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1 Problems

1.10: Let Pn be the proposition that (2n+1)+(2n+3)+(2n+5)+· · ·+(4n−1) =
3n2. We proceed with induction. Our base case is P1:

2 · 1 + 1 = 3 = 3 · 12

which is true. Now, assume Pn:

(2n+ 1) + (2n+ 3) + (2n+ 5) + · · ·+ (4n− 1) = 3n2

We can add (4n+ 1) + (4n+ 3)− (2n+ 1) to both sides to get

(2n+ 3) + (2n+ 5) + · · ·+ (4n+ 3) = 3n2 + 6n+ 3

=⇒ (2(n+ 1) + 1) + (2(n+ 1) + 3) + · · ·+ (4(n+ 1)− 1) = 3(n+ 1)2

which is precisely Pn+1. So, our induction is complete.

1.12: (a)

(a+ b)1 = a+ b =

(
1

0

)
a+

(
1

1

)
b

(a+ b)2 = a2 + 2ab+ b2 =

(
2

0

)
a2 +

(
2

1

)
ab+

(
2

2

)
b2

(a+ b)3 = (a+ b)(a2 + 2ab+ b2) = a3 + 3a2b+ 3ab2 + b3

=

(
3

0

)
a3 +

(
3

1

)
a2b+

(
3

2

)
ab2 +

(
3

3

)
b3

(b) (
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!(n− k + 1)

k!(n− k + 1)!
+

n!k

k!(n− k + 1)!
=

n!(n+ 1)

k!(n− k + 1)!
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=
(n+ 1)!

k!(n− k + 1)!
=

(
n+ 1

k

)
(c) Let Pn be the proposition that

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i

We proved the base case in part (a). Now assuming Pn, we can multiply by
(a+ b) on both sides:

(a+ b)n+1 = (a+ b)

n∑
i=0

(
n

i

)
aibn−i =

n∑
i=0

(
n

i

)
ai+1bn−i +

n∑
i=0

(
n

i

)
aibn−i+1

=

n∑
i=0

((
n+ 1

i+ 1

)
−
(

n

i+ 1

))
ai+1bn−i +

n∑
i=0

(
n

i

)
aibn−i+1

=

n+1∑
i=1

((
n+ 1

i

)
−
(
n

i

))
aibn−i+1 +

n∑
i=0

(
n

i

)
aibn−i+1

= an+1 +

n∑
i=1

((
n+ 1

i

)
−
(
n

i

))
aibn−i+1 + bn+1 +

n∑
i=1

(
n

i

)
aibn−i+1

= an+1 +

(
n∑
i=1

(
n+ 1

i

)
aibn−i+1

)
+ bn+1

=

n+1∑
i=0

(
n+ 1

i

)
aibn−i+1

which is precisely Pn+1, so our induction is complete.

2.1: Consider the polynomial x2 − 3. By the Rational Zero’s theorem, the
only possible rational zeros of this polynomial are 3,−3, 1,−1. However,

√
3 is

a zero of this polynomial, therefore it must be irrational.

Consider the polynomial x2 − 5. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 5,−5, 1,−1. However,

√
5 is a

zero of this polynomial, therefore it must be irrational.

Consider the polynomial x2 − 7. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 7,−7, 1,−1. However,

√
7 is a

zero of this polynomial, therefore it must be irrational.

Consider the polynomial x2−24. By the Rational Zero’s theorem, the only possi-
ble rational zeros of this polynomial are 24,−24, 12,−12, 8,−8, 6,−6, 4,−4, 3,−3, 2,−2, 1,−1.
However,

√
24 is a zero of this polynomial, therefore it must be irrational.

2



Consider the polynomial x2 − 31. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 31,−31, 1,−1 However,

√
31 is a

zero of this polynomial, therefore it must be irrational.

2.2: Consider the polynomial x3 − 2. By the Rational Zero’s theorem, the
only possible rational zeros of this polynomial are 2,−2, 1,−1. However, 3

√
2 is

a zero of this polynomial, therefore it must be irrational.

Consider the polynomial x7 − 5. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 5,−5, 1,−1. However, 7

√
5 is a

zero of this polynomial, therefore it must be irrational.

Consider the polynomial x4 − 13. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 13,−13, 1,−1. However, 4

√
13 is a

zero of this polynomial, therefore it must be irrational.

2.7: (a) Notice that
√

4 + 2
√

3−
√

3 =
√

1 + 2
√

3 + 3−
√

3 =
√

(1 +
√

3)2 = 1,

which is rational.

(b) Notice that
√

6 + 4
√

2−
√

2 =
√

4 + 4
√

2 + 2−
√

2 =
√

(2 +
√

2)2−
√

2 = 2,

which is rational.

3.6: By the triangle inequality, we know that |a+ b| ≤ |a|+ |b| for all a, b ∈ R.
Since a + b ∈ R, we can also say by the triangle inequality |(a + b) + c| ≤
|a+ b|+ |c| for all a, b, c ∈ R. So, we can plug the first inequality back in to get
|a+ b+ c| ≤ |a|+ |b|+ |c|.

4.11: Assume for the sake of contradiction that there were finitely many ra-
tionals between a, b ∈ R. Let there be k rationals. Let’s order them such that

a ≤ x1 < x2 < · · · < xk ≤ b

By the denseness of Q, we know there exists a rational between any two reals.
So, there exists another rational number between x1 and x2 since x1, x2 ∈ R.
This means there are at least k + 1 rationals between a and b, which is a con-
tradiction to the fact that there were k rationals. So, there must be infinitely
many rational numbers between a and b.

4.14: (a) We know that for all a ∈ A, a ≤ supA. We know that for all b ∈ B,
b ≤ supB. So, we can add these to get a+ b ≤ supA+ supB. This means that
supA + supB is an upper bound, and it remains to show that it is the least
upper bound. Assume for the sake of contradiction that the actual upper bound
is supA + supB − ε for some ε > 0. We know there exists an element a1 ∈ A
such that a1 > supA − ε

2 , since supA is the least upper bound. Similarly we
know there exists an element b1 ∈ B such that b1 > supB− ε

2 . So, adding these
gives us a1 + b1 > supA+ supB− ε. However, this contradicts the fact that the
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upper bound of the set was supA+ supB− ε. Therefore the least upper bound
of this set must be supA+ supB.

7.5: (a) We know (
√
n2 + 1−n)(

√
n2 + 1+n) = 1 =⇒

√
n2 + 1−n = 1√

n2+1+n
.

Since the denominator goes to infinity, our desired limit is 0.
(b) We know (

√
n2 + n−n)(

√
n2 + n+n) = n =⇒

√
n2 + n−n = n√

n2+n+n
=

1√
1+ 1

n+1
. Here, the numerator goes to 1 and the denominator goes to 2, so our

desired answer is 1
2 .

(c) We know (
√

4n2 + n − 2n)(
√

4n2 + n + 2n) = n =⇒
√

4n2 + n − 2n =
n√

4n2+n+2n
= 1√

4+ 1
n+2

. Here, the numerator goes to 1 and the denominator

goes to 4, so our desired answer is 1
4 .
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