
Math 104 Homework 1

Cameron Shotwell

January 28, 2022

Ross 1.10

Theorem: Prove (2n+1)+(2n+3)+(2n+5)+ ...+(4n−1) = 3n2 for all positive integers
n.
Proof:
P (n) is the statement “(2n+ 1) + (2n+ 3) + (2n+ 5) + ...+ (4n− 1) = 3n2”
Note: The left hand side of the above equation sums a sequence that starts at the (2n+ 1)
term and counts up by 2’s until the sequence reaches the final (4n− 1) term.
Base Case: P (1)
The (2n + 1) term equals 3 and the (4n− 1) term is also 3. We can observe that these are
the same term and, thus, the left hand side sums only one element. Substituting into the
right hand side we can confirm the base case is true.

(2(1) + 1) = 3(1)2 ⇒ 3 = 3

Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that

(2n+ 1) + (2n+ 3) + ...+ (4n− 1) = 3n2

We can rewrite the left hand side in terms of n+ 1.

(2(n+ 1)− 1) + (2(n+ 1) + 1) + ...+ (4(n+ 1)− 5) = 3n2

We then add (4(n+1)− 3) and (4(n+1)− 1) and subtract (2(n+1)− 1) on both sides and
simplify.

(2(n+ 1) + 1) + ...+ (4(n+ 1)− 5) + (4(n+ 1)− 3) + (4(n+ 1)− 1)

= 3n2 − (2(n+ 1)− 1) + (4(n+ 1)− 3) + (4(n+ 1)− 1)

⇒ (2(n+ 1) + 1) + ...+ (4(n+ 1)− 1) = 3n2 − 6n+ 3

⇒ (2(n+ 1) + 1) + ...+ (4(n+ 1)− 1) = 3(n+ 1)2

The above equation is P (n+1), proving P (n) ⇒ P (n+1). By the principle of mathematical
induction, P (n) holds for all positive integers n.
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The binomial theorem:

(a+ b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
a0bn

for n ≥ 0 where (
n

k

)
=

n!

k!(n− k)!

for n, k ≥ 0.
(a) Let P (n) be the statement

(a+ b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
a0bn

P(1)

(a+ b)1 =

(
1

0

)
a1b0 +

(
1

0

)
a0b1

⇒ a+ b = a+ b

P (1) is true.
P(2)

(a+ b)2 =

(
2

0

)
a2b0 +

(
2

1

)
a1b1 +

(
2

2

)
a0b2

⇒ a2 + 2ab+ b2 = a2 + 2ab+ b2

P (2) is true.
P(3)

(a+ b)3 =

(
3

0

)
a3b0 +

(
3

1

)
a2b1 +

(
3

2

)
a1b2 +

(
3

3

)
a0b3

⇒ a3 + 3a2b+ 3ab2 + b3 = a3 + 3a2b+ 3ab2 + b3

P (3) is true.
(b) Theorem: (

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
for k ≥ 0.
Proof: (

n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

n!(n− k + 1)

(k)!(n− k + 1)!
+

n!(k)

(k)!(n− k + 1)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

n!(n+ 1)

(k)!(n− k + 1)!
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⇒
(
n

k

)
+

(
n

k − 1

)
=

(n+ 1)!

(k)!((n+ 1)− k)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
(c) Theorem: P (n) is true for all n ≥ 0
Base Case: P (0)

(a+ b)0 =

(
0

0

)
a0b0 ⇒ 1 = 1

P (0) is true. (Furthermore P (1), P (2), and P (3) were proven in part (a).)
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Multiply both sides by (a+ b)

(a+ b)(a+ b)n = (a+ b)
n∑

k=0

(
n

k

)
an−kbk

⇒ (a+ b)n+1 =
n∑

k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

Remove the k = 0 term from the first summation and the k = n term from the second
summation.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 +

(
n

n

)
a0bn+1

Re-index the second summation to start at k = 1.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k − 1

)
an−k+1bk +

(
n

n

)
a0bn+1

⇒ (a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

((
n

k

)
an−k+1bk +

(
n

k − 1

)
an−k+1bk

)
+

(
n

n

)
a0bn+1

Using the result from part (b) we can combine terms in the summation.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n+ 1

k

)
an−k+1bk +

(
n

n

)
a0bn+1

Using the fact that
(
n+1
0

)
=

(
n
0

)
=

(
n+1
n+1

)
=

(
n
n

)
= 1 we can make convenient substitutions.

(a+ b)n+1 =

(
n+ 1

0

)
an+1b0 +

n∑
k=1

(
n+ 1

k

)
a(n+1)−kbk +

(
n+ 1

n+ 1

)
a0bn+1
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We can now reincorporate terms into the sum.

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1

k

)
a(n+1)−kbk

The above statement is P (n + 1), proving that P (n) ⇒ P (n + 1). By the principle of
mathematical induction, P(n) is true for all n ≥ 0

Ross 2.1

Theorem:
√
3,

√
5,

√
7,

√
24, and

√
31 are not rational numbers.

Proof:√
3:√
3 is a zero of x2 − 3 = 0. By the Rational Zeroes Theorem (RZT), the only possible

rational zeroes of the above equation are ±1,±3. Substitution shows that none of these
possible zeroes is a zero to the above equation; therefore, the above equation has no rational
zeroes. Since

√
3 is a zero of the above equation, it is not rational.√

5:√
5 is a zero of x2 − 5 = 0. The only possible rational zeroes are ±1,±5. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore,
√
5 is not rational.√

7:√
7 is a zero of x2 − 7 = 0. The only possible rational zeroes are ±1,±7. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore,
√
7 is not rational.√

24:√
24 is a zero of x2 − 24 = 0. The only possible rational zeroes are ±1,±2, ±3,±4, ±6,±8,

±12,±24. None of these are in fact zeroes; so, there are no rational zeroes. Therefore,
√
24

is not rational.√
31:√
31 is a zero of x2 − 31 = 0. The only possible rational zeroes are ±1,±31. None of these

are in fact zeroes; so, there are no rational zeroes. Therefore,
√
31 is not rational.

Ross 2.2

Theorem: 3
√
2, 7

√
5, 4

√
13 are not rational numbers.

Proof:
3
√
2:

3
√
2 is a zero of x3 − 2 = 0. The only possible rational zeroes are ±1,±2. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore, 3
√
2 is not rational.

7
√
5:

7
√
5 is a zero of x7 − 5 = 0. The only possible rational zeroes are ±1,±5. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore, 7
√
5 is not rational.

4
√
13:

4
√
13 is a zero of x4 − 13 = 0. The only possible rational zeroes are ±1,±13. None of these

are in fact zeroes; so, there are no rational zeroes. Therefore, 4
√
13 is not rational.
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(a) Theorem:
√

4 + 2
√
3−

√
3 is rational.

Proof:

x =

√
4 + 2

√
3−

√
3

⇒ x+
√
3 =

√
4 + 2

√
3

⇒ (x+
√
3)2 =

(√
4 + 2

√
3

)2

⇒ x2 + 2
√
3x+ 3 = 4 + 2

√
3

⇒ x2 + 2
√
3x− 1− 2

√
3 = 0

⇒ (x− 1)(x+ 1 + 2
√
3) = 0

⇒ x = 1,−1− 2
√
3

x = −1−2
√
3 is the extraneous solution. x > 0 since

√
4 + 2

√
3 > 2 and

√
3 < 2. Therefore,

x = 1 is the only possible solution. 1 is a rational number so x is rational.

(b) Theorem:
√

6 + 4
√
2−

√
2 is rational.

Proof:

y =

√
6 + 4

√
2−

√
2

⇒ y +
√
2 =

√
6 + 4

√
2

⇒ (y +
√
2)2 =

(√
6 + 4

√
2

)2

⇒ y2 + 2
√
2y + 2 = 6 + 4

√
2

⇒ y2 + 2
√
2y − 4− 4

√
2 = 0

⇒ (y − 2)(y + 2 + 2
√
2) = 0

⇒ y = 2,−2− 2
√
2

y = −2−2
√
2 is the extraneous solution. y > 0 since

√
6 + 4

√
2 > 2 and

√
2 < 2. Therefore,

y = 2 is the only possible solution. 2 is rational so y is rational.

Ross 3.6

(a) Theorem: |a+ b+ c| ≤ |a|+ |b|+ |c| for all a, b, c ∈ R.
Proof:
Consider some a, b, c ∈ R and z ≡ b + c. It follows that z ∈ R. According to the triangle
inequality:

|a+ z| ≤ |a|+ |z|

Substituting in z = b+ c we get

(i)|a+ b+ c| ≤ |a|+ |b+ c|
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Saving inequality (i) for later, we can separately use the triangle inequality to determine
that

|b+ c| ≤ |b|+ |c|

⇒ |a|+ |b+ c| ≤ |a|+ |b|+ |c|

Sandwiching this inequality with inequality (i) we conclude that

|a+ b+ c| ≤ |a|+ |b|+ |c|

for all a, b, c ∈ R.
(b) Theorem: |a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an| for n numbers a1, a2, ..., an ∈ R.
Proof:
Let P (n) be the statement that “|a1 + a2 + ... + an| ≤ |a1| + |a2| + ... + |an| for n numbers
a1, a2, ..., an ∈ R.”
Base Cases: P (1), P (2)
n = 1 is a trivial case since it is necessarily the case that |a1| = |a1| ⇒ |a1| ≤ |a1|. n = 2 is
just the case of the Triangle Inequality, which this proof takes to be true.
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore, it is the case that

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

for n numbers a1, a2, ..., an ∈ R. z ≡ a1 + a2 + ...+ an. It follows that z ∈ R. Now consider
some an+1 ∈ R According to the triangle inequality:

|z + an+1| ≤ |z|+ |an+1|

Substituting in z = a1 + a2 + ...+ an we get

(i)|a1 + a2 + ...+ an + an+1| ≤ |a1 + a2 + ...+ an|+ |an+1|

Saving inequality (i) for later, we separately know from our assumption that P (n) is true
that

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

⇒ |a1 + a2 + ...+ an|+ |an+1| ≤ |a1|+ |a2|+ ...+ |an|+ |an+1|

Sandwiching this inequality with inequality (i) we conclude that

|a1 + a2 + ...+ an + an+1| ≤ |a1|+ |a2|+ ...+ |an|+ |an+1|

for n + 1 numbers a1, a2, ..., an, an+1 ∈ R. The above statement is P (n + 1), proving that
P (n) ⇒ P (n+ 1). By the principle of mathematical induction, P (n) is true for all n ≥ 1.
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Theorem: For some a, b ∈ R where a < b, there are infinitely many rationals between a
and b.
Proof:
Let P (n) be the claim “for some a, b ∈ R where a < b, there are n rationals between a and
b”.
Base Case: P (1)
Due to the denseness of Q, there is a rational r1 ∈ Q such that a < r1 < b.
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that there are n rationals r1, r2, r3, ..., rn between
a and b. Without loss of generality, we can take rn to be the smallest rational. Since
rn ∈ Q, rn ∈ R. Due to the denseness of Q, there is a rational rn+1 ∈ Q such that
a < rn+1 < rn. This rn + 1 is a distinct rational from the other n rationals since it is less
than the smallest r. It is smaller than every other r and, therefore, cannot be equal to
any of them. Since rn+1 < rn and rn < b, rn+1 < b; therefore, a < rn+1 < b. There are
now n+ 1 rationals r1, r2, r3, ..., rn, rn+1 between a and b. The above statement is P (n+ 1),
proving that P (n) ⇒ P (n + 1). By the principle of mathematical induction, P (n) is true
for all n ≥ 1. Since P (n) holds for infinitely large n ≥ 1, there are infinitely many rationals
between a and b.

Ross 4.14

Let A and B be nonempty bounded subsets of R and let A+B be the set of all sums a+ b
where a ∈ A and b ∈ B.
(a) Theorem: sup(A+B) = supA+ supB
Proof:
By the definition of supremum, supA ≥ a and supB ≥ b where a and b are arbitrary elements
from A and B, respectively. These inequalities can be added to find that

supA+ supB ≥ a+ b

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+B by its definition.
Therefore, supA+supB is an upper limit for A+B and greater than or equal to the supremum
of A+B.

supA+ supB ≥ sup(A+B)

Separately, it is true that for any e > 0, there exists some element a ∈ A such that

a > supA− e

If this were not the case and all a ≤ supA− e, then supA− e is an upper bound for A that
is less than its supremum. This would be a contradiction. Similarly, for that same e, there
exists some element b ∈ B such that

b > supB − e
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Adding these two inequalities together yields.

a+ b > supA+ supB − 2e

It is possible to prove that the above statement implies that sup(A+B) ≥ supA+ supB by
way of contradiction. Assume that sup(A+B) < supA+ supB. This implies that

e =
supA+ supB − sup(A+B)

2
> 0

Substituting this e into the inequality a+ b > supA+ supB − 2e yields the statement

a+ b > sup(A+B)

for some element a+b. We have reached a contradiction since by the definition of supremum,
sup(A+B) ≥ a+b for all a+b since a+b ∈ (A+B). Therefore, sup(A+B) ≥ supA+supB.
Combining this statement with supA + supB ≥ sup(A + B), which was proven above, we
see that sup(A+B) = supA+ supB.
(b) Theorem: inf(A+B) = infA+ infB
Proof:
Definition Time! We will define the operator ′ to act on a set C ⊆ R such that set C ′ =
{−c|c ∈ C}. We can thus determine the following sets using this operator. A′ = {−a|a ∈ A}.
B′ = {−b|b ∈ B}. A′+B′ = {a′+b′|a′ ∈ A′, b′ ∈ B′}, and finally (A+B)′ = {−c|c ∈ A+B}.
It also follows that C ′′ = C.
It is important to first establish that (A + B)′ = A′ + B′. First consider some arbitrary
element x ∈ (A + B)′. Since x ∈ (A + B)′, −x ∈ (A + B); therefore, −x = a + b for some
elements a ∈ A, b ∈ B. x = −a− b ⇒ x = (−a)+(−b). Since −a ∈ A′ and −b ∈ B′ by these
sets’ definitions, x ∈ A′+B′. Since x is an arbitrary element of (A+B)′, (A+B)′ ⊆ A′+B′.
Now consider an arbitrary element y ∈ A′ + B′. By this set’s definition, y = a′ + b′ where
a′ ∈ A′, b′ ∈ B′. Multiply both sides of the previous equation by −1 to find that −y =
(−a′) + (−b′). Since a′ ∈ A′,−a′ ∈ A and since b′ ∈ B′,−b′ ∈ B. Consequently, −y ∈ A+B
and y ∈ (A+B)′. Since y was an arbitrary element of A′ +B′, A′ +B′ ⊆ (A+B)′. Finally,

A′ +B′ ⊆ (A+B) and (A+B)′ ⊆ A′ +B′ ⇒ (A+B)′ = A′ +B′

Next, we will prove that infC ′ = −supC. By the definition of supremum, supC ≥ c if
c ∈ C. Multiplying both sides of this inequality by −1 shows that −supC ≤ −c. Since −c
is an arbitrary element of C ′, −supC is a lower bound of C ′. Therefore, −supC ≤ infC ′

by the definition of infimum. Furthermore, the statement −supC ≥ infC ′ can be proven
by way of contradiction. Assume that −supC < infC ′. This implies that there must exist
some c ∈ C such that infC ′ > −c. This is because if infC ′ ≤ all − c then −infC ′ ≥ all c.
This means −infC ′ is an upper bound of C, but −infC ′ < supC which contradicts the
definition of supremum. However, the existence of such a −c also creates a contradiction
since if c ∈ C,−c ∈ C ′ making infC ′ > −c false by definition. By way of contradiction,
−supC ≥ infC ′. Finally,

−supC ≥ infC ′ and − supC ≤ infC ′ ⇒ infC ′ = −supC
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From part (a), we know that

sup(A′ +B′) = supA′ + supB′

Using the fact that infC ′ = −supC:

−inf((A′ +B′)′) = −inf(A′′)− inf(B′′) ⇒ inf((A′ +B′)′) = inf(A′′) + inf(B′′)

Using the fact that A′ +B′ = (A+B)′:

inf((A+B)′′) = inf(A′′) + inf(B′′)

Using the fact that C ′′ = C:

inf(A+B) = inf(A) + inf(B)

Ross 7.5

(a) sn =
√
n2 + 1− n

sn =

√
n2 + 1− n

1
∗
√
n2 + 1 + n√
n2 + 1 + n

⇒ sn =
n2 + 1− n2

√
n2 + 1 + n

⇒ sn =
1√

n2 + 1 + n

⇒ sn =
1
n√

n2

n2 +
1
n2 +

n
n

=
1
n√

1 + 1
n2 + 1

lim(sn) =
0√

1 + 0 + 1
= 0

(b) sn =
√
n2 + n− n

sn =

√
n2 + n− n

1
∗
√
n2 + n+ n√
n2 + n+ n

⇒ sn =
n2 + n− n2

√
n2 + n+ n

⇒ sn =
n√

n2 + n+ n

⇒ sn =
n
n√

n2

n2 +
1
n2 +

n
n

=
1√

1 + 1
n2 + 1

lim(sn) =
1√

1 + 0 + 1
=

1

2

(c) sn =
√
4n2 + n− 2n

sn =

√
4n2 + n− 2n

1
∗
√
4n2 + n+ 2n√
4n2 + n+ 2n
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⇒ sn =
4n2 + n− 4n2

√
4n2 + n+ 2n

⇒ sn =
n√

4n2 + n+ 2n

⇒ sn =
n
n√

4n2

n2 + 1
n2 +

2n
n

=
1√

4 + 1
n2 + 2

lim(sn) =
1√

4 + 0 + 2
=

1

4
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