nor closed, but ajar. Keep this in mind.

For example neither (a, b] nor its complement is closed in R; (a, b] is neither closed

nor open. Unlike doors, however, sets can be both open and closed at the same

time. For example, the empty set ∅ is a subset of every metric space and it is always

closed. There are no sequences and no limits to even worry about. Similarly the

full metric space M is a closed subset of itself: For it certainly contains the limit of

†Note how similarly algebraists use the word “closed.” A field (or group or ring, etc.) is closed

under its arithmetic operations: Sums, differences, products, and quotients of elements in the field

still lie in the field. In our case it is limits. Limits of sequences in S must lie in S.
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every sequence that converges in M . Thus, ∅ and M are closed subsets of M . Their

complements, M and ∅, are therefore open: ∅ and M are both closed and open.

Subsets of M that are both closed and open are clopen. See also Exercise 125. It

turns out that in R the only clopen sets are ∅ and R. In Q, however, things are quite

different, sets such as {r ∈ Q : −
√
2 < r <

√
2} being clopen in Q. To summarize,

A subset of a metric space can be

closed, open, both, or neither.

You should expect the “typical” subset of a metric space to be neither closed nor

open.

The topology of M is the collection T of all open subsets of M .

6 Theorem T has three properties:† as a system it is closed under union, finite

intersection, and it contains ∅, M . That is,

(a) Every union of open sets is an open set.

(b) The intersection of finitely many open sets is an open set.

(c) ∅ and M are open sets.

Proof (a) If {Uα} is any collection‡ of open subsets of M and V = >Uα then V is

open. For if p ∈ V then p belongs to at least one Uα and there is an r > 0 such that

d(p, q) < r ⇒ q ∈ Uα.

Since Uα ⊂ V , this implies that all such q lie in V , proving that V is open.

(b) If U1, . . . , Un are open sets and W = <Uk then W is open. For if p ∈ W then

for each k, 1 ≤ k ≤ n, then there is an rk > 0 such that

d(p, q) < rk ⇒ q ∈ Uk.

Take r = min{r1, . . . , rn}. Then r > 0 and

d(p, q) < r ⇒ q ∈ Uk,

†Any collection T of subsets of a set X that satisfies these three properties is called a topology on

X, and X is called a topological space. Topological spaces are more general than metric spaces:

There exist topologies that do not arise from a metric. Think of them as pathological. The question

of which topologies can be generated by a metric and which cannot is discussed in Topology by

Munkres. See also Exercise 30.
‡The α in the notation Uα “indexes” the sets. If α = 1, 2, . . . then the collection is countable, but

we are just as happy to let α range through uncountable index sets.
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for each k; i.e., q ∈ W = <Uk, proving that W is open.

(c) It is clear that ∅ and M are open sets.

7 Corollary The intersection of any number of closed sets is a closed set; the finite

union of closed sets is a closed set; ∅ and M are closed sets.

Proof Take complements and use De Morgan’s laws. If {Kα} is a collection of closed

sets then Uα = (Kα)c is open and

K = <Kα = (>Uα)
c .

Since >Uα is open, its complement K is closed. Similarly, a finite union of closed

sets is the complement of the finite intersection of their complements, and is a closed

set.

What about an infinite union of closed sets? Generally, it is not closed. For

example, the interval [1/n, 1] is closed in R, but the union of these intervals as n

ranges over N is the interval (0, 1] which is not closed in R. Neither is the infinite

intersection of open sets open in general.

Two sets whose closedness/openness properties are basic are:

limS = {p ∈ M : p is a limit of S}
Mrp = {q ∈ M : d(p, q) < r}.

The former is the limit set of S; the latter is the r-neighborhood of p.

8 Theorem limS is a closed set and Mrp is an open set.

Proof Simple but not immediate! See Figure 33.

Suppose that pn → p and each pn lies in limS. We claim that p ∈ limS. Since

pn is a limit of S there is a sequence (pn,k)k∈N in S that converges to pn as k → ∞.

Thus there exists qn = pn,k(n) ∈ S such that

d(pn, qn) <
1

n
.

Then, as n → ∞ we have

d(p, qn) ≤ d(p, pn) + d(pn, qn) → 0

which implies that qn → p, so p ∈ limS, which completes the proof that limS is a

closed set.
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S

pn

pn,k

qn

p

Figure 33 S = (0, 1)× (0, 1) and pn = (1/n, 0) converges to p = (0, 0) as

n → ∞. Each pn is the limit of the sequence pn,k = (1/n, 1/k) as k → ∞.

The sequence qn = (1/n, 1/n) lies in S and converges to (0, 0). Hence: The

limits of limits are limits.

Figure 34 Why the r-neighborhood of p is an open set
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To check that Mrp is an open set, take any q ∈ Mrp and observe that

s = r − d(p, q) > 0.

By the triangle inequality, if d(q, x) < s then

d(p, x) ≤ d(p, q) + d(q, x) < r,

and hence Msq ⊂ Mrp. See Figure 34. Since each q ∈ Mrp has some Msq that is

contained in Mrp, Mrp is an open set.

Proof (a, b) is the r-neighborhood of its midpoint m = (a+b)/2 where r = (b−a)/2.

Therefore (a, b) is open in R. Since the union of open sets is open we see that

>
n∈N

(b− n, b− 1/n) = (−∞, b)

is open. The same applies to (a,∞). The whole metric space R = (−∞,∞) is always

open in itself.

Since the complement of [a, b] is the open set (−∞, a) ∪ (b,∞), the interval [a, b]

is closed.

10 Corollary limS is the “smallest” closed set that contains S in the sense that if

K ⊃ S and K is closed then K ⊃ limS.

Proof Obvious. K must contain the limit of each sequence in K that converges in

M and therefore it must contain the limit of each sequence in S ⊂ K that converges

in M . These limits are exactly limS.

We refer to limS as the closure of S and denote it also as S. You start with S

and make it closed by adding all its limits. You don’t need to add any more points

because limits of limits are limits. That is, lim(limS) = limS. An operation like

this is called idempotent. Doing the operation twice produces the same outcome as

doing it once.

A neighborhood of a point p in M is any open set V that contains p. Theorem8

implies that V = Mrp is a neighborhood of p. Eventually, you will run across the

phrase “closed neighborhood” of p, which refers to a closed set that contains an open

set that contains p. However, until further notice all neighborhoods are open.

9 Corollary The interval (a, b) is open in R and so are (−∞, b), (a,∞), and (−∞,∞).

The interval [a, b] is closed in R.
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Usually, sets defined by strict inequalities are open while those defined by equal-

ities or nonstrict inequalities are closed. Examples of closed sets in R are finite sets,

[a, b], N, and the set {0} ∪ {1/n : n ∈ N}. Each contains all its limits. Examples of

open sets in R are open intervals, bounded or not.

Topological Description of Continuity

A property of a metric space or of a mapping between metric spaces that can

be described solely in terms of open sets (or equivalently, in terms of closed sets) is

called a topological property. The next result describes continuity topologically.

Figure 35 The function f : (x, y) 3→ x2 + y2 + 2 and its graph over the

preimage of [3, 6]

Let f : M → N be given. The preimage† of a set V ⊂ N is

fpre(V ) = {p ∈ M : f(p) ∈ V }.

For example, if f : R2 → R is the function defined by the formula

f(x, y) = x2 + y2 + 2

then the preimage of the interval [3, 6] in R is the annulus in the plane with inner

radius 1 and outer radius 2. Figure 35 shows the domain of f as R2 and the target

†The preimage of V is also called the inverse image of V and is denoted by f−1(V ). Unless f

is a bijection, this notation leads to confusion. There may be no map f−1 and yet expressions like

V ⊃ f(f−1(V )) are written that mix maps and nonmaps. By the way, if f sends no point of M into

V then fpre(V ) is the empty set.
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as R. The range is the set of real numbers ≥ 2. The graph of f is a paraboloid

with lowest point (0, 0, 2). The second part of the figure shows the portion of the

graph lying above the annulus. You will find it useful to keep in mind the distinctions

among the concepts: function, range, and graph.

11 Theorem The following are equivalent for continuity of f : M → N .

(i) The (ε, δ)-condition.

(ii) The sequential convergence preservation condition.

(iii) The closed set condition: The preimage of each closed set in N is closed in

M .

(iv) The open set condition: The preimage of each open set in N is open in M .

Proof Totally natural! By Theorem4, (i) implies (ii).

(ii) implies (iii). If K ⊂ N is closed in N and pn ∈ fpre(K) converges to p ∈ M

then we claim that p ∈ fpre(K). By (ii), f preserves sequential convergence so

lim
n→∞

f(pn) = fp.

Since K is closed in N , fp ∈ K, so p ∈ fpre(K), and we see that fpre(K) is closed in

M . Thus (ii) implies (iii).

(iii) implies (iv). This follows by taking complements: (fpre(U))c = fpre(U c).

(iv) implies (i). Let ε > 0 and p ∈ M be given. Nε(fp) is open in N , so its

preimage U = fpre(Nε(fp)) is open in M . The point p belongs to the preimage so

openness of U implies there is a δ > 0 such that Mδ(p) ⊂ U . Then

f(Mδ(p)) ⊂ fU ⊂ Nε(fp)

gives the ε, δ condition, dM (p, x) < δ ⇒ dN (fp, fx) < ε. See Figure 36.

I hope you find the closed and open set characterizations of continuity elegant.

Note that no explicit mention is made of the metric. The open set condition is purely

topological. It would be perfectly valid to take as a definition of continuity that the

preimage of each open set is open. In fact this is exactly what’s done in general

topology.

12 Corollary A homeomorphism f : M → N bijects the collection of open sets in

M to the collection of open sets in N . It bijects the topologies.
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Figure 36 The ε, δ - condition for a continuous function f : M → N

Proof Let V be an open set inN . By Theorem11, since f is continuous, the preimage

of V is open in M . Since f is a bijection, this preimage U = {p ∈ M : fp ∈ V } is

exactly the image of V by the inverse bijection, U = f−1(V ). The same thing can be

said about f−1 since f−1 is also a homeomorphism. That is, V = fU . Thus, sending

U to fU bijects the topology of M to the topology of N .

Because of this corollary, a homeomorphism is also called a topological equiv-

alence.

In general, continuous maps do not need to send open sets to open sets. For

example, the squaring map x 3→ x2 from R to R is continuous but it sends the open

interval (−1, 1) to the nonopen interval [0, 1). See also Exercise 28.

Inheritance

If a set S is contained in a metric subspace N ⊂ M you need to be careful when

you say that S is open or closed. For example,

S = {x ∈ Q : −π < x < π}

is a subset of the metric subspace Q ⊂ R. It is both open and closed with respect to

Q but is neither open nor closed with respect to R. To avoid this kind of ambiguity

it is best to say that S is clopen “with respect to Q but not with respect to R,” or

more briefly that S is clopen “in Q but not in R.” Nevertheless there is a simple

relation between the topologies of M and N when N is a metric subspace of M .
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13 Inheritance Principle Every metric subspace N of M inherits its topology

from M in the sense that each subset V ⊂ N which is open in N is actually the

intersection V = N ∩ U for some U ⊂ M that is open in M , and vice versa.

Proof It all boils down to the fact that for each p ∈ N we have

Nrp = N ∩Mrp.

After all, Nrp is the set of x ∈ N such that dN (x, p) < r and this is exactly the

same as the set of those x ∈ Mrp that belong to N . Therefore N inherits its r-

neighborhoods from M . Since its open sets are unions of its r-neighborhoods, N also

inherits its open sets from M .

In more detail, if V is open in N then it is the union of those Nrp with Nrp ⊂ V .

Each such Nrp is N ∩ Mrp and the union of these Mrp is U , an open subset of

M . The intersection N ∩ U equals V . Conversely, if U is any open subset of M

and p ∈ V = N ∩ U then openness of U implies there is an Mrp ⊂ U . Thus

Nrp = N ∩Mrp ⊂ V , which shows that V is open in N .

14 Corollary Every metric subspace of M inherits its closed sets from M .

Proof By “inheriting its closed sets” we mean that each closed subset L ⊂ N is the

intersection N ∩K for some closed subset K ⊂ M and vice versa. The proof consists

of two words: “Take complements.” See also Exercise 34.

Let’s return to the example with Q ⊂ R and S = {x ∈ Q : −π < x < π}. The

set S is clopen in Q, so we should have S = Q ∩ U for some open set U ⊂ R and

S = Q ∩K for some closed set K ⊂ R. In fact U and K are

U = (−π,π) and K = [−π,π].

15 Corollary Assume that N is a metric subspace of M and also is a closed subset

of M . A set L ⊂ N is closed in N if and only if it is closed in M . Similarly, if N is

a metric subspace of M and also is an open subset of M then U ⊂ N is open in N if

and only if it is open in M .

Proof The proof is left to the reader as Exercise 34.
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Product Metrics

We next define a metric on the Cartesian product M = X × Y of two metric

spaces. There are three natural ways to do so:

dE(p, p
′) =

√
dX(x, x′)2 + dY (y, y′)2

dmax(p, p
′) = max{dX(x, x′), dY (y, y

′)}
dsum(p, p

′) = dX(x, x′) + dY (y, y
′)

where p = (x, y) and p′ = (x′, y′) belong to M . (dE is the Euclidean product

metric.) The proof that these expressions actually define metrics on M is left as

Exercise 38.

16 Proposition dmax ≤ dE ≤ dsum ≤ 2dmax.

Proof Dropping the smaller term inside the square root shows that dmax ≤ dE ;

comparing the square of dE and the square of dsum shows that the latter has the

terms of the former and the cross term besides, so dE ≤ dsum; and clearly dsum is no

larger than twice its greater term, so dsum ≤ 2dmax.

17 Convergence in a Product Space The following are equivalent for a sequence

pn = (p1n, p2n) in M = M1 ×M2:

(a) (pn) converges with respect to the metric dmax .

(b) (pn) converges with respect to the metric dE.

(c) (pn) converges with respect to the metric dsum .

(d) (p1n) and (p2n) converge in M1 and M2 respectively.

Proof This is immediate from Proposition 16.

18 Corollary If f : M → N and g : X → Y are continuous then so is their

Cartesian product f × g which sends (p, x) ∈ M ×X to (fp, gx) ∈ N × Y .

Proof If (pn, xn) → (p, x) in M × X then Theorem17 implies pn → p in M and

xn → x in X. By continuity, f(pn) → fp and g(xn) → gx. By Theorem17,

(f(pn), g(xn)) → (fp, gx) which gives continuity of f × g.

The three metrics make sense in the obvious way for a Cartesian product of m ≥ 3

metric spaces. The inequality

dmax ≤ dE ≤ dsum ≤ mdmax.

is proved in the same way, and we see that Theorem17 holds also for the product of

m metric spaces. This gives
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19 Corollary (Convergence in Rm) A sequence of vectors (vn) in Rm converges

in Rm if and only if each of its component sequences (vin) converges, 1 ≤ i ≤ m. The

limit of the vector sequence is the vector

v = lim
n→∞

vn =
(
lim
n→∞

v1n, lim
n→∞

v2n, . . . , lim
n→∞

vmn

)
.

The distance function d : M×M → R is a function from the metric space M×M

to the metric space R, so the following assertion makes sense.

20 Theorem d is continuous.

Proof We check (ε, δ)-continuity with respect to the metric dsum. Given ε > 0 we

take δ = ε. If dsum((p, q), (p′, q′)) < δ then the triangle inequality gives

d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, q) < d(p′, q′) + ε

d(p′, q′) ≤ d(p′, p) + d(p, q) + d(q, q′) < d(p, q) + ε

which gives

d(p, q)− ε < d(p′, q′) < d(p, q) + ε.

Thus |d(p′, q′)− d(p, q)| < ε and we get continuity with respect to the metric dsum.

By Theorem17 it does not matter which metric we use on R× R.

As you can see, the use of dsum simplifies the proof by avoiding square root

manipulations. The sum metric is also called theManhattan metric or the taxicab

metric. Figure 37 shows the “unit discs” with respect to these metrics in R2. See

also Exercise 2.

21 Corollary The metrics dmax, dE, and dsum are continuous.

Proof Theorem20 asserts that all metrics are continuous.

22 Corollary The absolute value is a continuous mapping R → R. In fact the norm

is a continuous mapping from any normed space to R.

Proof ‖v‖ = d(v, 0).
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Figure 37 The unit disc in the max metric is a square, and in the sum

metric it is a rhombus.

Completeness

In Chapter 1 we discussed the Cauchy criterion for convergence of a sequence of

real numbers. There is a natural way to carry these ideas over to a metric space M .

The sequence (pn) in M satisfies a Cauchy condition provided that for each ε > 0

there is an integer N such that for all k, n ≥ N we have d(pk, pn) < ε, and (pn) is

said to be a Cauchy sequence. In symbols,

∀ε > 0 ∃N such that k, n ≥ N ⇒ d(pk, pn) < ε.

The terms of a Cauchy sequence “bunch together” as n → ∞. Each convergent

sequence (pn) is Cauchy. For if (pn) converges to p as n → ∞ then, given ε > 0, there

is an N such that for all n ≥ N we have

d(pn, p) <
ε

2
.

By the triangle inequality, if k, n ≥ N then

d(pk, pn) ≤ d(pk, p) + d(p, pn) < ε,

so convergence ⇒ Cauchy.

Theorem1.5 states that the converse is true in the metric space R. Every Cauchy

sequence in R converges to a limit in R. In the general metric space, however, this
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need not be true. For example, consider the metric space Q of rational numbers,

equipped with the inherited metric d(x, y) = |x− y|, and consider the sequence

(rn) = (1.4, 1.41, 1.414, 1.4142, . . .).

It is Cauchy. Given ε > 0, choose N > − log10 ε. If k, n ≥ N then |rk − rn| ≤
10−N < ε. Nevertheless, (rn) refuses to converge in Q. After all, as a sequence in

R it converges to
√
2, and if it also converges to some r ∈ Q, then by uniqueness of

limits in R we have r =
√
2, something we know is false. In brief, convergence ⇒

Cauchy but not conversely.

A metric space M is complete if each Cauchy sequence in M converges to a limit

in M . Theorem1.5 states that R is complete.

23 Theorem Rm is complete.

Proof Let (pn) be a Cauchy sequence in Rm. Express pn in components as

pn = (p1n, . . . , pmn).

Because (pn) is Cauchy, each component sequence (pin)n∈N is Cauchy. Complete-

ness of R implies that the component sequences converge, and therefore the vector

sequence converges.

24 Theorem Every closed subset of a complete metric space is a complete metric

subspace.

Proof Let A be a closed subset of the complete metric space M and let (pn) be a

Cauchy sequence in A with respect to the inherited metric. It is of course also a

Cauchy sequence in M and therefore it converges to a limit p in M . Since A is closed

we have p ∈ A.

25 Corollary Every closed subset of Euclidean space is a complete metric space.

Proof Obvious from the previous theorem and completeness of Rm.

Remark Completeness is not a topological property. For example, consider R with

its usual metric and (−1, 1) with the metric it inherits from R. Although they are

homeomorphic metric spaces, R is complete but (−1, 1) is not.

In Section 10 we explain how every metric space can be completed.
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4 Compactness
Compactness is the single most important concept in real analysis. It is what reduces

the infinite to the finite.

Definition A subset A of a metric space M is (sequentially) compact if every

sequence (an) in A has a subsequence (ank) that converges to a limit in A.

The empty set and finite sets are trivial examples of compact sets. For a sequence

(an) contained in a finite set repeats a term infinitely often, and the corresponding

constant subsequence converges.

Compactness is a good feature of a set. We will develop criteria to decide whether

a set is compact. The first is the most often used, but beware! – its converse is

generally false.

26 Theorem Every compact set is closed and bounded.

Proof Suppose that A is a compact subset of the metric space M and that p is

a limit of A. Does p belong to A? There is a sequence (an) in A converging to

p. By compactness, some subsequence (ank) converges to some q ∈ A, but every

subsequence of a convergent sequence converges to the same limit as does the mother

sequence, so q = p and p ∈ A. Thus A is closed.

To see that A is bounded, choose and fix any point p ∈ M . Either A is bounded

or else for each n ∈ N there is a point an ∈ A such that d(p, an) ≥ n. Compactness

implies that some subsequence (ank) converges. Convergent sequences are bounded,

which contradicts the fact that d(p, ank) → ∞ as k → ∞. Therefore (an) cannot exist

and for some large r we have A ⊂ Mrp, which is what it means that A is bounded.

27 Theorem The closed interval [a, b] ⊂ R is compact.

Proof Let (xn) be a sequence in [a, b] and set

C = {x ∈ [a, b] : xn < x only finitely often}.

Equivalently, for all but finitely many n, xn ≥ x. Since a ∈ C we know that C -= ∅.
Clearly b is an upper bound for C. By the least upper bound property of R there

exists c = l. u. b. C with c ∈ [a, b]. We claim that a subsequence of (xn) converges to

c. Suppose not, i.e., no subsequence of (xn) converges to c. Then for some r > 0, xn
lies in (c − r, c + r) only finitely often, which implies that c + r ∈ C, contrary to

c being an upper bound for C. Hence some subsequence of (xn) does converge to c

and [a, b] is compact.
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To pass from R to Rm we think about compactness for Cartesian products.

28 Theorem The Cartesian product of two compact sets is compact.

Proof Let (an, bn) ∈ A×B be given where A ⊂ M and B ⊂ N are compact. There

exists a subsequence (ank) that converges to some point a ∈ A as k → ∞. The

subsequence (bnk) has a sub-subsequence (bnk(")
) that converges to some b ∈ B as

$ → ∞. The sub-subsequence (ank(")
) continues to converge to the point a. Thus

(ank(")
, bnk(")

) → (a, b)

as $ → ∞. This implies that A×B is compact.

29 Corollary The Cartesian product of m compact sets is compact.

Proof Write A1 ×A2 × · · ·×Am = A1 × (A2 × · · ·×Am) and perform induction on

m. (Theorem28 handles the bottom case m = 2.)

30 Corollary Every box [a1, b1]× · · ·× [am, bm] in Rm is compact.

Proof Obvious from Theorem27 and the previous corollary.

An equivalent formulation of these results is the

31 Bolzano-Weierstrass Theorem Every bounded sequence in Rm has a conver-

gent subsequence.

Proof A bounded sequence is contained in a box, which is compact, and therefore

the sequence has a subsequence that converges to a limit in the box. See also Exer-

cise 11.

Here is a simple fact about compacts.

32 Theorem Every closed subset of a compact is compact.

Proof If A is a closed subset of the compact set K and if (an) is a sequence of points

in A then clearly (an) is also a sequence of points in K, so by compactness of K there

is a subsequence (ank) converging to a limit p ∈ K. Since A is closed, p lies in A

which proves that A is compact.

Now we come to the first partial converse to Theorem26.



Section 4 Compactness 81

33 Heine-Borel Theorem Every closed and bounded subset of Rm is compact.

Proof Let A ⊂ Rm be closed and bounded. Boundedness implies that A is contained

in some box, which is compact. Since A is closed, Theorem32 implies that A is

compact. See also Exercise 11.

The Heine-Borel Theorem states that closed and bounded subsets of Euclidean

space are compact, but it is vital † to remember that a closed and bounded subset

of a general metric space may fail to be compact. For example, the set N of natural

numbers equipped with the discrete metric is a complete metric space, it is closed in

itself (as is every metric space), and it is bounded. But it is not compact. After all,

what subsequence of 1, 2, 3, . . . converges?

A more striking example occurs in the metric space C([0, 1],R) whose metric is

d(f, g) = max{|f(x)− g(x)|}. The space is complete but its closed unit ball is not

compact. For example, the sequence of functions fn = xn has no subsequence that

converges with respect to the metric d. In fact every closed ball is noncompact.

Ten Examples of Compact Sets

1. Any finite subset of a metric space, for instance the empty set.

2. Any closed subset of a compact set.

3. The union of finitely many compact sets.

4. The Cartesian product of finitely many compact sets.

5. The intersection of arbitrarily many compact sets.

6. The closed unit ball in R3.

7. The boundary of a compact set, for instance the unit 2-sphere in R3.

8. The set {x ∈ R : ∃n ∈ N and x = 1/n} ∪ {0}.
9. The Hawaiian earring. See page 58.

10. The Cantor set. See Section 8.

Nests of Compacts

If A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ . . . then (An) is a nested sequence of sets.

Its intersection is
∞
<
n=1

An = {p : for each n we have p ∈ An}.

†I have asked variants of the following True or False question on every analysis exam I’ve given:

“Every closed and bounded subset of a complete metric space is compact.” You would be surprised

at how many students answer “True.”
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See Figure 38.

Figure 38 A nested sequence of sets

For example, we could take An to be the disc {z ∈ R2 : |z| ≤ 1/n}. The intersec-

tion of all the sets An is then the singleton {0}. On the other hand, if An is the ball

{z ∈ R3 : |z| ≤ 1 + 1/n} then <An is the closed unit ball B3.

34 Theorem The intersection of a nested sequence of compact nonempty sets is

compact and nonempty.

Proof Let (An) be such a sequence. By Theorem26, An is closed. The intersection

of closed sets is always closed. Thus, <An is a closed subset of the compact set A1

and is therefore compact. It remains to show that the intersection is nonempty.

An is nonempty, so for each n ∈ N we can choose an ∈ An. The sequence (an)

lies in A1 since the sets are nested. Compactness of A1 implies that (an) has a

subsequence (ank) converging to some point p ∈ A1. The limit p also lies in the set

A2 since except possibly for the first term, the subsequence (ank) lies in A2 and A2

is a closed set. The same is true for A3 and for all the sets in the nested sequence.

Thus, p ∈ <An and <An is shown to be nonempty.

The diameter of a nonempty set S ⊂ M is the supremum of the distances d(x, y)

between points of S.
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35 Corollary If in addition to being nested, nonempty, and compact, the sets An

have diameter that tends to 0 as n → ∞ then A = <An is a single point.

Proof For each n ∈ N, A is a subset of An, which implies that A has diameter zero.

Since distinct points lie at positive distance from each other, A consists of at most one

point, while by Theorem34 it consists of at least one point. See also Exercise 52.

Figure 39 This nested sequence has empty intersection.

Figure 39 shows a nested sequence of nonempty noncompact sets with empty in-

tersection. They are the open discs with center (1/n, 0) on the x-axis and radius 1/n.

They contain no common point. (Their closures do intersect at a common point, the

origin.)

Continuity and Compactness

Next we discuss how compact sets behave under continuous transformations.

36 Theorem If f : M → N is continuous and A is a compact subset of M then fA

is a compact subset of N . That is, the continuous image of a compact is compact.

Proof Suppose that (bn) is a sequence in fA. For each n ∈ N choose a point an ∈ A

such that f(an) = bn. By compactness of A there exists a subsequence (ank) that

converges to some point p ∈ A. By continuity of f it follows that

bnk = f(ank) → fp ∈ fA
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as k → ∞. Thus, every sequence (bn) in fA has a subsequence converging to a limit

in fA, which shows that fA is compact.

From Theorem36 follows the natural generalization of the min/max theorem in

Chapter 1 which concerns continuous real-valued functions defined on an interval

[a, b]. See Theorem1.23.

37 Corollary A continuous real-valued function defined on a compact set is bounded;

it assumes maximum and minimum values.

Proof Let f : M → R be continuous and let A be a compact subset of M . Theo-

rem36 implies that fA is a compact subset of R, so by Theorem26 it is closed and

bounded. Thus, the greatest lower bound, v, and least upper bound, V , of fA exist

and belong to fA; i.e., there exist points p, P ∈ A such that for all a ∈ A we have

v = fp ≤ fa ≤ fP = V .

Homeomorphisms and Compactness

A homeomorphism is a bicontinuous bijection. Originally, compactness was called

bicompactness. This is reflected in the next theorem.

38 Theorem If M is compact and M is homeomorphic to N then N is compact.

Compactness is a topological property.

Proof N is the continuous image of M , so by Theorem36 it is compact.

39 Corollary [0, 1] and R are not homeomorphic.

Proof One is compact and the other isn’t.

40 Theorem If M is compact then a continuous bijection f : M → N is a homeo-

morphism – its inverse bijection f−1 : N → M is automatically continuous.

Proof Suppose that qn → q inN . Since f is a bijection, pn = f−1(qn) and p = f−1(q)

are well defined points in M . To check continuity of f−1 we must show that pn → p.

If (pn) refuses to converge to p then there is a subsequence (pnk) and a δ > 0 such

that for all k we have d(pnk , p) ≥ δ. Compactness of M gives a sub-subsequence

(pnk(")
) that converges to a point p∗∈ M as $ → ∞.

Necessarily, d(p, p∗) ≥ δ, which implies that p -= p∗. Since f is continuous we

have

f(pnk(")
) → f(p∗)
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as $ → ∞. The limit of a convergent sequence is unchanged by passing to a subse-

quence, and so f(pnk(")
) = qnk(")

→ q as $ → ∞. Thus, f(p∗) = q = f(p), contrary to

f being a bijection. It follows that pn → p and therefore that f−1 is continuous.

If M is not compact then Theorem40 becomes false. For example, the function

f : [0, 2π) → R2 defined by f(x) = (cosx, sinx) is a continuous bijection onto the

unit circle in the plane, but it is not a homeomorphism. This useful example was

discussed on page 65. Not only does this f fail to be a homeomorphism, but there

is no homeomorphism at all from [0, 2π) to S1. The circle is compact while [0, 2π) is

not. Therefore they are not homeomorphic. See also Exercises 49 and 50.

Embedding a Compact

Not only is a compact space M closed in itself, as is every metric space, but it

is also a closed subset of each metric space in which it is embedded. More precisely

we say that h : M → N embeds M into N if h is a homeomorphism from M onto

hM . (The metric on hM is the one it inherits from N.) Topologically M and hM

are equivalent. A property of M that holds also for every embedded copy of M is an

absolute or intrinsic property of M .

41 Theorem A compact is absolutely closed and absolutely bounded.

Proof Obvious from Theorems 26 and 36.

For example, no matter how the circle is embedded in R3, its image is always

closed and bounded. See also Exercises 48 and 120.

Uniform Continuity and Compactness

In Chapter 1 we defined the concept of uniform continuity for real-valued functions

of a real variable. The definition in metric spaces is analogous. A function f : M → N

is uniformly continuous if for each ε > 0 there exists a δ > 0 such that

p, q ∈ M and dM (p, q) < δ ⇒ dN (fp, fq) < ε.

42 Theorem Every continuous function defined on a compact is uniformly contin-

uous.

Proof Suppose not, and f : M → N is continuous, M is compact, but f fails to

be uniformly continuous. Then there is some ε > 0 such that no matter how small
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δ is, there exist points p, q ∈ M with d(p, q) < δ but d(fp, fq) ≥ ε. Take δ = 1/n

and let (pn) and (qn) be sequences of points in M such that d(pn, qn) < 1/n while

d(f(pn), f(qn)) ≥ ε. Compactness of M implies that there is a subsequence pnk which

converges to some p ∈ M as k → ∞. Since d(pn, qn) < 1/n → 0 as n → ∞, (qnk)

converges to the same limit as does (pnk) as k → ∞; namely qnk → p. Continuity at

p implies that f(pnk) → fp and f(qnk) → fp. If k is large then

d(f(pnk), f(qnk)) ≤ d(f(pnk), fp) + d(fp, f(qnk)) < ε,

contrary to the supposition that d(f(pn), f(qn)) ≥ ε for all n.

Theorem42 gives a second proof that continuity implies uniform continuity on an

interval [a, b]. For [a, b] is compact.

5 Connectedness
As another application of these ideas, we consider the general notion of connectedness.

Let A be a subset of a metric space M . If A is neither the empty set nor M then A

is a proper subset of M . Recall that if A is both closed and open in M it is said to

be clopen. The complement of a clopen set is clopen. The complement of a proper

subset is proper.

If M has a proper clopen subset A then M is disconnected. For there is a

separation of M into proper, disjoint clopen subsets,

M = A 7 Ac.

(The notation 7 indicates disjoint union.) M is connected if it is not disconnected,

i.e., it contains no proper clopen subset. Connectedness of M does not mean that M

is connected to something, but rather that M is one unbroken thing. See Figure 40.

Figure 40 M and N illustrate the difference between being connected and

being disconnected.
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43 Theorem If M is connected, f : M → N is continuous, and f is onto then N is

connected. The continuous image of a connected is connected.

Proof Simple! If A is a clopen proper subset of N then, according to the open and

closed set conditions for continuity, fpre(A) is a clopen subset of M . Since f is onto

and A -= ∅, we have fpre(A) -= ∅. Similarly, fpre(Ac) -= ∅. Therefore fpre(A) is a

proper clopen subset of M , contrary to M being connected. It follows that A cannot

exist and that N is connected.

44 Corollary If M is connected and M is homeomorphic to N then N is connected.

Connectedness is a topological property.

Proof N is the continuous image of M , so Theorem43 implies it is connected.

45 Corollary (Generalized Intermediate Value Theorem) Every continuous

real-valued function defined on a connected domain has the intermediate value prop-

erty.

Proof Assume that f : M → R is continuous and M is connected. If f assumes

values α < β in R and if it fails to assume some value γ with α < γ < β, then

M = {x ∈ M : f(x) < γ} 7 {x ∈ M : f(x) > γ}

is a separation of M , contrary to connectedness.

46 Theorem R is connected.

Proof If U ⊂ R is nonempty and clopen we claim that U = R. Choose some p ∈ U

and consider the set

X = {x ∈ U : the open interval (p, x) is contained in U}.

X is nonempty since U is open. Let s be the supremum of X. If s is finite (i.e., X is

bounded above) then s = l. u. b. X and s is a limit of X. Since X ⊂ U and U is closed

we have s ∈ U . Since U is open there is an interval (s − r, s + r) ⊂ U , which gives

an interval (p, s+ r) ⊂ U , contrary to s being an upper bound for X. Hence s = ∞
and U ⊃ (p,∞). The same reasoning gives U ⊃ (−∞, p), so U = R as claimed. Thus

there are no proper clopen subsets of R and R is connected.

47 Corollary (Intermediate Value Theorem for R) Every continuous function

f : R → R has the intermediate value property.
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Proof Immediate from the Generalized Intermediate Value Theorem and connect-

edness of R.

48 Corollary The following metric spaces are connected: The intervals (a, b), [a, b],

the circle, and all capital letters of the Roman alphabet.

Proof The interval (a, b) is homeomorphic to R, while [a, b] is the continuous image

of R under the map whose graph is shown in Figure 41. The circle is the continuous

image of R under the map t 3→ (cos t, sin t). Connectedness of the letters A, . . . ,Z is

equally clear.

Figure 41 The function f surjects R continuously to [a, b].

Connectedness properties give a good way to distinguish nonhomeomorphic sets.

Example The union of two disjoint closed intervals is not homeomorphic to a single

interval. One set is disconnected and the other is connected.

Example The closed interval [a, b] is not homeomorphic to the circle S1. For removal

of a point x ∈ (a, b) disconnects [a, b] while the circle remains connected upon removal

of any point. More precisely, suppose that h : [a, b] → S1 is a homeomorphism.

Choose a point x ∈ (a, b), and consider X = [a, b]! {x}. The restriction of h to X is

a homeomorphism from X onto Y , where Y is the circle with the point hx removed.

But X is disconnected while Y is connected. Hence h cannot exist and the segment

is not homeomorphic to the circle.

Example The circle is not homeomorphic to the figure eight. Removing any two

points of the circle disconnects it, but this is not true of the figure eight. Or, removing
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the crossing point disconnects the figure eight but removing any point of the circle

leaves it connected.

Example The circle is not homeomorphic to the disc. For removing two points

disconnects the circle but does not disconnect the disc.

As you can see, it is useful to be able to recognize disconnected subsets S of a

metric space M . By definition, S is a disconnected subset of M if it is disconnected

when considered in its own right as a metric space with the metric it inherits from

M ; i.e., it has a separation S = A 7B such that A and B are proper clopen subsets

of S. The sets A,B are separated in S but they need not be separated in M . Their

closures in M may intersect.

Example The punctured interval X = [a, b]! {c} is disconnected if a < c < b. For

X = [a, c) 7 (c, b] is a separation of X. The closures of the two sets with respect to

the metric space X do not intersect, even though their closures with respect to R
do intersect. Pay attention to this phenomenon which is related to the Inheritance

Principle.

Example Any subset Y of the punctured interval is disconnected if it meets both

[a, c) and (c, b]. For Y = ([a, c) ∩ Y ) 7 ((c, b] ∩ Y ) is a separation of Y .

49 Theorem The closure of a connected set is connected. More generally, if S ⊂ M

is connected and S ⊂ T ⊂ S then T is connected.

Proof It is equivalent to show that if T is disconnected then S is disconnected.

Disconnectedness of T implies that

T = A 7B

where A,B are clopen and proper in T . It is natural to expect that

S = K 7 L

is a separation of S where K = A∩S and L = B ∩S. The sets K and L are disjoint,

their union is S, and by the Inheritance Principle they are clopen. But are they

proper?

If K = ∅ then A ⊂ Sc. Since A is proper there exists p ∈ A. Since A is open in

T , there exists a neighborhood Mrp such that

T ∩ Mrp ⊂ A ⊂ Sc.
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The neighborhood Mrp contains no points of S, which is contrary to p belonging to

S. Thus, K -= ∅. Similarly, L = B ∩ S -= ∅, so S = K 7 L is a separation of S,

proving that S is disconnected.

Example The outward spiral expressed in polar coordinates as

S = {(r, θ) : (1− r)θ = 1 and θ ≥ π/2}

has S = S ∪ S1, where S1 is the unit circle. Since S is connected, so is S. (Recall

that S is the closure of S.) See Figure 27.

50 Theorem The union of connected sets sharing a common point p is connected.

Proof Let S = >Sα, where each Sα is connected and p ∈ <Sα. If S is disconnected

then it has a separation S = A 7 Ac where A,Ac are proper and clopen. One of

them contains p; say it is A. Then A ∩ Sα is a nonempty clopen subset of Sα. Since

Sα is connected, A ∩ Sα = Sα for each α, and A = S. This implies that Ac = ∅, a
contradiction. Therefore S is connected.

Example The 2-sphere S2 is connected. For S2 is the union of great circles, each

passing through the poles.

Example Every convex set C in Rm (or in any metric space with a compatible linear

structure) is connected. If we choose a point p ∈ C then each q ∈ C lies on a line

segment [p, q] ⊂ C. Thus, C is the union of connected sets sharing the common point

p. It is connected.

Definition A path joining p to q in a metric space M is a continuous function

f : [a, b] → M such that fa = p and fb = q. If each pair of points in M can be joined

by a path in M then M is path-connected. See Figure 42.

51 Theorem Path-connected implies connected.

Proof Assume that M is path-connected but not connected. Then M = A 7Ac for

some proper clopen A ⊂ M . Choose p ∈ A and q ∈ Ac. There is a path f : [a, b] → M

from p to q. The separation fpre(A) 7 fpre(Ac) contradicts connectedness of [a, b].

Therefore M is connected.

Example All connected subsets of R are path-connected. See Exercise 67.
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Figure 42 A path f in M that joins p to q

Example Every open connected subset of Rm is path-connected. See Exercises 61

and 66.

Example The topologist’s sine curve is a compact connected set that is not

path-connected. It is M = G ∪ Y where

G = {(x, y) ∈ R2 : y = sin 1/x and 0 < x ≤ 1/π}
Y = {(0, y) ∈ R2 : −1 ≤ y ≤ 1}.

See Figure 43. The metric on M is just Euclidean distance. Is M connected? Yes!

Figure 43 The topologist’s sine curve M is a connected set. It includes the

vertical segment Y at x = 0.

The graph G is connected and M = G. By Theorem49 M is connected.
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6 Other Metric Space Concepts

Here are a few standard metric space topics related to what appears above. If S ⊂ M

then its closure is the smallest closed subset of M that contains S, its interior is the

largest open subset of M contained in S, and its boundary is the difference between

its closure and its interior. Their notations are

S = clS = closure of S intS = interior of S ∂S = boundary of S.

To avoid inheritance ambiguity it would be better (but too cumbersome) to write

clM S, intM S, and ∂MS to indicate the ambient space M . In Exercise 95 you are

asked to check various simple facts about them, such as S = limS = the intersection

of all closed sets that contain S.

Clustering and Condensing

Two concepts similar to limits are clustering and condensing. The set S “clusters”

at p (and p is a cluster point† of S) if each Mrp contains infinitely many points

of S. The set S condenses at p (and p is a condensation point of S) if each

Mrp contains uncountably many points of S. Thus, S limits at p, clusters at p, or

condenses at p according to whether each Mrp contains some, infinitely many, or

uncountably many points of S. See Figure 44.

Figure 44 Limiting, clustering, and condensing behavior

†Cluster points are also called accumulation points. As mentioned above, they are also some-

times called limit points, a usage that conflicts with the limit idea. A finite set S has no cluster

points, but of course, each of its points p is a limit of S since the constant sequence (p, p, p, . . .)

converges to p.
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52 Theorem The following are equivalent conditions to S clustering at p.

(i) There is a sequence of distinct points in S that converges to p.

(ii) Each neighborhood of p contains infinitely many points of S.

(iii) Each neighborhood of p contains at least two points of S.

(iv) Each neighborhood of p contains at least one point of S other than p.

Proof Clearly (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and (ii) is the definition of clustering. It

remains to check (iv) ⇒ (i).

Assume (iv) is true: Each neighborhood of p contains a point of S other than

p. In M1p choose a point p1 ∈ (S! {p}). Set r2 = min(1/2, d(p1, p)), and in

the smaller neighborhood Mr2p, choose p2 ∈ (S! {p}). Proceed inductively: Set

rn = min(1/n, d(pn−1, p)) and in Mrnp, choose pn ∈ (S! {p}). Since rn → 0 the

sequence (pn) converges to p. The points pn are distinct since they have different

distances to p,

d(p1, p) ≥ r2 > d(p2, p) ≥ r3 > d(p3, p) ≥ . . . .

Thus (iv) ⇒ (i) and the four conditions are equivalent.

Condition (iv) is the form of the definition of clustering most frequently used,

although it is the hardest to grasp. It is customary to denote by S′ the set of cluster

points of S.

53 Proposition S ∪ S′ = S.

Proof A cluster point is a type of limit of S, so S′ ⊂ limS = S and

S ∪ S′ ⊂ S

On the other hand, if p ∈ S then either p ∈ S or else p /∈ S and each neighborhood

of p contains points of S other than p. This implies that p ∈ S ∪ S′, so S ⊂ S ∪ S′,

and the two sets are equal.

54 Corollary S is closed if and only if S′ ⊂ S.

Proof S is closed if and only if S = S. Since S = S ∪ S′, equivalent to S′ ⊂ S is

S = S.

55 Corollary The least upper bound and greatest lower bound of a nonempty bounded

set S ⊂ R belong to the closure of S. Thus, if S is closed then they belong to S.

Proof If b = l. u. b. S then each interval (b− r, b] contains points of S. The same is

true for intervals [a, a+ r) where a = g. l. b. S
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Perfect Metric Spaces

A metric space M is perfect if M ′ = M , i.e., each p ∈ M is a cluster point of

M . Recall that M clusters at p if each Mrp is an infinite set. For example [a, b] is

perfect and Q is perfect. N is not perfect since none of its points are cluster points.

56 Theorem Every nonempty, perfect, complete metric space is uncountable.

Proof Suppose not: AssumeM is nonempty, perfect, complete, and countable. Since

M consists of cluster points it must be denumerable and not finite. Say

M = {x1, x2, . . .}

is a list of all the elements of M . We will derive a contradiction by finding a point of

M not in the list. Define

M̂rp = {q ∈ M : d(p, q) ≤ r}.

It is the closed neighborhood of radius r at p. Choose any y1 ∈ M with y1 -= x1
and choose r1 > 0 so that Y1 = M̂r1(y1) “excludes” x1 in the sense that x1 /∈ Y1. We

can take r1 as small as we want, say r1 < 1.

Since M clusters at y1 we can choose y2 ∈ Mr1(y1) with y2 -= x2 and choose

r2 > 0 so that Y2 = M̂r2(y2) excludes x2. Taking r2 small ensures Y2 ⊂ Y1. (Here we

are using openness of Mr1(y1).) Also we take r2 < 1/2. Since Y2 ⊂ Y1, it excludes x1
as well as x2. See Figure 45.

Nothing stops us from continuing inductively, and we get a nested sequence of

closed neighborhoods Y1 ⊃ Y2 ⊃ Y3 . . . such that Yn excludes x1, . . . , xn, and has

radius rn ≤ 1/n. Thus the center points yn form a Cauchy sequence. Completeness

of M implies that

lim
n→∞

yn = y ∈ M

exists. Since the sets Yn are closed and nested, y ∈ Yn for each n. Does y equal x1?

No, for Y1 excludes x1. Does it equal x2? No, for Y2 excludes x2. In fact, for each n

we have y -= xn. The point y is nowhere in the supposedly complete list of elements

of M , a contradiction. Hence M is uncountable.

57 Corollary R and [a, b] are uncountable.

Proof R is complete and perfect, while [a, b] is compact, therefore complete, and

perfect. Neither is empty.
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Figure 45 The exclusion of successively more points of the sequence (xn)

that supposedly lists all the elements of M

58 Corollary Every nonempty perfect complete metric space is everywhere uncount-

able in the sense that each r-neighborhood is uncountable.

Proof The r/2-neighborhood Mr/2(p) is perfect: It clusters at each of its points.

The closure of a perfect set is perfect. Thus, Mr/2(p) is perfect. Being a closed

subset of a complete metric space, it is complete. According to Theorem56, Mr/2(p)

is uncountable. Since Mr/2(p) ⊂ Mrp, Mrp is uncountable.

Continuity of Arithmetic in R
Addition is a mapping Sum : R × R → R that assigns to (x, y) the real number

x+ y. Subtraction and multiplication are also such mappings. Division is a mapping

R× (R! {0}) → R that assigns to (x, y) the number x/y.

59 Theorem The arithmetic operations of R are continuous.

60 Lemma For each real number c the function Multc : R → R that sends x to cx

is continuous.
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Proof If c = 0 the function is constantly equal to 0 and is therefore continuous. If

c -= 0 and ε > 0 is given, choose δ = ε/ |c|. If |x− y| < δ then

|Multc(x)−Multc(y)| = |c| |x− y| < |c| δ = ε

which shows that Multc is continuous.

Proof of Theorem59 We use the preservation of sequential convergence criterion

for continuity. It’s simplest. Let (xn, yn) → (x, y) as n → ∞.

By the triangle inequality we have

|Sum(xn, yn)− Sum(x, y)| ≤ |xn − x|+ |yn − y| = dsum((xn, yn), (x, y)).

By Corollary 21 dsum is continuous, so dsum((xn, yn), (x, y)) → 0 as n → ∞, which

completes the proof that Sum is continuous. (By Theorem17 it does not matter

which metric we use on R× R.)

Subtraction is the composition of continuous functions

Sub(x, y) = Sum ◦ (id×Mult−1)(x, y)

and is therefore continuous. (Proposition 3 implies id is continuous, Lemma60 implies

Mult−1 is continuous, and Corollary 18 implies id×Mult−1 is continuous.)

Multiplication is continuous since

|Mult(xn, yn)−Mult(x, y)| = |xnyn − xy|
≤ |xn − x| |yn|+ |x| |yn − y|
≤ B(|x− xn|+ |y − yn|)
= MultB(dsum((xn, yn), (x, y))) → 0

as n → ∞, where we use the fact that convergent sequences are bounded to write

|yn|+ |x| ≤ B for all n.

Reciprocation is the function Rec : R! {0} → R! {0} that sends x to 1/x. If

xn → x -= 0 then there is a constant b > 0 such that for all large n we have |1/xn| ≤ b

and |1/x| ≤ b. Since

|Rec(xn)− Rec(x)| =

∣∣∣∣
1

xn
− 1

x

∣∣∣∣ =
|xn − x|
|xxn|

≤ Multb2(|xn − x|) → 0

as n → ∞ we see that Rec is continuous.

Division is continuous on R × (R! {0}) since it is the composite of continuous

mappings Mult ◦ (id×Rec) : (x, y) 3→ (x, 1/y) 3→ x · 1/y.
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The absolute value is a mapping Abs : R → R that sends x to |x|. It is contin-

uous since it is d(x, 0) and the distance function is continuous. The maximum and

minimum are functions R× R → R given by the formulas

max(x, y) =
x+ y

2
+

|x− y|
2

min(x, y) =
x+ y

2
− |x− y|

2
,

so they are also continuous.

61 Corollary The sums, differences, products, and quotients, absolute values, max-

ima, and minima of real-valued continuous functions are continuous. (The denomi-

nator functions should not equal zero.)

Proof Take, for example, the sum f + g where f, g : M → R are continuous. It is

the composite of continuous functions

M
f×g−−−−→ R× R Sum−−−→ R

x 3→ (fx, gx) 3→ Sum(fx, gx),

and is therefore continuous. The same applies to the other operations.

62 Corollary Polynomials are continuous functions.

Proof Proposition 3 states that constant functions and the identity function are con-

tinuous. Thus Corollary 61 and induction imply that the polynomial a0+ a1x+ · · ·+
anxn is continuous.

The same reasoning shows that polynomials of m variables are continuous func-

tions Rm → R.

Boundedness

A subset S of a metric space M is bounded if for some p ∈ M and some r > 0,

S ⊂ Mrp.

A set which is not bounded is unbounded. For example, the elliptical region 4x2 +

y2 < 4 is a bounded subset of R2, while the hyperbola xy = 1 is unbounded. It is

easy to see that if S is bounded then for each q ∈ M there is an s such that Msq

contains S.

Distinguish the word “bounded” from the word “finite.” The first refers to phys-

ical size, the second to the number of elements. The concepts are totally different.
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Also, boundedness has little connection to the existence of a boundary – a clopen

subset of a metric space has empty boundary, but some clopen sets are bounded,

others not.

Exercise 39 asks you to show that every convergent sequence is bounded, and to

decide whether it is also true that every Cauchy sequence is bounded, even when the

metric space is not complete.

Boundedness is not a topological property. For example, (−1, 1) and R are home-

omorphic although (−1, 1) is bounded and R is unbounded. The same example shows

that completeness is not a topological property.

A function from M to another metric space N is a bounded function if its

range is a bounded subset of N . That is, there exist q ∈ N and r > 0 such that

fM ⊂ Nrq.

Note that a function can be bounded even though its graph is not. For example,

x 3→ sinx is a bounded function R → R although its graph, {(x, y) ∈ R2 : y = sinx},
is an unbounded subset of R2.

7 Coverings
For the sake of simplicity we have postponed discussing compactness in terms of open

coverings until this point. Typically, students find coverings a challenging concept.

It is central, however, to much of analysis – for example, measure theory.

Definition A collection U of subsets of M covers A ⊂ M if A is contained in the

union of the sets belonging to U. The collection U is a covering of A. If U and V
both cover A and if V ⊂ U in the sense that each set V ∈ V belongs also to U then

we say that U reduces to V, and that V is a subcovering of A.

Definition If all the sets in a covering U of A are open then U is an open covering

of A. If every open covering of A reduces to a finite subcovering of A then we say

that A is covering compact†.

The idea is that if A is covering compact and U is an open covering of A then

just a finite number of the open sets are actually doing the work of covering A. The

rest are redundant.
†You will frequently find it said that an open covering of A has a finite subcovering. “Has” means

“reduces to.”
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A covering U of A is also called a cover of A. The members of U are not called

covers. Instead, you could call them scraps or patches. Imagine the covering as a

patchwork quilt that covers a bed, the quilt being sewn together from overlapping

scraps of cloth. See Figure 46.

Figure 46 A covering of A by eight scraps. The set A is cross-hatched.

The scraps are two discs, two rectangles, two ellipses, a pentagon, and a

triangle. Each point of A belongs to at least one scrap.

The mere existence of a finite open covering of A is trivial and utterly worthless.

Every set A has such a covering, namely the single open set M . Rather, for A to

be covering compact, each and every open covering of A must reduce to a finite

subcovering of A. Deciding directly whether this is so is daunting. How could you

hope to verify the finite reducibility of all open coverings of A? There are so many of

them. For this reason we concentrated on sequential compactness; it is relatively easy

to check by inspection whether every sequence in a set has a convergent subsequence.

To check that a set is not covering compact it suffices to find an open covering

which fails to reduce to a finite subcovering. Occasionally this is simple. For example,
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the set (0, 1] is not covering compact in R because its covering

U = {(1/n, 2) : n ∈ N}

fails to reduce to a finite subcovering.

63 Theorem For a subset A of a metric space M the following are equivalent:

(a) A is covering compact.

(b) A is sequentially compact.

Proof that (a) implies (b) We assume A is covering compact and prove it is se-

quentially compact. Suppose not. Then there is a sequence (pn) in A, no subsequence

of which converges in A. Each point a ∈ A therefore has some neighborhood Mra

such that pn ∈ Mra only finitely often. (The radius r may depend on the point a.)

The collection {Mra : a ∈ A} is an open covering of A and by covering compactness

it reduces to a finite subcovering

{Mr1(a1), Mr2(a2), . . . , Mrk(ak)}

of A. Since pn appears in each of these finitely many neighborhoods Mri(ai) only

finitely often, it follows from the pigeonhole principle that (pn) has only finitely many

terms, a contradiction. Thus (pn) cannot exist, and A is sequentially compact.

The following presentation of the proof that (b) implies (a) appears in Royden’s

book, Real Analysis. A Lebesgue number for a covering U of A is a positive real

number λ such that for each a ∈ A there is some U ∈ U with Mλa ⊂ U . Of course,

the choice of this U depends on a. It is crucial, however, that the Lebesgue number

λ is independent of a ∈ A.

The idea of a Lebesgue number is that we know each point a ∈ A is contained in

some U ∈ U, and if λ is extremely small then Mλa is just a slightly swollen point –

so the same should be true for it too. No matter where in A the neighborhood Mλa

is placed, it should lie wholly in some member of the covering. See Figure 47.

If A is noncompact then it may have open coverings with no positive Lebesgue

number. For example, let A = (0, 1) ⊂ R = M . The singleton collection {A} is

an open covering of A, but there is no λ > 0 such that for every a ∈ A we have

(a− λ, a+ λ) ⊂ A. See Exercise 86.

64 Lebesgue Number Lemma Every open covering of a sequentially compact set

has a Lebesgue number λ > 0.
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Figure 47 Small neighborhoods are like swollen points. U has a positive

Lebesgue number λ. The λ-neighborhood of each point in the cross-hatched

set A is wholly contained in at least one member of the covering.

Proof Suppose not: U is an open covering of a sequentially compact set A, and yet

for each λ > 0 there exists an a ∈ A such that no U ∈ U contains Mλa. Take λ = 1/n

and let an ∈ A be a point such that no U ∈ U contains M1/n(an). By sequential

compactness, there is a subsequence (ank) converging to some point p ∈ A. Since U
is an open covering of A, there exist r > 0 and U ∈ U with Mrp ⊂ U . If k is large

then d(ank , p) < r/2 and 1/nk < r/2, which implies by the triangle inequality that

M1/nk
(ank) ⊂ Mrp ⊂ U,

contrary to the supposition that no U ∈ U contains M1/n(an). We conclude that,

after all, U does have a Lebesgue number λ > 0. See Figure 48.

Proof that (b) implies (a) in Theorem 63 Let U be an open covering of the

sequentially compact set A. We want to reduce U to a finite subcovering. By the

Lebesgue Number Lemma, U has a Lebesgue number λ > 0. Choose any a1 ∈ A and

some U1 ∈ U such that

Mλ(a1) ⊂ U1.
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Figure 48 The neighborhood Mrp engulfs the smaller neighborhood

M1/nk
(ank).

If U1 ⊃ A then U reduces to the finite subcovering {U1} consisting of a single set,

and the implication (b) ⇒ (a) is proved. On the other hand, as is more likely, if U1

does not contain A then we choose a point a2 ∈ A!U1 and U2 ∈ U such that

Mλ(a2) ⊂ U2.

Either U reduces to the finite subcovering {U1, U2} (and the proof is finished) or

else we can continue, eventually producing a sequence (an) in A and a sequence (Un)

in U such that

Mλ(an) ⊂ Un and an+1 ∈ (A! (U1 ∪ · · · ∪ Un)).

We will show that such sequences (an), (Un) lead to a contradiction. By sequential

compactness, there is a subsequence (ank) that converges to some p ∈ A. For a large

k we have d(ank , p) < λ and

p ∈ Mλ(ank) ⊂ Unk .

See Figure 49.

All an" with $ > k lie outside Unk , which contradicts their convergence to p. Thus,

at some finite stage the process of choosing points an and sets Un terminates, and U
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Figure 49 The point ank is so near p that the neighborhood Mλ(ank)

engulfs p.

reduces to a finite subcovering {U1, . . . , Un} of A, which implies that A is covering

compact. See also the remark on page 421.

Upshot In light of Theorem63, the term “compact” may now be applied equally to

any set obeying (a) or (b).

Total Boundedness

The Heine-Borel Theorem states that a subset of Rm is compact if and only if

it is closed and bounded. In more general metric spaces, such as Q, the assertion is

false. But what if the metric space is complete? As remarked on page 81 it is still

false.

But mathematicians do not quit easily. The Heine-Borel Theorem ought to gen-

eralize beyond Rm somehow. Here is the concept we need: A set A ⊂ M is totally

bounded if for each ε > 0 there exists a finite covering of A by ε-neighborhoods. No

mention is made of a covering reducing to a subcovering. How close total boundedness

is to the worthless fact that every metric space has a finite open covering!

65 Generalized Heine-Borel Theorem A subset of a complete metric space is

compact if and only if it is closed and totally bounded.
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Proof Let A be a compact subset of M . Therefore it is closed. To see that it is

totally bounded, let ε > 0 be given and consider the covering of A by ε-neighborhoods,

{Mε x : x ∈ A}.

Compactness of A implies that this covering reduces to a finite subcovering and

therefore A is totally bounded.

Conversely, assume that A is a closed and totally bounded subset of the complete

metric space M . We claim that A is sequentially compact. That is, every sequence

(an) in A has a subsequence that converges in A. Set εk = 1/k, k = 1, 2, . . . . Since

A is totally bounded we can cover it by finitely many ε1-neighborhoods

Mε1(q1), . . . , Mε1(qm).

By the pigeonhole principle, terms of the sequence an lie in at least one of these

neighborhoods infinitely often, say it is Mε1(p1). Choose

an1 ∈ A1 = A ∩Mε1(p1).

Every subset of a totally bounded set is totally bounded, so we can cover A1 by finitely

many ε2-neighborhoods. For one of them, say Mε2(p2), an lies in A2 = A1 ∩Mε2(p2)

infinitely often. Choose an2 ∈ A2 with n2 > n1.

Proceeding inductively, cover Ak−1 by finitely many εk-neighborhoods, one of

which, say Mεk(pk), contains terms of the sequence (an) infinitely often. Then choose

ank ∈ Ak = Ak−1 ∩Mεk(pk) with nk > nk−1. Then (ank) is a subsequence of (an). It

is Cauchy. For if ε > 0 is given we choose N such that 2/N < ε. If k, $ ≥ N then

ank , an" ∈ AN and diamAN ≤ 2εN =
2

N
< ε,

which shows that (ank) is Cauchy. Completeness of M implies that (ank) converges

to some p ∈ M and since A is closed we have p ∈ A. Hence A is compact.

66 Corollary A metric space is compact if and only if it is complete and totally

bounded.

Proof Every compact metric space M is complete. This is because, given a Cauchy

sequence (pn) in M , compactness implies that some subsequence converges in M ,

and if a Cauchy sequence has a convergent subsequence then the mother sequence

converges too. As observed above, compactness immediately gives total boundedness.

Conversely, assume that M is complete and totally bounded. Every metric space

is closed in itself. By Theorem65, M is compact.
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8 Cantor Sets
Cantor sets are fascinating examples of compact sets that are maximally disconnected.

(To emphasize the disconnectedness, one sometimes refers to a Cantor set as “Cantor

dust.”) Here is how to construct the standard Cantor set. Start with the unit

interval [0, 1] and remove its open middle third, (1/3, 2/3). Then remove the open

middle third from the remaining two intervals, and so on. This gives a nested sequence

C0 ⊃ C1 ⊃ C2 ⊃ . . . where C0 = [0, 1], C1 is the union of the two intervals [0, 1/3]

and [2/3, 1], C2 is the union of four intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1],

C3 is the union of eight intervals, and so on. See Figure 50.

Figure 50 The construction of the standard middle-thirds Cantor set C

In general Cn is the union of 2n closed intervals, each of length 1/3n. Each Cn is

compact. The standard middle thirds Cantor set is the nested intersection

C =
∞
<
n=0

Cn.

We refer to C as “the” Cantor set. Clearly it contains the endpoints of each of

the intervals comprising Cn. Actually, it contains uncountably many more points

than these endpoints! There are other Cantor sets defined by removing, say, middle

fourths, pairs of middle tenths, etc. All Cantor sets turn out to be homeomorphic to

the standard Cantor set. See Section 9.

A metric space M is totally disconnected if each point p ∈ M has arbitrarily

small clopen neighborhoods. That is, given ε > 0 and p ∈ M , there exists a clopen

set U such that

p ∈ U ⊂ Mε p.
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For example, every discrete space is totally disconnected. So is Q.

67 Theorem The Cantor set is a compact, nonempty, perfect, and totally discon-

nected metric space.

Proof The metric on C is the one it inherits from R, the usual distance |x− y|. Let
E be the set of endpoints of all the Cn-intervals,

E = {0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, . . .}.

Clearly E is denumerable and contained in C, so C is nonempty and infinite. It is

compact because it is the intersection of compacts.

To show C is perfect and totally disconnected, take any x ∈ C and any ε > 0.

Fix n so large that 1/3n < ε. The point x lies in one of the 2n intervals I of length

1/3n that comprise Cn. Fix this I. The set E ∩ I is infinite and contained in the

interval (x− ε, x + ε). Thus C clusters at x and C is perfect. See Figure 51.

Figure 51 The endpoints of C cluster at x.

The interval I is closed in R and therefore in Cn. The complement J = Cn! I

consists of finitely many closed intervals and is therefore closed too. Thus, I and J are

clopen in Cn. By the Inheritance Principle their intersections with C are clopen in C,

so C ∩ I is a clopen neighborhood of x in C which is contained in the ε-neighborhood

of x, completing the proof that C is totally disconnected.

68 Corollary The Cantor set is uncountable.

Proof Being compact, C is complete, and by Theorem56, every complete, perfect,

nonempty metric space is uncountable.

A more direct way to see that the Cantor set is uncountable involves a geometric

coding scheme. Take the code 0 = left and 2 = right. Then

C0 = left interval = [0, 1/3] C2 = right interval = [2/3, 1],

and C1 = C0 ∪ C2. Similarly, the left and right subintervals of C0 are coded C00

and C02, while the left and right subintervals of C2 are C20 and C22. This gives

C2 = C00 7 C02 7 C20 7 C22.
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The intervals that comprise C3 are specified by strings of length 3. For instance, C220

is the left subinterval of C22. In general an interval of Cn is coded by an address

string of n symbols, each a 0 or a 2. Read it like a zip code. The first symbol gives

the interval’s gross location (left or right), the second symbol refines the location, the

third refines it more, and so on.

Imagine now an infinite address string ω = ω1ω2ω3 . . . of zeros and twos.

Corresponding to ω, we form a nested sequence of intervals

Cω1 ⊃ Cω1ω2 ⊃ Cω1ω2ω3 ⊃ · · · ⊃ Cω1...ωn ⊃ . . . ,

the intersection of which is a point p = p(ω) ∈ C. Specifically,

p(ω) = <
n∈N

Cω|n

where ω|n = ω1 . . .ωn truncates ω to an address of length n. See Theorem34.

As we have observed, each infinite address string defines a point in the Cantor set.

Conversely, each point p ∈ C has an address ω = ω(p): its first n symbols α = ω|n
are specified by the interval Cα of Cn in which p lies. A second point q has a different

address, since there is some n for which p and q lie in distinct intervals Cα and Cβ

of Cn.

In sum, the Cantor set is in one-to-one correspondence with the set Ω of addresses.

Each address ω ∈ Ω defines a point p(ω) ∈ C and each point p ∈ C has a unique

address ω(p). The set Ω is uncountable. In fact it corresponds bijectively to R. See

Exercise 112.

If S ⊂ M and S = M then S is dense in M . For example, Q is dense in R. The
set S is somewhere dense if there exists an open nonempty set U ⊂ M such that

S ∩ U ⊃ U . If S is not somewhere dense then it is nowhere dense.

69 Theorem The Cantor set contains no interval and is nowhere dense in R.

Proof Suppose not and C contains (a, b). Then (a, b) ⊂ Cn for all n ∈ N. Take n

with 1/3n < b− a. Since (a, b) is connected it lies wholly in a single Cn-interval, say

I. But I has smaller length than (a, b), which is absurd, so C contains no interval.

Next, suppose C is dense in some nonempty open set U ⊂ R, i.e., the closure of

C ∩ U contains U . Thus

C = C ⊃ C ∩ U ⊃ U ⊃ (a, b),

contrary to the fact that C contains no interval.
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The existence of an uncountable nowhere dense set is astonishing. Even more is

true: The Cantor set is a zero set – it has “outer measure zero.” By this we mean

that, given any ε > 0, there is a countable covering of C by open intervals (ak, bk),

and the total length of the covering is

∞∑

k=1

bk − ak < ε.

(Outer measure is one of the central concepts of Lebesgue Theory. See Chapter 6.)

After all, C is a subset of Cn, which consists of 2n closed intervals, each of length

1/3n. If n is large enough then 2n/3n < ε. Enlarging each of these closed intervals to

an open interval keeps the sum of the lengths < ε, and it follows that C is a zero set.

If we discard subintervals of [0, 1] in a different way, we can make a fat Cantor

set – one that has positive outer measure. Instead of discarding the middle-thirds of

intervals at the nth stage in the construction, we discard only the middle 1/n! portion.

The discards are grossly smaller than the remaining intervals. See Figure 52. The

total amount discarded from [0, 1] is < 1, and the total amount remaining, the outer

measure of the fat Cantor set, is positive. See Exercise 3.31.

Figure 52 In forming a fat Cantor set, the gap intervals occupy a

progressively smaller proportion of the Cantor set intervals.

9* Cantor Set Lore
In this section, we explore some arcane features of Cantor sets.

Although the continuous image of a connected set is connected, the continuous

image of a disconnected set may well be connected. Just crush the disconnected set

to a single point. Nevertheless, I hope you find the following result striking, for it

means that the Cantor set C is the universal compact metric space, of which all

others are merely shadows.

See Figure 53. Exercise 114 suggests a direct construction of a continuous sur-

jection C → [0, 1], which is already an interesting fact. The proof of Theorem70

70 Cantor Surjection Theorem Given a compact nonempty metric spaceM , there

is a continuous surjection of C onto M .
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Figure 53 σ surjects C onto M .

involves a careful use of the address notation from Section 8 and the following simple

lemma about dividing a compact metric space M into small pieces. A piece of M is

any compact nonempty subset of M .

71 Lemma If M is a nonempty compact metric space and ε > 0 is given then M

can be expressed as the finite union of pieces, each of diameter ≤ ε.

Proof Reduce the covering {Mε/2(x) : x ∈ M} of M to a finite subcovering and take

the closure of each member of the subcovering.

We say that M divides into these small pieces. The metaphor is imperfect

because the pieces may overlap. The strategy of the proof of Theorem70 is to divide

M into large pieces, divide the large pieces into small pieces, divide the small pieces

into smaller pieces and continue indefinitely. Labeling the pieces coherently with

words in two letters leads to the Cantor surjection.

Let W (n) be the set of words in two letters, say a and b, having length n. Then

#W (n) = 2n. For example W (2) consists of the four words aa, bb, ab, and ba.

Using Lemma71 we divide M into a finite number of pieces of diameter ≤ 1 and

we denote by M1 the collection of these pieces. We choose n1 with 2n1 ≥ #M1 and

choose any surjection w1 : W (n1) → M1. Since there are enough words in W (n1), w1

exists. We say w1 labels M1 and if w1(α) = L then α is a label of L.
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Then we divide each L ∈ M1 into finitely many smaller pieces. Let M2(L) be the

collection of these smaller pieces and let

M2 = >
L∈M1

M2(L).

Choose n2 such that 2n2 ≥ max{#M2(L) : L ∈ M1} and label M2 with words

αβ ∈ W (n1 + n2) such that

If L = w1(α) then αβ labels the pieces S ∈ M2(L)

as β varies in W (n2).

This labeling amounts to a surjection w2 : W (n1 + n2) → M2 that is coherent with

w1 in the sense that β 3→ w2(αβ) labels the pieces S ∈ w1(α). Since there are enough

words in W (n2), w2 exists. If there are other labels α′ of L ∈ M1 then we get other

labels α′β′ for the pieces S ∈ M2(L). We make no effort to correlate them.

Proceeding by induction we get finer and finer divisions of M coherently labeled

with longer and longer words. More precisely there is a sequence of divisions (Mk)

and surjections wk : Wk = W (n1 + · · ·+ nk) → Mk such that

(a) The maximum diameter of the pieces L ∈ Mk tends to zero as k → ∞.

(b) Mk+1 refinesMk in the sense that each S ∈ Mk+1 is contained in some L ∈ Mk.

(“The small pieces S are contained in the large pieces L.”)

(c) If L ∈ Mk and Mk+1(L) denotes {S ∈ Mk+1 : S ⊂ L} then

L = >
S∈Mk+1(L)

S.

(d) The labelings wk are coherent in the sense that if wk(α) = L ∈ Mk then

β 3→ wk+1(αβ) labels Mk+1(L) as β varies in W (nk+1).

See Figure 54.

Proof of the Cantor Surjection Theorem We are given a nonempty compact

metric space M and we seek a continuous surjection σ : C → M where C is the

standard Cantor set.

C = <Cn where Cn is the disjoint union of 2n closed intervals of length 1/3n.

In Section 8 we labeled these Cn-intervals with words in the letters 0 and 2 having

length n. (For instance C220 is the left C3-interval of C22 = [8/9, 1], namely C220 =

[8/9, 25/27].) We showed there is a natural bijection between C and the set of all

infinite words in the letters 0 and 2 defined by

p = <
n∈N

Cω|n.
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aa

ab ba

bb

bbb

bba

bab

aab

aba

abb

aaa

baa

M1

M2M3

M

Figure 54 Coherently labeled successive divisions of M . They have

n1 = 2, n2 = 1, and n3 = 6. Note that overlabeling is necessary.

We referred to ω = ω(p) as the address of p. (ω|n is the truncation of ω to its first n

letters.) See page 107.

For k = 1, 2, . . . let Mk be the fine divisions of M constructed above, coherently

labeled by wk. They obey (a)-(d). Given p ∈ C we look at the nested sequence of

pieces Lk(p) ∈ Mk such that Lk(p) = wk(ω|(n1 + · · · + nk)) where ω = ω(p). That

is, we truncate ω(p) to its first n1 + · · ·+ nk letters and look at the piece in Mk with

this label. (We replace the letters 0 and 2 with a and b.) Then (Lk(p)) is a nested

decreasing sequence of nonempty compact sets whose diameters tend to 0 as k → ∞.

Thus <Lk(p) is a well defined point in M and we set

σ(p) = <
k∈N

Lk(p).

We must show that σ is a continuous surjection C → M . Continuity is simple. If

p, p′ ∈ C are close together then for large n the first n entries of their addresses are

equal. This implies that σ(p) and σ(p′) belong to a common Lk and k is large. Since

the diameter of Lk tends to 0 as k → ∞ we get continuity.

Surjectivity is also simple. Each q ∈ M is the intersection of at least one nested

sequence of pieces Lk ∈ Mk. For q belongs to some piece L1 ∈ M1, and it also belongs
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to some subpiece L2 ∈ M2(L1), etc. Coherence of the labeling of the Mk implies that

for each nested sequence (Lk) there is an infinite word α = α1α2α3 . . . such that

αi ∈ W (ni) and Lk = wk(α1 . . .αm) with m = n1 + · · · + nk. The point p ∈ C with

address α is sent by σ to q.

Peano Curves

72 Theorem There exists a Peano curve, a continuous path in the plane which is

space-filling in the sense that its image has nonempty interior. In fact there is a

Peano curve whose image is the closed unit disc B2.

Proof Let σ : C → B2 be a continuous surjection supplied by Theorem 70. Extend

σ to a map τ : [0, 1] → B2 by setting

τ(x) =






σ(x) if x ∈ C

(1− t)σ(a) + tσ(b) if x = (1− t)a + tb ∈ (a, b)

and (a, b) is a gap interval.

A gap interval is an interval (a, b) ⊂ Cc such that a, b ∈ C. Because σ is continuous,

|σ(a)− σ(b)| → 0 as |a− b| → 0. Hence τ is continuous. Its image includes the disc

B2 and thus has nonempty interior. In fact the image of τ is exactly B2, since the

disc is convex and τ just extends σ via linear interpolation. See Figure 55.

This Peano curve cannot be one-to-one since C is not homeomorphic to B2. (C

is disconnected while B2 is connected.) In fact no Peano curve τ can be one-to-one.

See Exercise 102.

Cantor Spaces

We say thatM is aCantor space if, like the standard Cantor set C, it is compact,

nonempty, perfect, and totally disconnected.

73 Moore-Kline Theorem Every Cantor space M is homeomorphic to the stan-

dard middle-thirds Cantor set C.

A Cantor piece is a nonempty clopen subset S of a Cantor space M . It is easy

to see that S is also a Cantor space. See Exercise 100. Since a Cantor space is totally

disconnected, each point has a small clopen neighborhood N . Thus, a Cantor space

can always be divided into two disjoint Cantor pieces, M = U 7 U c.
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Figure 55 Filling in the Cantor surjection σ to make a Peano space-filling

curve τ

74 Cantor Partition Lemma Given a Cantor space M and ε > 0, there is a num-

ber N such that for each d ≥ N there is a partition of M into d Cantor pieces of

diameter ≤ ε. (We care most about dyadic d.)

Proof A partition of a set is a division of it into disjoint subsets. In this case

the small Cantor pieces form a partition of the Cantor space M . Since M is totally

disconnected and compact, we can cover it with finitely many clopen neighborhoods

U1, . . . , Um having diameter ≤ ε. To make the sets Ui disjoint, define

V1 = U1

V2 = U1
!U2

. . .

Vm = Um
! (U1 ∪ · · · ∪ Um−1).

If any Vi is empty, discard it. This gives a partition M = X1 7 · · ·7XN into N ≤ m

Cantor pieces of diameter ≤ ε.
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If d = N this finishes the proof. If d > N then we inductively divide XN into

two, and then three, and eventually d−N + 1 disjoint Cantor pieces; say

XN = Y1 7 · · · 7 Yd−N+1.

The partition M = X1 7 · · · 7XN−1 7 Y1 7 · · · 7 Yd−N+1 finishes the proof.

Proof of the Moore-Kline Theorem We are given a Cantor space M and we

seek a homeomorphism from the standard Cantor set C onto M .

By Lemma74 there is a partition M1 of M into d1 nonempty Cantor pieces where

d1 = 2n1 is dyadic and the pieces have diameter ≤ 1. Thus there is a bijection

w1 : W1 → M1 where W1 = W (n1).

According to the same lemma, each L ∈ M1 can be partitioned into N(L) Cantor

pieces of diameter ≤ 1/2. Choose a dyadic number

d2 = 2n2 ≥ max{N(L) : L ∈ M1}

and use the lemma again to partition each L into d2 smaller Cantor pieces. These

pieces constitute M2(L), and we set M2 = >LM2(L). It is a partition of M having

cardinality d1d2 and in the natural way described in the proof of Theorem70 it is

coherently labeled by W2 = W (n1 + n2). Specifically, for each L ∈ M1 there is a

bijection wL : W (n2) → M2(L) and we define w2 : W2 → M2 by w2(αβ) = S ∈ M2 if

and only if w1(α) = L and wL(β) = S. This w2 is a bijection.

Proceeding in exactly the same way, we pass from 2 to 3, from 3 to 4, and

eventually from k to k + 1, successively refining the partitions and extending the

bijective labelings.

The Cantor surjection constructed in the proof of Theorem70 is

σ(p) = <
k
Lk(p)

where Lk(p) ∈ Mk has label ω(p)|m with m = n1+ · · ·+nk. Distinct points p, p′ ∈ C

have distinct addresses ω,ω′. Because the labelings wk are bijections and the divisions

Mk are partitions, ω -= ω′ implies that for some k, Lk(p) -= Lk(p′), and thus σ(p) -=
σ(p′). That is, σ is a continuous bijection C → M . A continuous bijection from one

compact to another is a homeomorphism.

75 Corollary Every two Cantor spaces are homeomorphic.

Proof Immediate from the Moore-Kline Theorem: Each is homeomorphic to C.
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76 Corollary The fat Cantor set is homeomorphic to the standard Cantor set.

Proof Immediate from the Moore-Kline Theorem.

77 Corollary A Cantor set is homeomorphic to its own Cartesian square; that is,

C ∼= C × C.

Proof It is enough to check that C × C is a Cantor space. It is. See Exercise 99.

The fact that a nontrivial space is homeomorphic to its own Cartesian square is

disturbing, is it not?

Ambient Topological Equivalence

Although all Cantor spaces are homeomorphic to each other when considered as

abstract metric spaces, they can present themselves in very different ways as subsets

of Euclidean space. Two sets A,B in Rm are ambiently homeomorphic if there is

a homeomorphism of Rm to itself that sends A onto B. For example, the sets

A = {0} ∪ [1, 2] ∪ {3} and B = {0} ∪ {1} ∪ [2, 3]

are homeomorphic when considered as metric spaces, but there is no ambient homeo-

morphism of R that carries A to B. Similarly, the trefoil knot in R3 is homeomorphic

but not ambiently homeomorphic in R3 to a planar circle. See also Exercise 105.

78 Theorem Every two Cantor spaces in R are ambiently homeomorphic.

Let M be a Cantor space contained in R. According to Theorem73, M is home-

omorphic to the standard Cantor set C. We want to find a homeomorphism of R to

itself that carries C to M .

The convex hull of S ⊂ Rm is the smallest convex set H that contains S. When

m = 1, H is the smallest interval that contains S.

79 Lemma A Cantor space M ⊂ R can be divided into two Cantor pieces whose

convex hulls are disjoint.

Proof Obvious from one-dimensionality of R: Choose a point x ∈ R!M such that

some points of M lie to the left of x and others lie to its right. Then

M = M ∩ (−∞, x) 7 (x,∞) ∩M

dividesM into disjoint Cantor pieces whose convex hulls are disjoint closed intervals.
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Proof of Theorem78 Let M ⊂ R be a Cantor space. We will find a homeomor-

phism τ : R → R sending C to M . Lemma79 leads to Cantor divisions Mk such that

the convex hulls of the pieces in each Mk are disjoint. With respect to the left/right

order of R, label these pieces in the same way that the Cantor middle third intervals

are labeled: L0 and L2 in M1 are the left and right pieces of M , L00 and L02 are

the left and right pieces of L0, and so on. Then the homeomorphism σ : C → M

constructed in Theorems 70 and 73 is automatically monotone increasing. Extend σ

across the gap intervals affinely as was done in the proof of Theorem72, and extend

it to R! [0, 1] in any affine increasing fashion such that τ(0) = σ(0) and τ(1) = σ(1).

Then τ : R → R extends σ to R. The monotonicity of σ implies that τ is one-to-one,

while the continuity of σ implies that τ is continuous. τ : R → R is a homeomorphism

that carries C onto M .

If M ′ ⊂ R is a second Cantor space and τ ′ : R → R is a homeomorphism that

sends C onto M ′ then τ ′ ◦ τ−1 is a homeomorphism of R that sends M onto M ′.

As an example, one may construct a Cantor set in R by removing from [0, 1] its

middle third, then removing from each of the remaining intervals nine symmetrically

placed subintervals; then removing from each of the remaining twenty intervals, four

asymmetrically placed subintervals; and so forth. In the limit (if the lengths of the

remaining intervals tend to zero) we get a nonstandard Cantor set M . According to

Theorem78, there is a homeomorphism of R to itself sending the standard Cantor

set C onto M .

Another example is the fat Cantor set mentioned on page 108. It too is ambiently

homeomorphic to C.

Theorem Every two Cantor spaces in R2 are ambiently homeomorphic.

We do not prove this theorem here. The key step is to show M has a dyadic disc

partition. That is, M can be divided into a dyadic number of Cantor pieces, each

piece contained in the interior of a small topological disc Di, the Di being mutually

disjoint. (A topological disc is any homeomorph of the closed unit disc B2. Smallness

refers to diam Di.) The proofs I know of the existence of such dyadic partitions are

tricky cut-and-paste arguments and are beyond the scope of this book. See Moise’s

book, Geometric Topology in Dimensions 2 and 3 and also Exercise 138.

Antoine’s Necklace

A Cantor space M ⊂ Rm is tame if there is an ambient homeomorphism h :

Rm → Rm that carries the standard Cantor set C (imagined to lie on the x1-axis
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in Rm) onto M . If M is not tame it is wild. Cantor spaces contained in the line

or plane are tame. In 3-space, however, there are wild ones, Cantor sets A so badly

embedded in R3 that they act like curves. It is the lack of a “ball dyadic partition

lemma” that causes the problem.

The first wild Cantor set was discovered by Louis Antoine, and is known as

Antoine’s Necklace. The construction involves the solid torus or anchor ring,

which is homeomorphic to the Cartesian product B2 × S1. It is easy to imagine a

necklace of solid tori: Take an ordinary steel chain and modify it so its first and last

links are also linked. See Figure 56.

Nick Pugh

Figure 56 A necklace of twenty solid tori

Antoine’s construction then goes like this. Draw a solid torus A0. Interior to A0,

draw a necklace A1 of several small solid tori, and make the necklace encircle the

hole of A0. Repeat the construction on each solid torus T comprising A1. That is,

interior to each T , draw a necklace of very small solid tori so that it encircles the hole

of T . The result is a set A2 ⊂ A1 which is a necklace of necklaces. In Figure 56, A2

would consist of 400 solid tori. Continue indefinitely, producing a nested decreasing

sequence A0 ⊃ A1 ⊃ A2 ⊃ . . .. The set An is compact and consists of a large

number (20n) of extremely small solid tori arranged in a hierarchy of necklaces. It

is an nth order necklace. The intersection A = < An is a Cantor space, since it is
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compact, perfect, nonempty, and totally disconnected. It is homeomorphic to C. See

Exercise 139.

Certainly A is bizarre, but is it wild? Is there no ambient homeomorphism h of

R3 that sends the standard Cantor set C onto A? The reason that h cannot exist is

explained next.

T

A0

κ

Figure 57 κ loops through A0, which contains the necklace of solid tori.

Referring to Figure 57, the loop κ passing through the hole of A0 cannot be

continuously shrunk to a point in R3 without hitting A. For if such a motion of κ

avoids A then, by compactness, it also avoids one of the high-order necklaces An. In

R3 it is impossible to continuously de-link two linked loops, and it is also impossible

to continuously de-link a loop from a necklace of loops. (These facts are intuitively

believable but hard to prove. See Dale Rolfsen’s book, Knots and Links.)

On the other hand, each loop λ in R3!C can be continuously shrunk to a point

without hitting C. For there is no obstruction to pushing λ through the gap intervals

of C.

Now suppose that there is an ambient homeomorphism h of R3 that sends C to

A. Then λ = h−1(κ) is a loop in R3!C, and it can be shrunk to a point in R3!C,

avoiding C. Applying h to this motion of λ continuously shrinks κ to a point, avoiding

A, which we have indicated is impossible. Hence h cannot exist, and A is wild.
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10* Completion
Many metric spaces are complete (for example, every closed subset of Euclidean space

is complete), and completeness is a reasonable property to require of a metric space,

especially in light of the following theorem.

80 Completion Theorem Every metric space can be completed.

This means that just as R completes Q, we can take any metric space M and find

a complete metric space M̂ containing M whose metric extends the metric of M . To

put it another way, M is always a metric subspace of a complete metric space. In a

natural sense the completion is uniquely determined by M .

81 Lemma Given four points p, q, x, y ∈ M , we have

|d(p, q)− d(x, y)| ≤ d(p, x) + d(q, y).

Proof The triangle inequality implies that

d(x, y) ≤ d(x, p) + d(p, q) + d(q, y)

d(p, q) ≤ d(p, x) + d(x, y) + d(y, q),

and hence

−(d(p, x) + d(q, y)) ≤ d(p, q) − d(x, y) ≤ (d(p, x) + d(q, y)).

A number sandwiched between −k and k has magnitude ≤ k, which completes the

proof.

Proof of the Completion Theorem80 We consider the collection C of all Cauchy

sequences inM , convergent or not, and convert it into the completion ofM . (This is a

bold idea, is it not?) Cauchy sequences (pn) and (qn), are co-Cauchy if d(pn, qn) → 0

as n → ∞. Co-Cauchyness is an equivalence relation on C. (This is easy to check.)

Define M̂ to be C modulo the equivalence relation of being co-Cauchy. Points of

M̂ are equivalence classes P = [(pn)] such that (pn) is a Cauchy sequence in M . The

metric on M̂ is

D(P,Q) = lim
n→∞

d(pn, qn),

where P = [(pn)] and Q = [(qn)]. It only remains to verify three things:

(a) D is a well defined metric on M̂ .

(b) M ⊂ M̂ .

(c) M̂ is complete.
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None of these assertions is really hard to prove, although the details are somewhat

messy because of possible equivalence class/representative ambiguity.

(a) By Lemma81

|d(pm, qm)− d(pn, qn)| ≤ d(pm, pn) + d(qm, qn).

Thus (d(pn, qn)) is a Cauchy sequence in R, and because R is complete,

L = lim
n→∞

d(pn, qn)

exists. Let (p′n) and (q′n) be sequences that are co-Cauchy with (pn) and (qn), and let

L′ = lim
n→∞

d(p′n, q
′
n).

Then

|L− L′| ≤ |L− d(pn, qn)|+ |d(pn, qn)− d(p′n, q
′
n)|+ |d(p′n, q′n)− L′|.

As n → ∞, the first and third terms tend to 0. By Lemma81, the middle term is

|d(pn, qn)− d(p′n, q
′
n)| ≤ d(pn, p

′
n) + d(qn, q

′
n),

which also tends to 0 as n → ∞. Hence L = L′ and D is well defined on M̂ . The

d-distance on M is symmetric and satisfies the triangle inequality. Taking limits,

these properties carry over to D on M̂ , while positive definiteness follows directly

from the co-Cauchy definition.

(b) Think of each p ∈ M as a constant sequence, p = (p, p, p, p, . . .). Clearly it

is Cauchy and clearly the D-distance between two constant sequences p and q is the

same as the d-distance between the points p and q. In this way M is naturally a

metric subspace of M̂ .

(c) Let (Pk)k∈N be a Cauchy sequence in M̂ . We must find Q ∈ M̂ to which

Pk converges as k → ∞. (Note that (Pk) is a sequence of equivalence classes, not

a sequence of points in M , and convergence refers to D not d.) Because D is well

defined we can use a trick to shorten the proof. Observe that every subsequence of

a Cauchy sequence is Cauchy, and it and the mother sequence are co-Cauchy. For

all the terms far along in the subsequence are also far along in the mother sequence.

This lets us take a representative of Pk all of whose terms are at distance < 1/k from

each other. Call this sequence (pk,n)n∈N. We have [(pk,n)] = Pk.

Set qn = pn,n. We claim that (qn) is Cauchy and D(Pk, Q) → 0 as k → ∞, where

Q = [(qn)]. That is, M̂ is complete.
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Let ε > 0 be given. There exists N ≥ 3/ε such that if k, $ ≥ N then

D(Pk, P') ≤ ε

3

and

d(qk, q') = d(pk,k, p',')

≤ d(pk,k, pk,n) + d(pk,n, p',n) + d(p',n, p',')

≤ 1

k
+ d(pk,n, p',n) +

1

$

≤ 2ε

3
+ d(pk,n, p',n).

The inequality is valid for all n and the left-hand side, d(qk, q'), does not depend on

n. The limit of d(pk,n, p',n) as n → ∞ is D(Pk, P'), which we know to be < ε/3.

Thus, if k, $ ≥ N then d(qk, q') < ε and (qn) is Cauchy. Similarly we see that Pk → Q

as k → ∞. For, given ε > 0, we choose N ≥ 2/ε such that if k, n ≥ N then

d(qk, qn) < ε/2, from which it follows that

d(pk,n, qn) ≤ d(pk,n, pk,k) + d(pk,k, qn)

= d(pk,n, pk,k) + d(qk, qn)

≤ 1

k
+

ε

2
< ε.

The limit of the left-hand side of this inequality, as n → ∞, is D(Pk, Q). Thus

lim
k→∞

Pk = Q

and M̂ is complete.

Uniqueness of the completion is not surprising, and is left as Exercise 106. A

different proof of the Completion Theorem is sketched in Exercise 4.39.

A Second Construction of R from Q
In the particular case that the metric spaceM isQ, the Completion Theorem leads

to a construction of R from Q via Cauchy sequences. Note, however, that applying

the theorem as it stands involves circular reasoning, for its proof uses completeness

of R to define the metric D. Instead, we use only the Cauchy sequence strategy.

Convergence and Cauchyness for sequences of rational numbers are concepts that

make perfect sense without a priori knowledge of R. Just take all epsilons and deltas
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in the definitions to be rational. The Cauchy completion Q̂ of Q is the collection

C of Cauchy sequences in Q modulo the equivalence relation of being co-Cauchy.

We claim that Q̂ is a complete ordered field. That is, Q̂ is just another version of

R. The arithmetic on Q̂ is defined by

P +Q = [(pn + qn)] P −Q = [(pn − qn)]

PQ = [(pnqn)] P/Q = [(pn/qn)]

where P = [(pn)] and Q = [(qn)]. Of course Q -= [(0, 0, . . .)] in the fraction P/Q.

Exercise 134 asks you to check that these natural definitions make Q̂ a field. Although

there are many things to check – well definedness, commutativity, and so forth – all

are effortless. There are no sixteen case proofs as with cuts. Also, just as with metric

spaces, Q is naturally a subfield of Q̂ when we think of r ∈ Q as the constant sequence

r = [(r, r, . . .)].

That’s the easy part – now the rest.

To define the order relation on Q̂ we rework some of the cut ideas. If P ∈ Q̂ has

a representative [(pn)], such that for some ε > 0, we have pn ≥ ε for all n then P is

positive. If −P is positive then P is negative.

Then we define P ≺ Q if Q − P is positive. Exercise 135 asks you to check that

this defines an order on Q̂, consistent with the standard order < on Q in the sense

that for all p, q ∈ Q we have p < q ⇐⇒ p ≺ q. In particular, you are asked to prove

the trichotomy property: Each P ∈ Q̂ is either positive, negative, or zero, and these

possibilities are mutually exclusive.

Combining Cauchyness with the definition of ≺ gives

P = [(pn)] ≺ Q = [(qn)] ⇐⇒ there exist ε > 0 and N ∈ N
such that for all m,n ≥ N,(1)

we have pm + ε < qn.

It remains to check the least upper bound property. Let P be a nonempty subset

of Q̂ that is bounded above. We must find a least upper bound for P.
First of all, since P is bounded there is a B = (bn) ∈ Q̂ such that P ≺ B for

all P ∈ P. We can choose B so its terms lie at distance ≤ 1 from each other. Set

b = b1 + 1. Then b is an upper bound for P. Since Q is Archimedean there is an

integer m ≥ b, and m is also an upper bound for P. By the same reasoning P has

upper bounds r such that r is a dyadic fraction with arbitrarily large denominator

2n.
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Since P is nonempty, the same reasoning shows that there are dyadic fractions s

with large denominators such that s is not an upper bound for P.
We assert that the least upper bound for P is the equivalence class Q of the

following Cauchy sequence (q0, q1, q2, . . .).

(a) q0 is the smallest integer such that q0 is an upper bound for P.
(b) q1 is the smallest fraction with denominator 2 such that q1 is an upper bound

for P.
(c) q2 is the smallest fraction with denominator 4 such that q2 is an upper bound

for P.
(d) . . .

(e) qn is the smallest fraction with denominator 2n such that qn is an upper bound

for P.

The sequence (qn) is well defined because some but not all dyadic fractions with

denominator 2n are upper bounds for P. By construction (qn) is monotone decreasing

and qn−1 − qn ≤ 1/2n. Thus, if m ≤ n then

0 ≤ qm − qn = qm − qm+1 + qm+1 − qm+2 + · · ·+ qn−1 − qn

≤ 1

2m+1
+ · · ·+ 1

2n
<

1

2m
.

It follows that (qn) is Cauchy and Q = [(qn)] ∈ Q̂.

Suppose that Q is not an upper bound for P. Then there is some P = [(pn)] ∈ P
with Q ≺ P . By (1), there is an ε > 0 and an N such that for all n ≥ N ,

qN + ε < pn.

It follows that qN ≺ P , a contradiction to qN being an upper bound for P.
On the other hand suppose there is a smaller upper bound for P, say R = (rn) ≺

Q. By (1) there are ε > 0 and N such that for all m,n ≥ N ,

rm + ε < qn.

Fix a k ≥ N with 1/2k < ε. Then for all m ≥ N ,

rm < qk − ε < qk − 1

2k
.

By (1), R ≺ qk − 1/2k. Since R is an upper bound for P, so is qk − 1/2k, a contradic-

tion to qk being the smallest fraction with denominator 2k such that qk is an upper

bound for P. Therefore, Q is indeed a least upper bound for P.
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This completes the verification that the Cauchy completion of Q is a complete

ordered field. Uniqueness implies that it is isomorphic to the complete ordered field R
constructed by means of Dedekind cuts in Section 2 of Chapter 1. Decide for yourself

which of the two constructions of the real number system you like better – cuts

or Cauchy sequences. Cuts make least upper bounds straightforward and algebra

awkward, while with Cauchy sequences it is the reverse.
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Exercises
1. An ant walks on the floor, ceiling, and walls of a cubical room. What metric

is natural for the ant’s view of its world? What metric would a spider consider
natural? If the ant wants to walk from a point p to a point q, how could it
determine the shortest path?

2. Why is the sum metric on R2 called the Manhattan metric and the taxicab
metric?

3. What is the set of points in R3 at distance exactly 1/2 from the unit circle S1

in the plane,

T = {p ∈ R3 : ∃ q ∈ S1 and d(p, q) = 1/2

and for all q′ ∈ S1 we have d(p, q) ≤ d(p, q′)}?

4. Write out a proof that the discrete metric on a set M is actually a metric.

5. For p, q ∈ S1, the unit circle in the plane, let

da(p, q) = min{|!(p)− !(q)| , 2π − |!(p)− !(q)|}

where !(z) ∈ [0, 2π) refers to the angle that z makes with the positive x-axis.
Use your geometric talent to prove that da is a metric on S1.

6. For p, q ∈ [0,π/2) let

ds(p, q) = sin |p− q| .

Use your calculus talent to decide whether ds is a metric.

7. Prove that every convergent sequence (pn) in a metric space M is bounded, i.e.,
that for some r > 0, some q ∈ M , and all n ∈ N, we have pn ∈ Mrq.

8. Consider a sequence (xn) in the metric space R.
(a) If (xn) converges in R prove that the sequence of absolute values (|xn|)

converges in R.
(b) State the converse.

(c) Prove or disprove it.

9. A sequence (xn) in R increases if n < m implies xn ≤ xm. It strictly in-
creases if n < m implies xn < xm. It decreases or strictly decreases if
n < m always implies xn ≥ xm or always implies xn > xm. A sequence is
monotone if it increases or it decreases. Prove that every sequence in R which
is monotone and bounded converges in R.†

10. Prove that the least upper bound property is equivalent to the “monotone
sequence property” that every bounded monotone sequence converges.

†This is nicely is expressed by Pierre Teilhard de Chardin, “Tout ce qui monte converge,” in a
different context.
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11. Let (xn) be a sequence in R.
*(a) Prove that (xn) has a monotone subsequence.

(b) How can you deduce that every bounded sequence in R has a convergent
subsequence?

(c) Infer that you have a second proof of the Bolzano-Weierstrass Theorem in
R.

(d) What about the Heine-Borel Theorem?

12. Let (pn) be a sequence and f : N → N be a bijection. The sequence (qk)k∈N
with qk = pf(k) is a rearrangement of (pn).
(a) Are limits of a sequence unaffected by rearrangement?

(b) What if f is an injection?

(c) A surjection?

13. Assume that f : M → N is a function from one metric space to another which
satisfies the following condition: If a sequence (pn) in M converges then the
sequence (f(pn)) in N converges. Prove that f is continuous. [This result
improves Theorem4.]

14. The simplest type of mapping from one metric space to another is an isometry.
It is a bijection f : M → N that preserves distance in the sense that for all
p, q ∈ M we have

dN (fp, fq) = dM (p, q).

If there exists an isometry fromM toN thenM andN are said to be isometric,
M ≡ N . You might have two copies of a unit equilateral triangle, one centered
at the origin and one centered elsewhere. They are isometric. Isometric metric
spaces are indistinguishable as metric spaces.

(a) Prove that every isometry is continuous.

(b) Prove that every isometry is a homeomorphism.

(c) Prove that [0, 1] is not isometric to [0, 2].

15. Prove that isometry is an equivalence relation: If M is isometric to N , show
that N is isometric to M ; show that each M is isometric to itself (what mapping
of M to M is an isometry?); if M is isometric to N and N is isometric to P ,
show that M is isometric to P .

16. Is the perimeter of a square isometric to the circle? Homeomorphic? Explain.

17. Which capital letters of the Roman alphabet are homeomorphic? Are any
isometric? Explain.

18. Is R homeomorphic to Q? Explain.

19. Is Q homeomorphic to N? Explain.

20. What function (given by a formula) is a homeomorphism from (−1, 1) to R? Is
every open interval homeomorphic to (0, 1)? Why or why not?

21. Is the plane minus four points on the x-axis homeomorphic to the plane minus
four points in an arbitrary configuration?
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22. If every closed and bounded subset of a metric space M is compact, does it
follow that M is complete? (Proof or counterexample.)

23. (0, 1) is an open subset of R but not of R2, when we think of R as the x-axis in
R2. Prove this.

24. For which intervals [a, b] in R is the intersection [a, b]∩Q a clopen subset of the
metric space Q?

25. Prove directly from the definition of closed set that every singleton subset of a
metric space M is a closed subset of M . Why does this imply that every finite
set of points is also a closed set?

26. Prove that a set U ⊂ M is open if and only if none of its points are limits of
its complement.

27. If S, T ⊂ M , a metric space, and S ⊂ T , prove that

(a) S ⊂ T .

(b) int(S) ⊂ int(T ).

28. A map f : M → N is open if for each open set U ⊂ M , the image set f(U) is
open in N .

(a) If f is open, is it continuous?
(b) If f is a homeomorphism, is it open?

(c) If f is an open, continuous bijection, is it a homeomorphism?

(d) If f : R → R is a continuous surjection, must it be open?

(e) If f : R → R is a continuous, open surjection, must it be a homeomor-
phism?

(f) What happens in (e) if R is replaced by the unit circle S1?

29. Let T be the collection of open subsets of a metric spaceM , andK the collection
of closed subsets. Show that there is a bijection from T onto K.

30. Consider a two-point set M = {a, b} whose topology consists of the two sets,
M and the empty set. Why does this topology not arise from a metric on M?

31. Prove the following.

(a) If U is an open subset of R then it consists of countably many disjoint
intervals U = |Ui. (Unbounded intervals (−∞, b), (a,∞), and (−∞,∞)
are permitted.)

(b) Prove that these intervals Ui are uniquely determined by U . In other
words, there is only one way to express U as a disjoint union of open
intervals.

(c) If U, V ⊂ R are both open, so U = |Ui and V = |Vj where Ui and Vj

are open intervals, show that U and V are homeomorphic if and only if
there are equally many Ui and Vj .

32. Show that every subset of N is clopen. What does this tell you about every
function f : N → M , where M is a metric space?
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33. (a) Find a metric space in which the boundary of Mrp is not equal to the
sphere of radius r at p, ∂(Mrp) -= {x ∈ M : d(x, p) = r}.

(b) Need the boundary be contained in the sphere?

34. Use the Inheritance Principle to prove Corollary 15.

35. Prove that S clusters at p if and only if for each r > 0 there is a point q ∈
Mrp ∩ S, such that q -= p.

36. Construct a set with exactly three cluster points.

37. Construct a function f : R → R that is continuous only at points of Z.
38. Let X,Y be metric spaces with metrics dX , dY , and let M = X × Y be their

Cartesian product. Prove that the three natural metrics dE , dmax, and dsum on
M are actually metrics. [Hint: Cauchy-Schwarz.]

39. (a) Prove that every convergent sequence is bounded. That is, if (pn) con-
verges in the metric space M , prove that there is some neighborhood Mrq
containing the set {pn : n ∈ N}.

(b) Is the same true for a Cauchy sequence in an incomplete metric space?

40. Let M be a metric space with metric d. Prove that the following are equivalent.

(a) M is homeomorphic to M equipped with the discrete metric.
(b) Every function f : M → M is continuous.

(c) Every bijection g : M → M is a homeomorphism.

(d) M has no cluster points.

(e) Every subset of M is clopen.

(f) Every compact subset of M is finite.

41. Let ‖ ‖ be any norm on Rm and let B = {x ∈ Rm : ‖x‖ ≤ 1}. Prove that B is
compact. [Hint: It suffices to show that B is closed and bounded with respect
to the Euclidean metric.]

42. What is wrong with the following “proof” of Theorem28? “Let ((an, bn)) be
any sequence in A×B where A and B are compact. Compactness implies the
existence of subsequences (ank) and (bnk) converging to a ∈ A and b ∈ B as
k → ∞. Therefore ((ank , bnk)) is a subsequence of ((an, bn)) that converges to
a limit in A×B, proving that A×B is compact.”

43. Assume that the Cartesian product of two nonempty sets A ⊂ M and B ⊂ N
is compact in M ×N . Prove that A and B are compact.

44. Consider a function f : M → R. Its graph is the set

{(p, y) ∈ M × R : y = fp}.

(a) Prove that if f is continuous then its graph is closed (as a subset of M×R).
(b) Prove that if f is continuous and M is compact then its graph is compact.

(c) Prove that if the graph of f is compact then f is continuous.

(d) What if the graph is merely closed? Give an example of a discontinuous
function f : R → R whose graph is closed.
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45. Draw a Cantor set C on the circle and consider the set A of all chords between
points of C.

(a) Prove that A is compact.

*(b) Is A convex?

46. Assume that A,B are compact, disjoint, nonempty subsets of M . Prove that
there are a0 ∈ A and b0 ∈ B such that for all a ∈ A and b ∈ B we have

d(a0, b0) ≤ d(a, b).

[The points a0, b0 are closest together.]

47. Suppose that A,B ⊂ R2.

(a) If A and B are homeomorphic, are their complements homeomorphic?

*(b) What if A and B are compact?
***(c) What if A and B are compact and connected?

48. Prove that there is an embedding of the line as a closed subset of the plane,
and there is an embedding of the line as a bounded subset of the plane, but
there is no embedding of the line as a closed and bounded subset of the plane.

*49. Construct a subset A ⊂ R and a continuous bijection f : A → A that is not a
homeomorphism. [Hint: By Theorem36 A must be noncompact.]

**50. Construct nonhomeomorphic connected, closed subsets A,B ⊂ R2 for which
there exist continuous bijections f : A → B and g : B → A. [Hint: By
Theorem36 A and B must be noncompact.]

***51. Do there exist nonhomeomorphic closed sets A,B ⊂ R for which there exist
continuous bijections f : A → B and g : B → A?

52. Let (An) be a nested decreasing sequence of nonempty closed sets in the metric
space M .

(a) If M is complete and diamAn → 0 as n → ∞, show that <An is exactly
one point.

(b) To what assertions do the sets [n,∞) provide counterexamples?

53. Suppose that (Kn) is a nested sequence of compact nonempty sets, K1 ⊃ K2 ⊃
. . ., and K = <Kn. If for some µ > 0, diamKn ≥ µ for all n, is it true that
diamK ≥ µ?

54. If f : A → B and g : C → B such that A ⊂ C and for each a ∈ A we have
f(a) = g(a) then g extends f . We also say that f extends to g. Assume that
f : S → R is a uniformly continuous function defined on a subset S of a metric
space M .

(a) Prove that f extends to a uniformly continuous function f : S → R.
(b) Prove that f is the unique continuous extension of f to a function defined

on S.

(c) Prove the same things when R is replaced with a complete metric space
N .
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55. The distance from a point p in a metric space M to a nonempty subset S ⊂ M
is defined to be dist(p, S) = inf{d(p, s) : s ∈ S}.
(a) Show that p is a limit of S if and only if dist(p, S) = 0.

(b) Show that p 3→ dist(p, S) is a uniformly continuous function of p ∈ M .

56. Prove that the 2-sphere is not homeomorphic to the plane.

57. If S is connected, is the interior of S connected? Prove this or give a counterex-
ample.

58. Theorem49 states that the closure of a connected set is connected.
(a) Is the closure of a disconnected set disconnected?

(b) What about the interior of a disconnected set?

*59. Prove that every countable metric space (not empty and not a singleton) is
disconnected. [Astonishingly, there exists a countable topological space which
is connected. Its topology does not arise from a metric.]

60. (a) Prove that a continuous function f : M → R, all of whose values are
integers, is constant provided that M is connected.

(b) What if all the values are irrational?

61. Prove that the (double) cone {(x, y, z) ∈ R3 : x2 + y2 = z2} is path-connected.
62. Prove that the annulus A = {z ∈ R2 : r ≤ |z| ≤ R} is connected.

63. A subset E of Rm is starlike if it contains a point p0 (called a center for E)
such that for each q ∈ E, the segment between p0 and q lies in E.

(a) If E is convex and nonempty prove that it is starlike.

(b) Why is the converse false?

(c) Is every starlike set connected?

(d) Is every connected set starlike? Why or why not?
*64. Suppose that E ⊂ Rm is open, bounded, and starlike, and p0 is a center for E.

(a) Is it true or false that all points p1 in a small enough neighborhood of p0
are also centers for E?

(b) Is the set of centers convex?

(c) Is it closed as a subset of E?

(d) Can it consist of a single point?

65. Suppose that A,B ⊂ R2 are convex, closed, and have nonempty interiors.
(a) Prove that A,B are the closure of their interiors.

(b) If A,B are compact, prove that they are homeomorphic.

[Hint: Draw a picture.]

66. (a) Prove that every connected open subset of Rm is path-connected.

(b) Is the same true for open connected subsets of the circle?

(c) What about connected nonopen subsets of the circle?

67. List the convex subsets of R up to homeomorphism. How many are there and
how many are compact?
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68. List the closed convex sets in R2 up to homeomorphism. There are nine. How
many are compact?

*69. Generalize Exercises 65 and 68 to R3; to Rm.

70. Prove that (a, b) and [a, b) are not homeomorphic metric spaces.

71. Let M and N be nonempty metric spaces.

(a) If M and N are connected prove that M ×N is connected.

(b) What about the converse?

(c) Answer the questions again for path-connectedness.
72. Let H be the hyperbola {(x, y) ∈ R2 : xy = 1 and x, y > 0} and let X be the

x-axis.

(a) Is the set S = X ∪H connected?

(b) What if we replace H with the graph G of any continuous positive function
f : R → (0,∞); is X ∪G connected?

(c) What if f is everywhere positive but discontinuous at just one point.

73. Is the disc minus a countable set of points connected? Path-connected? What
about the sphere or the torus instead of the disc?

74. Let S = R2!Q2. (Points (x, y) ∈ S have at least one irrational coordinate.) Is
S connected? Path-connected? Prove or disprove.

76. (a) The intersection of connected sets need not be connected. Give an exam-
ple.

(b) Suppose that S1, S2, S3, . . . is a sequence of connected, closed subsets of
the plane and S1 ⊃ S2 ⊃ . . .. Is S = <Sn connected? Give a proof or
counterexample.

*(c) Does the answer change if the sets are compact?

(d) What is the situation for a nested decreasing sequence of compact path-
connected sets?

77. If a metric space M is the union of path-connected sets Sα, all of which have
the nonempty path-connected set K in common, is M path-connected?

78. (p1, . . . , pn) is an ε-chain in a metric space M if for each i we have pi ∈ M and
d(pi, pi+1) < ε. The metric space is chain-connected if for each ε > 0 and
each pair of points p, q ∈ M there is an ε-chain from p to q.

(a) Show that every connected metric space is chain-connected.
(b) Show that if M is compact and chain-connected then it is connected.

(c) Is R!Z chain-connected?

(d) If M is complete and chain-connected, is it connected?

79. Prove that if M is nonempty, compact, locally path-connected, and connected
then it is path-connected. (See Exercise 143, below.)

*75. An arc is a path with no self-intersection. Define the concept of arc-connectedness
and prove that a metric space is path-connected if and only if it is arc-connected.
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80. The Hawaiian earring is the union of circles of radius 1/n and center x =
±1/n on the x-axis, for n ∈ N. See Figure 27 on page 58.

(a) Is it connected?

(b) Path-connected?

(c) Is it homeomorphic to the one-sided Hawaiian earring?

*81. The topologist’s sine curve is the set

{(x, y) : x = 0 and |y| ≤ 1 or 0 < x ≤ 1 and y = sin 1/x}.

See Figure 43. The topologist’s sine circle is shown in Figure 58. (It is the
union of a circular arc and the topologist’s sine curve.) Prove that it is path-
connected but not locally path-connected. (M is locally path-connected
if for each p ∈ M and each neighborhood U of p there is a path-connected
subneighborhood V of p.)

Figure 58 The topologist’s sine circle
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82. The graph of f : M → R is the set {(x, y) ∈ M × R : y = fx}.
(a) If M is connected and f is continuous, prove that the graph of f is con-

nected.

(b) Give an example to show that the converse is false.

(c) If M is path-connected and f is continuous, show that the graph is path-
connected.

(d) What about the converse?

83. The open cylinder is (0, 1)× S1. The punctured plane is R2! {0}.
(a) Prove that the open cylinder is homeomorphic to the punctured plane.

(b) Prove that the open cylinder, the double cone, and the plane are not
homeomorphic.

84. Is the closed strip {(x, y) ∈ R2 : 0 ≤ x ≤ 1} homeomorphic to the closed
half-plane {(x, y) ∈ R2 : x ≥ 0}? Prove or disprove.

85. Suppose that M is compact and that U is an open covering of M which is
“redundant” in the sense that each p ∈ M is contained in at least two members
of U. Show that U reduces to a finite subcovering with the same property.

86. Suppose that every open covering of M has a positive Lebesgue number. Give
an example of such an M that is not compact.

Exercises 87–94 treat the basic theorems in the chapter, avoiding the use of
sequences. The proofs will remain valid in general topological spaces.

87. Give a direct proof that [a, b] is covering compact. [Hint: Let U be an open
covering of [a, b] and consider the set

C = {x ∈ [a, b] : finitely many members of U cover [a, x]}.

Use the least upper bound principle to show that b ∈ C.]
88. Give a direct proof that a closed subset A of a covering compact setK is covering

compact. [Hint: If U is an open covering of A, adjoin the set W = M!A to U.
Is W = U ∪ {W} an open covering of K? If so, so what?]

89. Give a proof of Theorem36 using open coverings. That is, assume A is a
covering compact subset of M and f : M → N is continuous. Prove directly
that fA is covering compact. [Hint: What is the criterion for continuity in
terms of preimages?]

90. Suppose that f : M → N is a continuous bijection and M is covering compact.
Prove directly that f is a homeomorphism.

91. Suppose that M is covering compact and that f : M → N is continuous. Use
the Lebesgue number lemma to prove that f is uniformly continuous. [Hint:
Consider the covering of N by ε/2-neighborhoods {Nε/2(q) : q ∈ N} and its
preimage in M , {fpre(Nε/2(q)) : q ∈ N}.]
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92. Give a direct proof that the nested decreasing intersection of nonempty covering
compact sets is nonempty. [Hint: If A1 ⊃ A2 ⊃ . . . are covering compact,
consider the open sets Un = Ac

n. If <An = ∅, what does {Un} cover?]

93. Generalize Exercise 92 as follows. Suppose that M is covering compact and C
is a collection of closed subsets of M such that every intersection of finitely
many members of C is nonempty. (Such a collection C is said to have the
finite intersection property.) Prove that the grand intersection <C∈CC
is nonempty. [Hint: Consider the collection of open sets U = {Cc : C ∈ C.]

94. If every collection of closed subsets of M which has the finite intersection prop-
erty also has a nonempty grand intersection, prove that M is covering compact.
[Hint: Given an open covering U = {Uα}, consider the collection of closed sets
C = {U c

α}.]
95. Let S be a subset of a metric space M . With respect to the definitions on

page 92 prove the following.

(a) The closure of S is the intersection of all closed subsets of M that contain
S.

(b) The interior of S is the union of all open subsets of M that are contained
in S.

(c) The boundary of S is a closed set.

(d) Why does (a) imply the closure of S equals limS?
(e) If S is clopen, what is ∂S?

(f) Give an example of S ⊂ R such that ∂(∂S) -= ∅, and infer that “the
boundary of the boundary ∂ ◦ ∂ is not always zero.”

96. If A ⊂ B ⊂ C, A is dense in B, and B is dense in C prove that A is dense in C.

97. Is the set of dyadic rationals (the denominators are powers of 2) dense in Q?
In R? Does one answer imply the other? (Recall that A is dense in B if A ⊂ B
and A ⊃ B.)

98. Show that S ⊂ M is somewhere dense in M if and only if int(S) -= ∅. Equiva-
lently, S is nowhere dense in M if and only if its closure has empty interior.

99. Let M,N be nonempty metric spaces and P = M ×N .

(a) If M,N are perfect prove that P is perfect.

(b) If M,N are totally disconnected prove that P is totally disconnected.

(c) What about the converses?

(d) Infer that the Cartesian product of Cantor spaces is a Cantor space. (We
already know that the Cartesian product of compacts is compact.)

(e) Why does this imply that C × C = {(x, y) ∈ R2 : x ∈ C and y ∈ C} is
homeomorphic to C, C being the standard Cantor set?

100. Prove that every Cantor piece is a Cantor space. (Recall that M is a Cantor
space if it is compact, nonempty, totally disconnected and perfect, and that
A ⊂ M is a Cantor piece if it is nonempty and clopen.)
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*101. Let Σ be the set of all infinite sequences of zeroes and ones. For example,
(100111000011111 . . .) ∈ Σ. Define the metric

d(a, b) =
∑ |an − bn|

2n

where a = (an) and b = (bn) are points in Σ.

(a) Prove that Σ is compact.

(b) Prove that Σ is homeomorphic to the Cantor set.

102. Prove that no Peano curve is one-to-one. (Recall that a Peano curve is a
continuous map f : [0, 1] → R2 whose image has a nonempty interior.)

103. Prove that there is a continuous surjection R → R2. What about Rm?
104. Find two nonhomeomorphic compact subsets of R whose complements are

homeomorphic.

105. As on page 115, consider the subsets of R,

A = {0} ∪ [1, 2] ∪ {3} and B = {0} ∪ {1} ∪ [2, 3].

(a) Why is there no ambient homeomorphism of R to itself that carries A onto
B?

(b) Thinking of R as the x-axis, is there an ambient homeomorphism of R2 to
itself that carries A onto B?

106. Prove that the completion of a metric space is unique in the following natural
sense: A completion of a metric space M is a complete metric X space contain-
ing M as a metric subspace such that M is dense in X. That is, every point of
X is a limit of M .
(a) Prove that M is dense in the completion M̂ constructed in the proof of

Theorem 80.

(b) If X and X ′ are two completions of M prove that there is an isometry
i : X → X ′ such that i(p) = p for all p ∈ M .

(c) Prove that i is the unique such isometry.

(d) Infer that M̂ is unique.

107. If M is a metric subspace of a complete metric space S prove that M is a
completion of M .

*108. Consider the identity map id : Cmax → Cint where Cmax is the metric space
C([0, 1],R) of continuous real-valued functions defined on [0, 1], equipped with
the max-metric dmax(f, g) = max |f(x)−g(x)|, and Cint is C([0, 1],R) equipped
with the integral metric,

dint(f, g) =

∫ 1

0
|f(x)− g(x)| dx.

Show that id is a continuous linear bijection (an isomorphism) but its inverse
is not continuous.
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*109. A metric on M is an ultrametric if for all x, y, z ∈ M we have

d(x, z) ≤ max{d(x, y), d(y, z)}.

(Intuitively this means that the trip from x to z cannot be broken into shorter
legs by making a stopover at some y.)

(a) Show that the ultrametric property implies the triangle inequality.
(b) In an ultrametric space show that “all triangles are isosceles.”

(c) Show that a metric space with an ultrametric is totally disconnected.

(d) Define a metric on the set Σ of strings of zeroes and ones in Exercise 101
as

d∗(a, b) =






1

2n
if n is the smallest index for which an -= bn

0 if a = b.

Show that d∗ is an ultrametric and prove that the identity map is a home-
omorphism (Σ, d) → (Σ, d∗).

*110. Q inherits the Euclidean metric from R but it also carries a very different metric,
the p-adic metric. Given a prime number p and an integer n, the p-adic norm
of n is

|n|p =
1

pk

where pk is the largest power of p that divides n. (The norm of 0 is by definition
0.) The more factors of p, the smaller the p-norm. Similarly, if x = a/b is a
fraction, we factor x as

x = pk · r
s

where p divides neither r nor s, and we set

|x|p =
1

pk
.

The p-adic metric on Q is

dp(x, y) = |x− y|p.

(a) Prove that dp is a metric with respect to which Q is perfect – every point
is a cluster point.

(b) Prove that dp is an ultrametric.

(c) Let Qp be the metric space completion of Q with respect to the metric dp,
and observe that the extension of dp to Qp remains an ultrametric. Infer
from Exercise 109 that Qp is totally disconnected.
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(d) Prove that Qp is locally compact, in the sense that every point has small
compact neighborhoods.

(e) Infer that Qp is covered by neighborhoods homeomorphic to the Cantor
set. See Gouvêa’s book, p-adic Numbers.

111. Let M = [0, 1] and let M1 be its division into two intervals [0, 1/2] and [1/2, 1].
Let M2 be its division into four intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4], and
[3/4, 1]. Continuing these bisections generates natural divisions of [0, 1]. The
pieces are intervals. We label them with words using the letters 0 and 1 as
follows: 0 means “left” and 1 means “right,” so the four intervals in M2 are
labeled as 00, 01, 10, and 11 respectively.

(a) Verify that all endpoints of the intervals (except 0 and 1) have two ad-
dresses. For instance,

<
k

[
2k−1 − 1

2k
,
1

2

]
=

{
1

2

}
= <

k

[
1

2
,
2k−1 + 1

2k

]
.

(b) Verify that the points 0, 1, and all nonendpoints have unique addresses.

*112. Prove that #C = #R. [Hint: According to the Schroeder-Bernstein Theorem
from Chapter 1 it suffices to find injections C → R and R → C. The inclusion
C ⊂ R is an injection C → R. Each t ∈ [0, 1) has a unique base-2 expansion
τ(t) that does not terminate in an infinite string of ones. Replacing each 1 by
2 converts τ(t) to ω(t), an infinite address in the symbols 0 and 2. It does not
terminate in an infinite string of twos. Set h(t) =

∑∞
i=1 ωi/3i and verify that

h : [0, 1) → C is an injection. Since there is an injection R → [0, 1), conclude
that there is an injection R → C, and hence that #C = #R.]

Remark The Continuum Hypothesis states that if S is any uncountable subset
of R then S and R have equal cardinality. The preceding coding shows that
C is not only uncountable (as is implied by Theorem56) but actually has the
same cardinality as R. That is, C is not a counterexample to the Continuum
Hypothesis. The same is true of all uncountable closed subsets of R. See
Exercise 151.

113. Let M be the standard Cantor set C. In the notation of Section 8, Cn is the
collection of 2n Cantor intervals of length 1/3n that nest down to C as n → ∞.
Verify that setting Ck = C ∩Ck gives divisions of C into disjoint clopen pieces.

*114. (a) Prove directly that there is a continuous surjection of the middle-thirds
Cantor set C onto the closed interval [0, 1]. [Hint: Each x ∈ C has a base
3 expansion (xn), all of whose entries are zeroes and twos. (For example,
2/3 = (20)base 3 and 1/3 = (02)base 3. Write y = (yn) by replacing the
twos in (xn) by ones and interpreting the answer base 2. Show that the
map x 3→ y works.]
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(b) Compare this surjection to the one constructed from the bisection divisions
in Exercise 113.

115. Rotate the unit circle S1 by a fixed angle α, say R : S1 → S1. (In polar
coordinates, the transformation R sends (1, θ) to (1, θ + α).)

(a) If α/π is rational, show that each orbit of R is a finite set.

*(b) If α/π is irrational, show that each orbit is infinite and has closure equal
to S1.

116. A metric spaceM with metric d can always be remetrized so the metric becomes
bounded. Simply define the bounded metric

ρ(p, q) =
d(p, q)

1 + d(p, q)
.

(a) Prove that ρ is a metric. Why is it obviously bounded?

(b) Prove that the identity map M → M is a homeomorphism from M with
the d-metric to M with the ρ-metric.

(c) Infer that boundedness of M is not a topological property.
(d) Find homeomorphic metric spaces, one bounded and the other not.

117. Fold a piece of paper in half.

(a) Is this a continuous transformation of one rectangle into another?

(b) Is it injective?

(c) Draw an open set in the target rectangle, and find its preimage in the
original rectangle. Is it open?

(d) What if the open set meets the crease?

The baker’s transformation is a similar mapping. A rectangle of dough is
stretched to twice its length and then folded back on itself. Is the transformation
continuous? A formula for the baker’s transformation in one variable is f(x) =
1 − |1 − 2x|. The nth iterate of f is fn = f ◦ f ◦ . . . ◦ f , n times. The orbit
of a point x is

{x, f(x), f2(x), . . . , fn(x), . . .}.

[For clearer but more awkward notation one can write f◦n instead of fn. This
distinguishes composition f ◦ f from multiplication f · f .]
(e) If x is rational prove that the orbit of x is a finite set.

(f) If x is irrational what is the orbit?

*118. The implications of compactness are frequently equivalent to it. Prove

(a) If every continuous function f : M → R is bounded then M is compact.

(b) If every continuous bounded function f : M → R achieves a maximum or
minimum then M is compact.

(c) If every continuous function f : M → R has compact range fM then M
is compact.
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(d) If every nested decreasing sequence of nonempty closed subsets of M has
nonempty intersection then M is compact.

Together with Theorems 63 and 65, (a)–(d) give seven equivalent definitions of
compactness. [Hint: Reason contrapositively. If M is not compact then it con-
tains a sequence (pn) that has no convergent subsequence. It is fair to assume
that the points pn are distinct. Find radii rn > 0 such that the neighborhoods
Mrn(pn) are disjoint and no sequence qn ∈ Mrn(pn) has a convergent subse-
quence. Using the metric define a function fn : Mrn(pn) → R with a spike at
pn, such as

fn(x) =
rn − d(x, pn)

an + d(x, pn)

where an > 0. Set f(x) = fn(x) if x ∈ Mrn(pn), and f(x) = 0 if x belongs to
no Mrn(pn). Show that f is continuous. With the right choice of an show that
f is unbounded. With a different choice of an, it is bounded but achieves no
maximum, and so on.]

119. Let M be a metric space of diameter ≤ 2. The cone for M is the set

C = C(M) = {p0} ∪ M × (0, 1]

with the cone metric

ρ((p, s), (q, t)) = |s− t|+min{s, t}d(p, q)
ρ((p, s), p0) = s

ρ(p0, p0) = 0.

The point p0 is the vertex of the cone. Prove that ρ is a metric on C. [If M
is the unit circle, think of it in the plane z = 1 in R3 centered at the point
(0, 0, 1). Its cone is the 45-degree cone with vertex the origin.]

120. Recall that if for each embedding of M , h : M → N , hM is closed in N then
M is said to be absolutely closed. If each hM is bounded then M is absolutely
bounded. Theorem 41 implies that compact sets are absolutely closed and
absolutely bounded. Prove:
(a) If M is absolutely bounded then M is compact.

*(b) If M is absolutely closed then M is compact.

Thus these are two more conditions equivalent to compactness. [Hint: From
Exercise 118(a), if M is noncompact there is a continuous function f : M → R
that is unbounded. For Exercise 120(a), show that F (x) = (x, f(x)) embeds
M onto a nonbounded subset of M × R. For 120(b), justify the additional
assumption that the metric on M is bounded by 2. Then use Exercise 118(b) to
show that if M is noncompact then there is a continuous function g : M → (0, 1]
such that for some nonclustering sequence (pn), we have g(pn) → 0 as n → ∞.
Finally, show that G(x) = (x, gx) embeds M onto a nonclosed subset S of the
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cone C(M) discussed in Exercise 119. S will be nonclosed because it limits at
p0 but does not contain it.]

121. (a) Prove that every function defined on a discrete metric space is uniformly
continuous.

(b) Infer that it is false to assert that if every continuous function f : M → R
is uniformly continuous then M is compact.

(c) Prove, however, that if M is a metric subspace of a compact metric space
K and every continuous function f : M → R is uniformly continuous then
M is compact.

122. Recall that p is a cluster point of S if each Mrp contains infinitely many points
of S. The set of cluster points of S is denoted as S′. Prove:

(a) If S ⊂ T then S′ ⊂ T ′.

(b) (S ∪ T )′ = S′ ∪ T ′.

(c) S′ = (S)′.

(d) S′ is closed in M ; that is, S′′ ⊂ S′ where S′′ = (S′)′.

(e) Calculate N′, Q′, R′, (R!Q)′, and Q′′.

(f) Let T be the set of points {1/n : n ∈ N}. Calculate T ′ and T ′′.
(g) Give an example showing that S′′ can be a proper subset of S′.

123. Recall that p is a condensation point of S if each Mrp contains uncountably
many points of S. The set of condensation points of S is denoted as S∗. Prove:
(a) If S ⊂ T then S∗ ⊂ T∗.
(b) (S ∪ T )∗ = S∗ ∪ T∗.
(c) S∗ ⊂ S

∗
where S

∗
= (S)∗

(d) S∗ is closed in M ; that is, S∗′ ⊂ S∗where S∗′ = (S∗)′.
(e) S∗∗ ⊂ S∗where S∗∗ = (S∗)∗.
(f) Calculate N∗, Q∗, R∗, and (R!Q)∗.
(g) Give an example showing that S∗ can be a proper subset of (S)∗. Thus,

(c) is not in general an equality.

**(h) Give an example that S∗∗ can be a proper subset of S∗. Thus, (e) is
not in general an equality. [Hint: Consider the set M of all functions
f : [a, b] → [0, 1], continuous or not, and let the metric on M be the sup
metric, d(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}. Consider the set S of all
“δ-functions with rational values.”]

**(i) Give examples that show in general that S∗ neither contains nor is con-
tained in S′∗where S′∗= (S′)∗. [Hint: δ-functions with values 1/n, n ∈ N.]

124. Recall that p is an interior point of S ⊂ M if some Mrp is contained in S.
The set of interior points of S is the interior of S and is denoted intS. For all
subsets S, T of the metric space M prove:

(a) intS = S! ∂S.

(b) intS = (Sc)c.



Exercises A Taste of Topology 141

(c) int(intS) = intS.
(d) int(S ∩ T ) = int(S ∩ intT .

(e) What are the dual equations for the closure?

(f) Prove that int(S ∪ T ) ⊃ intS ∪ intT . Show by example that the inclusion
can be strict, i.e., not an equality.

125. A point p is a boundary point of a set S ⊂ M if every neighborhood Mrp
contains points of both S and Sc. The boundary of S is denoted ∂S. For all
subsets S, T of a metric space M prove:

(a) S is clopen if and only if ∂S = ∅.
(b) ∂S = ∂Sc.

(c) ∂∂S ⊂ ∂S.

(d) ∂∂∂S = ∂∂S.

(e) ∂(S ∪ T ) ⊂ ∂S ∪ ∂T .

(f) Give an example in which (c) is a strict inclusion, ∂∂S -= ∂S.

(g) What about (e)?

*126. Suppose that E is an uncountable subset of R. Prove that there exists a point
p ∈ R at which E condenses. [Hint: Use decimal expansions. Why must there
be an interval [n, n+1) containing uncountably many points of E? Why must it
contain a decimal subinterval with the same property? (A decimal subinterval
[a, b) has endpoints a = n+k/10, b = n+(k+1)/10 for some digit k, 0 ≤ k ≤ 9.)
Do you see lurking the decimal expansion of a condensation point?] Generalize
to R2 and to Rm.

127. The metric space M is separable if it contains a countable dense subset. [Note
the confusion of language: “Separable” has nothing to do with “separation.”]

(a) Prove that Rm is separable.

(b) Prove that every compact metric space is separable.
128. *(a) Prove that every metric subspace of a separable metric space is separable,

and deduce that every metric subspace of Rm or of a compact metric space
is separable.

(b) Is the property of being separable topological?

(c) Is the continuous image of a separable metric space separable?

129. Think up a nonseparable metric space.

130. Let B denote the collection of all ε-neighborhoods in Rm whose radius ε is
rational and whose center has all coordinates rational.
(a) Prove that B is countable.

(b) Prove that every open subset of Rm can be expressed as the countable
union of members of B.

(The union need not be disjoint, but it is at most a countable union because
there are only countably many members of B. A collection such as B is called
a countable base for the topology of Rm.)
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131. (a) Prove that every separable metric space has a countable base for its topol-
ogy, and conversely that every metric space with a countable base for its
topology is separable.

(b) Infer that every compact metric space has a countable base for its topology.

*132. Referring to Exercise 123, assume now that M is separable, S ⊂ M , and, as
before S′ is the set of cluster points of S while S∗ is the set of condensation
points of S. Prove:

(a) S∗ ⊂ (S′)∗ = (S)∗.
(b) S∗∗ = S∗′ = S∗.
(c) Why is (a) not in general an equality?

[Hints: For (a) write S ⊂ (S! S′) ∪ S′ and S = (S! S′) ∪ S′, show that
(S ! S′)∗ = ∅, and use Exercise 123(a). For (b), Exercise 123(d) implies that
S∗∗ ⊂ S∗′ ⊂ S∗. To prove that S∗⊂ S∗∗, write S ⊂ (S! S∗) ∪ S∗ and show
that (S! S∗)∗ = ∅.]

*133. Prove that

(a) An uncountable subset of R clusters at some point of R.
(b) An uncountable subset of R clusters at some point of itself.
(c) An uncountable subset of R condenses at uncountably many points of

itself.

(d) What about Rm instead of R?
(e) What about any compact metric space?

(f) What about any separable metric space?

[Hint: Review Exercise 126.]

*134. Prove that Q̂, the Cauchy sequences in Q modulo the equivalence relation of
being co-Cauchy, is a field with respect to the natural arithmetic operations
defined on page 122, and that Q is naturally a subfield of Q̂.

135. Prove that the order on Q̂ defined on page 122 is a bona fide order which agrees
with the standard order on Q.

*136. Let M be the square [0, 1]2, and let aa, ba, bb, ab label its four quadrants – upper
right, upper left, lower left, and lower right.

(a) Define nested bisections of the square using this pattern repeatedly, and let
τk be a curve composed of line segments that visit the kth-order quadrants
systematically. Let τ = limk τk be the resulting Peano curve à la the
Cantor Surjection Theorem.

(b) Compare τ to the Peano curve f : I → I2 directly constructed on pages
271- 274 of the second edition of Munkres’ book Topology.

*137. Let P be a closed perfect subset of a separable complete metric space M . Prove
that each point of P is a condensation point of P . In symbols, P = P ′ ⇒
P = P∗.

**138. Given a Cantor space M ⊂ R2, given a line segment [p, q] ⊂ R2 with p, q -∈ M ,
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and given an ε > 0, prove that there exists a path A in the ε-neighborhood of
[p, q] that joins p to q and is disjoint from M . [Hint: Think of A as a bisector
of M . From this bisection fact a dyadic disc partition of M can be constructed,
which leads to the proof that M is tame.]

139. To prove that Antoine’s Necklace A is a Cantor set, you need to show that A
is compact, perfect, nonempty, and totally disconnected.

(a) Do so. [Hint: What is the diameter of any connected component of An,
and what does that imply about A?]

**(b) If, in the Antoine construction two linked solid tori are placed very cleverly
inside each larger solid torus, show that the intersection A = <An is a
Cantor set.

*140. Consider the Hilbert cube

H = {(x1, x2, . . .) ∈ [0, 1]∞ : for each n ∈ N we have |xn| ≤ 1/2n}.

Prove that H is compact with respect to the metric

d(x, y)) = sup
n

|xn − yn|

where x = (xn), y = (yn). [Hint: Sequences of sequences.]

Remark Although compact, H is infinite-dimensional and is homeomorphic
to no subset of Rm.

141. Prove that the Hilbert cube is perfect and homeomorphic to its Cartesian
square, H ∼= H ×H.

***142. Assume that M is compact, nonempty, perfect, and homeomorphic to its Carte-
sian square, M ∼= M ×M . Must M be homeomorphic to the Cantor set, the
Hilbert cube, or some combination of them?

143. A Peano space is a metric space M that is the continuous image of the unit
interval: There is a continuous surjection τ : [0, 1] → M . Theorem72 states the
amazing fact that the 2-disc is a Peano space. Prove that every Peano space is

(a) compact,
(b) nonempty,

(c) path-connected,

*(d) and locally path-connected, in the sense that for each p ∈ M and each
neighborhood U of p there is a smaller neighborhood V of p such that any
two points of V can be joined by a path in U .

*144. The converse to Exercise 143 is the Hahn-Mazurkiewicz Theorem. Assume
that a metric space M is a compact, nonempty, path-connected, and locally
path-connected. Use the Cantor Surjection Theorem 70 to show that M is a
Peano space. [The key is to make uniformly short paths to fill in the gaps of
[0, 1]!C.]
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145. One of the famous theorems in plane topology is the Jordan Curve Theorem.
A Jordan curve J is a homeomorph of the unit circle in the plane. (Equiva-
lently it is f([a, b]) where f : [a, b] → R2 is continuous, f(a) = f(b), and for no
other pair of distinct s, t ∈ [a, b] does f(s) equal f(t). It is also called a simple
closed curve.) The Jordan Curve Theorem asserts that R2!J consists of two
disjoint, connected open sets, its inside and its outside, and every path between
them must meet J . Prove the Jordan Curve Theorem for the circle, the square,
the triangle, and – if you have courage – every simple closed polygon.

146. The utility problem gives three houses 1, 2, 3 in the plane and the three
utilities, Gas, Water, and Electricity. You are supposed to connect each house
to the three utilities without crossing utility lines. (The houses and utilities are
disjoint.)
(a) Use the Jordan curve theorem to show that there is no solution to the

utility problem in the plane.

*(b) Show also that the utility problem cannot be solved on the 2-sphere S2.

*(c) Show that the utility problem can be solved on the surface of the torus.

*(d) What about the surface of the Klein bottle?

***(e) Given utilities U1, . . . , Um and houses H1, . . . , Hn located on a surface
with g handles, find necessary and sufficient conditions on m,n, g so that
the utility problem can be solved.

147. Let M be a metric space and let K denote the class of nonempty compact
subsets of M . The r-neighborhood of A ∈ K is

MrA = {x ∈ M : ∃a ∈ A and d(x, a) < r} = >
a∈A

Mra.

For A,B ∈ K define

D(A,B) = inf{r > 0 : A ⊂ MrB and B ⊂ MrA}.

(a) Show that D is a metric on K. (It is called the Hausdorff metric and K
is called the hyperspace of M .)

(b) Denote by F the collection of finite nonempty subsets of M and prove that
F is dense in K. That is, given A ∈ K and given ε > 0 show there exists
F ∈ F such that D(A,F ) < ε.

*(c) If M is compact prove that K is compact.

(d) If M is connected prove that K is connected.

**(e) If M is path-connected is K path-connected?

(f) Do homeomorphic metric spaces have homeomorphic hyperspaces?

Remark The converse to (f), K(M) ∼= K(N) ⇒ M ∼= N is false. The
hyperspace of every Peano space is the Hilbert cube. This is a difficult
result but a good place to begin reading about hyperspaces is Sam Nadler’s
book Continuum Theory.
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**148. Start with a set S ⊂ R and successively take its closure, the complement of
its closure, the closure of that, and so on: S, cl(S), (cl(S))c, . . .. Do the same
to Sc. In total, how many distinct subsets of R can be produced this way?
In particular decide whether each chain S, cl(S), . . . consists of only finitely
many sets. For example, if S = Q then we get Q, R, ∅, ∅, R, R, . . . and
Qc, R, ∅, ∅, R, R, . . . for a total of four sets.

**149. Consider the letter T.
(a) Prove that there is no way to place uncountably many copies of the letter

T disjointly in the plane. [Hint: First prove this when the unit square
replaces the plane.]

(b) Prove that there is no way to place uncountably many homeomorphic
copies of the letter T disjointly in the plane.

(c) For which other letters of the alphabet is this true?

(d) Let U be a set in R3 formed like an umbrella: It is a disc with a perpendic-
ular segment attached to its center. Prove that uncountably many copies
of U cannot be placed disjointly in R3.

(e) What if the perpendicular segment is attached to the boundary of the
disc?

**150. Let M be a complete, separable metric space such as Rm. Prove the Cupcake
Theorem: Each closed set K ⊂ M can be expressed uniquely as the disjoint
union of a countable set and a perfect closed set,

C 7 P = K.

**151. Let M be an uncountable compact metric space.

(a) Prove that M contains a homeomorphic copy of the Cantor set. [Hint:
Imitate the construction of the standard Cantor set C.]

(b) Infer that Cantor sets are ubiquitous. There is a continuous surjection
σ : C → M and there is a continuous injection i : C → M .

(c) Infer that every uncountable closed set S ⊂ R has #S = #R, and hence
that the Continuum Hypothesis is valid for closed sets in R. [Hint: Cup-
cake and Exercise 112.]

(d) Is the same true if M is separable, uncountable, and complete?

**152. Write jingles at least as good as the following. Pay attention to the meter as
well as the rhyme.

When a set in the plane

is closed and bounded,

you can always draw

a curve around it.

Peter Přibik
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If a clopen set can be detected,

Your metric space is disconnected.

David Owens

A coffee cup feeling quite dazed,

said to a donut, amazed,

an open surjective continuous injection,

You’d be plastic and I’d be glazed.

Norah Esty

’Tis a most indisputable fact

If you want to make something compact

Make it bounded and closed

For you’re totally hosed

If either condition you lack.

Lest the reader infer an untruth

(Which I think would be highly uncouth)

I must hasten to add

There are sets to be had

Where the converse is false, fo’sooth.

Karla Westfahl

For ev’ry a and b in S

if there exists a path that’s straight

from a to b and it’s inside

then “S must be convex,” we state.

Alex Wang
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Prelim Problems†

1. Suppose that f : Rm → R satisfies two conditions:

(i) For each compact set K, f(K) is compact.

(ii) For every nested decreasing sequence of compacts (Kn),

f (<Kn) = < f(Kn).

Prove that f is continuous.

2. Let X ⊂ Rm be compact and f : X → R be continuous. Given ε > 0, show
that there is a constant M such that for all x, y ∈ X we have |f(x) − f(y)| ≤
M |x− y|+ ε.

3. Consider f : R2 → R. Assume that for each fixed x0, y 3→ f(x0, y) is continuous
and for each fixed y0, x 3→ f(x, y0) is continuous. Find such an f that is not
continuous.

4. Let f : R2 → R satisfy the following properties. For each fixed x0 ∈ R the
function y 3→ f(x0, y) is continuous and for each fixed y0 ∈ R the function
x 3→ f(x, y0) is continuous. Also assume that if K is any compact subset of R2

then f(K) is compact. Prove that f is continuous.

5. Let f(x, y) be a continuous real-valued function defined on the unit square
[0, 1]× [0, 1]. Prove that

g(x) = max{f(x, y) : y ∈ [0, 1]}

is continuous.

6. Let {Uk} be a cover of Rm by open sets. Prove that there is a cover {Vk} of Rm

by open sets Vk such that Vk ⊂ Uk and each compact subset of Rm is disjoint
from all but finitely many of the Vk.

7. A function f : [0, 1] → R is said to be upper semicontinuous if given x ∈ [0, 1]
and ε > 0 there exists a δ > 0 such that |y−x| < δ implies that f(y) < f(x) +ε.
Prove that an upper semicontinuous function on [0, 1] is bounded above and
attains its maximum value at some point p ∈ [0, 1].

8. Prove that a continuous function f : R → R which sends open sets to open sets
must be monotonic.

9. Show that [0, 1] cannot be written as a countably infinite union of disjoint closed
subintervals.

10. A connected component of a metric space M is a maximal connected subset
of M . Give an example of M ⊂ R having uncountably many connected com-
ponents. Can such a subset be open? Closed? Does your answer change if R2

replaces R?
†These are questions taken from the exam given to first-year math graduate students at U.C.

Berkeley.
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11. Let U ⊂ Rm be an open set. Suppose that the map h : U → Rm is a homeo-
morphism from U onto Rm which is uniformly continuous. Prove that U = Rm.

12. Let X be a nonempty connected set of real numbers. If every element of X is
rational prove that X has only one element.

13. Let A ⊂ Rm be compact, x ∈ A. Let (xn) be a sequence in A such that every
convergent subsequence of (xn) converges to x.

(a) Prove that the sequence (xn) converges.

(b) Give an example to show if A is not compact, the result in (a) is not
necessarily true.

14. Assume that f : R → R is uniformly continuous. Prove that there are constants
A,B such that |f(x)| ≤ A+B|x| for all x ∈ R.

15. Let h : [0, 1) → R be a uniformly continuous function where [0, 1) is the half-
open interval. Prove that there is a unique continuous map g : [0, 1] → R such
that g(x) = h(x) for all x ∈ [0, 1).


