Math 104 HW2

Ajit Kadaveru

February 3, 2022

1 Problems

9.9:
(a) We know that for all $M, \exists N$ such that $n>N \Longrightarrow s_{n}>M$. This also means $n>\max \left(N, N_{0}\right) \Longrightarrow t_{n} \geq s_{n}>M$. So, for all M, we have $n>\max \left(N, N_{0}\right) \Longrightarrow t_{n}>M$, which means $\lim t_{n}=+\infty$.
(b) We know that for all $M, \exists N$ such that $n>N \Longrightarrow t_{n}<M$. This also means $n>\max \left(N, N_{0}\right) \Longrightarrow s_{n} \leq t_{n}<M$. So, for all M, we have $n>\max \left(N, N_{0}\right) \Longrightarrow s_{n}<M$, which means $\lim s_{n}=-\infty$.
(c) Assume for the sake of contradiction that $\lim s_{n}>\lim t_{n}$. Let $\lim s_{n}=s$ and $\lim t_{n}=t$. We know for all $\epsilon_{s}>0$, there exists an N_{s} such that $n>N_{s} \Longrightarrow\left|s_{n}-s\right|<\epsilon_{s}$. Similarly, for all $\epsilon_{t}>0$, there exists an N_{t} such that $n>N_{t} \Longrightarrow\left|t_{n}-t\right|<\epsilon_{t}$. Consider $\epsilon_{s}=\frac{s-t}{2}$. We see that there exists an N such that $n>N \Longrightarrow\left|s_{n}-s\right|<\frac{s-t}{2} \Longrightarrow s_{n}>t+\frac{s-t}{2}$. This means that $n>\max \left(N_{s}, N_{0}\right) \Longrightarrow s_{n}>t+\frac{s-t}{2} \Longrightarrow t_{n}>t+\frac{s-t}{2} \Longrightarrow\left|t_{n}-t\right|>\frac{s-t}{2}$. This means $n>\max \left(N_{0}, N_{s}, N_{t}\right)^{2} \Longrightarrow\left|t_{n}-t\right|>\frac{s-t}{2}$. However, choosing $\epsilon_{t}=\frac{s-t}{2}$ this contradicts the limit definition of t. So, it must be true that $\lim s_{n} \leq \lim t_{n}$.
9.15: We want to show that for all $\epsilon>0, \exists N$ such that $n>N \Longrightarrow\left|\frac{a^{n}}{n!}\right|<\epsilon$. Consider an integer $N>\frac{a}{\epsilon} \cdot\left|\frac{a^{b}}{b!}\right|$, where b be some integer greater than $|a|$. We can break this inequality into two parts:

$$
\begin{gathered}
\left|\frac{a^{n}}{n!}\right|=\left|\frac{a^{b}}{b!}\right|\left|\frac{a^{n-b}}{(b+1)(b+2) \cdots n}\right|=\left|\frac{a^{b}}{b!}\right|\left|\frac{a}{b+1}\right|\left|\frac{a}{b+2}\right| \cdots\left|\frac{a}{n}\right| \\
<\left|\frac{a^{b}}{b!}\right|\left|\frac{a}{n}\right|<\left|\frac{a^{b}}{b!}\right| \frac{|a|}{\left|\frac{a^{b}}{b!}\right| \cdot \frac{a}{\epsilon}}=\epsilon
\end{gathered}
$$

So, we have found that there always exists an N in terms of ϵ, meaning $\lim \left|\frac{a^{n}}{n!}\right|=$ $+\infty$
10.7: By definition, we know that for all $\epsilon>0$, there exists an element $s \in S$ such that $s>\sup S-\epsilon$. So consider the sequence $\left(s_{n}\right)$ where s_{i} is a randomly selected element from all the elements $s \in S$ such that $s>\sup S-\frac{\epsilon}{2^{i}}$. Since we know sup $S \notin S$, we have

$$
\sup S>s_{i}>\sup S-\frac{\epsilon}{2^{i}}
$$

Now, by the squeeze theorem, we can say $\lim s_{i}=\sup S$, since the limit of both sides are also sup S.
10.8: Consider

$$
\begin{aligned}
& \sigma_{n+1}-\sigma_{n}=\frac{1}{n+1}\left(s_{1}+s_{2}+\cdots+s_{n}\right)+\frac{s_{n+1}}{n+1}-\frac{1}{n}\left(s_{1}+s_{2}+\cdots+s_{n}\right) \\
& \quad=\frac{s_{n+1}}{n+1}-\frac{s_{1}+s_{2}+\cdots+s_{n}}{n(n+1)} \geq \frac{s_{n+1}}{n+1}-\frac{n s_{n}}{n(n+1)}=\frac{s_{n+1}-s_{n}}{n+1}>0
\end{aligned}
$$

Therefore, the sequence $\left(\sigma_{n}\right)$ is increasing.
10.9:
(a) $s_{2}=\frac{1}{2} \cdot 1^{2}=\frac{1}{2}, s_{3}=\frac{2}{3} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{6}, s_{4}=\frac{3}{4} \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{48}$.
(b) I claim that $0 \leq s_{n} \leq 1$ for all n. Our base case is $n=1$, which works since $s_{1}=1$. For the inductive step, assume $0 \leq s_{n} \leq 1$. We have $s_{n+1}=\frac{n}{n+1} s_{n}^{2}$. Since $0 \leq \frac{n}{n+1} \leq 1$ and $0 \leq s_{n} \leq 1 \Longrightarrow 0 \leq s_{n}^{2} \leq 1$. So, combining these gives $0 \leq s_{n+1} \leq 1$. This completes our induction. Also since $s_{n}^{2} \leq s_{n}$ and $\frac{n}{n+1}<1$, we can multiply these and get that $s_{n+1}<s_{n}$. Now, since we know the sequence is bounded and monotone, it is convergent, meaning its limit exists.
(c) Since we know that $s_{n} \leq 1$, we have $s_{n+1} \leq \frac{n}{n+1} s_{n}$. Now, I claim that $s_{n} \leq \frac{1}{n}$. Our base case is $n=1$, which works since $s_{1}=1$. For the inductive step, assume $s_{n} \leq \frac{1}{n}$. We know that $s_{n+1} \leq \frac{n}{n+1} s_{n}$. We can substitute to get $s_{n+1} \leq \frac{1}{n+1}$ as desired. So now we know that $0 \leq s_{n} \leq \frac{1}{n}$. We can use the squeeze theorem and see that $\lim s_{n}=0$, since both its upper and lower bound go to 0 .
10.10:
(a) $s_{2}=\frac{1}{3} \cdot(1+1)=\frac{2}{3}, s_{3}=\frac{1}{3} \cdot\left(1+\frac{2}{3}\right)=\frac{5}{9}, s_{4}=\frac{1}{3} \cdot\left(1+\frac{5}{9}\right)=\frac{14}{27}$.
(b) Our base case is $s_{1}=1>\frac{1}{2}$. For the inductive step, assume $s_{n}>\frac{1}{2}$. We know that $s_{n+1}=\frac{1}{3}\left(1+s_{n}\right)^{2}>\frac{1}{3}\left(1+\frac{1}{2}\right)=\frac{1}{2}$, as desired.
(c) $s_{n+1}-s_{n}=\frac{1}{3}\left(s_{n}+1\right)-s_{n}=\frac{1}{3}-\frac{2}{3} n<\frac{1}{3}-\frac{2}{3} \cdot \frac{1}{2}=0$. So, our sequence is decreasing.
(d) Since s_{n} is decreasing and $1 \geq s_{n}>\frac{1}{2}$, it is bounded and monotone. This implies it converges, meaning $\lim s_{n}$ exists. Since the limit exists, we can take the limit of both sides of the recurrence relation and see that $\lim s_{n}=\frac{1}{3}\left(\lim s_{n}+1\right) \Longrightarrow \lim s_{n}=\frac{1}{2}$.
10.11:
(a) Since $1 \geq 1-\frac{1}{4 n^{2}} \geq 0$ for all $n \geq 1$, we know that $0 \leq t_{n} \leq 1$. Also, we know that $\frac{t_{n+1}}{t_{n}}=1-\frac{1}{4 n^{2}}<1$, so t_{n} is decreasing. Since the sequence is monotone and bounded, it is convergent and $\lim t_{n}$ exists.
(b) Around 0.5 ? It seems to converge above 0 since the terms get really close to 1 really fast.

Squeeze Theorem: By part $9.9(c)$, where $N_{0}=0$, we know that $\lim b_{n} \leq$ $\lim c_{n}=L$. Also, by part $9.9(c)$, where $N_{0}=0$, we know that $\lim a_{n}=L \leq$ $\lim b_{n}$. Combining these gives $\lim b_{n}=L$.

