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1 Problems

1.10: Let P, be the proposition that (2n+1)+(2n+3)+(2n+5)+---+(4dn—1) =
3n%. We proceed with induction. Our base case is P;:

2:1+1=3=3-1
which is true. Now, assume P,,:
(2n+1)+(2n+3)+ (2n+5) + -+ (4n — 1) = 3n?
We can add (4n+ 1) + (4n+ 3) — (2n + 1) to both sides to get
(2n+3)+ (2n+5)+ -+ (4n+3) =3n® +6n+3

= 2+ 1) +1)+2n+1)+3) 4+ +(4n+1)—1) =3(n+1)?

which is precisely P,11. So, our induction is complete.
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(c) Let P, be the proposition that

(a+b)" = ; CL) b

We proved the base case in part (a). Now assuming P,, we can multiply by
(a + b) on both sides:
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which is precisely P, 11, so our induction is complete.
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2.1: Consider the polynomial z2> — 3. By the Rational Zero’s theorem, the
only possible rational zeros of this polynomial are 3, —3,1, —1. However, /3 is
a zero of this polynomial, therefore it must be irrational.

Consider the polynomial 2 — 5. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 5, —5,1, —1. However, /5 is a
zero of this polynomial, therefore it must be irrational.

Consider the polynomial x> — 7. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 7, —7,1,—1. However, /7 is a

zero of this polynomial, therefore it must be irrational.

Consider the polynomial 2—24. By the Rational Zero’s theorem, the only possi-

ble rational zeros of this polynomial are 24, —24,12, —12,8, —8,6,—6,4, —4,3,—-3,2, —2

However, v/24 is a zero of this polynomial, therefore it must be irrational.
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Consider the polynomial 2> — 31. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 31, —31,1, —1 However, /31 is a
zero of this polynomial, therefore it must be irrational.

2.2: Consider the polynomial z2 — 2. By the Rational Zero’s theorem, the
only possible rational zeros of this polynomial are 2, —2,1, —1. However, /2 is
a zero of this polynomial, therefore it must be irrational.

Consider the polynomial 7 — 5. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 5, —5,1, —1. However, v/5 is a
zero of this polynomial, therefore it must be irrational.

Consider the polynomial z* — 13. By the Rational Zero’s theorem, the only
possible rational zeros of this polynomial are 13, —13,1, —1. However, v/13 is a
zero of this polynomial, therefore it must be irrational.

2.7: (a) Notice that V4 +2v3—v3=vV1+2V/3+3-V3=1/(1+3)2=1,

which is rational.

(b) Notice that v/6 +4v2—v2 = /4 + 42 +2—2 = /(2 +2)2 -2 = 2,

which is rational.

3.6: By the triangle inequality, we know that |a + b| < |a| + |b] for all a,b € R.
Since a + b € R, we can also say by the triangle inequality |(a + b) + ¢| <
|a+b| + |¢| for all a,b,c € R. So, we can plug the first inequality back in to get
la+b+c| <la +[b] + c].

4.11: Assume for the sake of contradiction that there were finitely many ra-
tionals between a,b € R. Let there be k rationals. Let’s order them such that

a<rT <a9< - <xp<Db

By the denseness of ), we know there exists a rational between any two reals.
So, there exists another rational number between z; and x5 since x1,z5 € R.
This means there are at least k 4+ 1 rationals between a and b, which is a con-
tradiction to the fact that there were k rationals. So, there must be infinitely
many rational numbers between a and b.

4.14: (a) We know that for all a € A, a < sup A. We know that for all b € B,
b < sup B. So, we can add these to get a +b < sup A + sup B. This means that
sup A + sup B is an upper bound, and it remains to show that it is the least
upper bound. Assume for the sake of contradiction that the actual upper bound
is sup A + sup B — € for some € > 0. We know there exists an element a; € A
such that a; > sup A — 5, since sup A is the least upper bound. Similarly we
know there exists an element b; € B such that b; > sup B — 5. So, adding these
gives us ay + by > sup A+ sup B —e. However, this contradicts the fact that the



upper bound of the set was sup A + sup B — €. Therefore the least upper bound
of this set must be sup A 4 sup B.

7.5: (a) Weknow (vn2 +1-n)(vn2 +14n) =1 = Vn2+1-n=
Since the denominator goes to infinity, our desired limit is 0.
2 _ 2 — 2 Y
(b) \1?Veknow (Vn24+n—-n)(vVn?4+n+n)=n = Vn>+n—n= T =
145 +1
1

desired answer is 5

(¢) We know (V4n2+n —2n)(V4n?2+n+2n) = n = V4dn?+n —2n =
1

L = . Here, the numerator goes to 1 and the denominator
An2+n+2n A /4+%+2 ’ g

1
vVn2+1+4n"

. Here, the numerator goes to 1 and the denominator goes to 2, so our

1

goes to 4, so our desired answer is 7.



