Math 104 Homework 1

Cameron Shotwell

January 28, 2022

Ross 1.10

Theorem: Prove $(2n+1) + (2n+3) + (2n+5) + ... + (4n-1) = 3n^2$ for all positive integers n.

Proof:

P(n) is the statement " $(2n+1) + (2n+3) + (2n+5) + ... + (4n-1) = 3n^2$ "

Note: The left hand side of the above equation sums a sequence that starts at the (2n + 1) term and counts up by 2's until the sequence reaches the final (4n - 1) term.

Base Case: P(1)

The (2n+1) term equals 3 and the (4n-1) term is also 3. We can observe that these are the same term and, thus, the left hand side sums only one term. Substitution yields

$$(2(1) + 1) = 3(1)^2 \Rightarrow 3 = 3$$

Induction Step: $P(n) \Rightarrow P(n+1)$

Assume P(n) is true; therefore it is the case that

$$(2n+1) + (2n+3) + \dots + (4n-1) = 3n^2$$

We can rewrite the left hand side in terms of n + 1.

$$(2(n+1)-1) + (2(n+1)+1) + \dots + (4(n+1)-5) = 3n^2$$

We then add (4(n+1)-3) and (4(n+1)-1) and subtract (2(n+1)-1) on both sides and simplify.

$$(2(n+1)+1) + \dots + (4(n+1)-5) + (4(n+1)-3) + (4(n+1)-1)$$

$$= 3n^2 - (2(n+1)-1) + (4(n+1)-3) + (4(n+1)-1)$$

$$\Rightarrow (2(n+1)+1) + \dots + (4(n+1)-1) = 3n^2 - 6n + 3$$

$$\Rightarrow (2(n+1)+1) + \dots + (4(n+1)-1) = 3(n+1)^2$$

The above equation is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n.

Ross 1.12

The binomial theorem:

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}a^0b^n$$

for $n \ge 0$ where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for $n, k \geq 0$.

(a) Let P(n) be the statement

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}a^0b^n$$

P(1)

$$(a+b)^{1} = \begin{pmatrix} 1\\0 \end{pmatrix} a^{1}b^{0} + \begin{pmatrix} 1\\0 \end{pmatrix} a^{0}b^{1}$$
$$\Rightarrow a+b = a+b$$

P(1) is true.

P(2)

$$(a+b)^{2} = {2 \choose 0}a^{2}b^{0} + {2 \choose 1}a^{1}b^{1} + {2 \choose 2}a^{0}b^{2}$$

$$\Rightarrow a^{2} + 2ab + b^{2} = a^{2} + 2ab + b^{2}$$

P(2) is true.

P(3)

$$(a+b)^3 = \binom{3}{0}a^3b^0 + \binom{3}{1}a^2b^1 + \binom{3}{2}a^1b^2 + \binom{3}{3}a^0b^3$$

$$\Rightarrow a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

P(3) is true.

(b) Theorem:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

for $k \geq 0$.

Proof:

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$

$$\Rightarrow \binom{n}{k} + \binom{n}{k-1} = \frac{n!(n-k+1)}{(k)!(n-k+1)!} + \frac{n!(k)}{(k)!(n-k+1)!}$$

$$\Rightarrow \binom{n}{k} + \binom{n}{k-1} = \frac{n!(n+1)}{(k)!(n-k+1)!}$$

$$\Rightarrow \binom{n}{k} + \binom{n}{k-1} = \frac{(n+1)!}{(k)!((n+1)-k)!}$$
$$\Rightarrow \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

(c) Theorem: P(n) is true for all $n \ge 0$

Base Case: P(0)

$$(a+b)^0 = {0 \choose 0} a^0 b^0 \Rightarrow 1 = 1$$

P(0) is true. (Furthermore P(1), P(2), and P(3) were proven in part (a).)

Induction Step: $P(n) \Rightarrow P(n+1)$

Assume P(n) is true; therefore it is the case that

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Multiply both sides by (a + b)

$$(a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$\Rightarrow (a+b)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k+1} b^k + \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}$$

Remove the k=0 term from the first summation and the k=n term from the second summation.

$$(a+b)^{n+1} = \binom{n}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=0}^{n-1} \binom{n}{k}a^{n-k}b^{k+1} + \binom{n}{n}a^0b^{n+1}$$

Re-index the second summation to start at k = 1.

$$(a+b)^{n+1} = \binom{n}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=1}^n \binom{n}{k-1}a^{n-k+1}b^k + \binom{n}{n}a^0b^{n+1}$$

$$\Rightarrow (a+b)^{n+1} = \binom{n}{0} a^{n+1} b^0 + \sum_{k=1}^n \left(\binom{n}{k} a^{n-k+1} b^k + \binom{n}{k-1} a^{n-k+1} b^k \right) + \binom{n}{n} a^0 b^{n+1}$$

Using the result from part (b) we can combine terms in the summation.

$$(a+b)^{n+1} = \binom{n}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n+1}{k}a^{n-k+1}b^k + \binom{n}{n}a^0b^{n+1}$$

Using the fact that $\binom{n+1}{0} = \binom{n}{0} = \binom{n+1}{n+1} = \binom{n}{n} = 1$ we can make convenient substitutions.

$$(a+b)^{n+1} = \binom{n+1}{0}a^{n+1}b^0 + \sum_{k=1}^n \binom{n+1}{k}a^{(n+1)-k}b^k + \binom{n+1}{n+1}a^0b^{n+1}$$

Cameron Shotwell ID: 3035907666 Math 104

We can now reincorporate terms into the sum.

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^{(n+1)-k} b^k$$

The above statement is P(n+1), proving that $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) is true for all $n \ge 0$

Ross 2.1

Theorem: $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, $\sqrt{24}$, and $\sqrt{31}$ are not rational numbers.

 $\sqrt{3}$:

 $\sqrt{3}$ is a zero of $x^2 - 3 = 0$. By the Rational Zeroes Theorem (RZT), the only possible rational zeroes of the above equation are $\pm 1, \pm 3$. Substitution shows that none of these possible zeroes is a zero to the above equation; therefore, the above equation has no rational zeroes. Since $\sqrt{3}$ is a zero of the above equation, it is not rational.

 $\sqrt{5}$:

 $\sqrt{5}$ is a zero of $x^2 - 5 = 0$. The only possible rational zeroes are $\pm 1, \pm 5$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{5}$ is not rational.

 $\sqrt{7}$:

 $\sqrt{7}$ is a zero of $x^2 - 7 = 0$. The only possible rational zeroes are $\pm 1, \pm 7$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{7}$ is not rational.

 $\sqrt{24}$:

 $\sqrt{24}$ is a zero of $x^2 - 24 = 0$. The only possible rational zeroes are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{24}$ is not rational.

 $\sqrt{31}$:

 $\sqrt{31}$ is a zero of $x^2 - 31 = 0$. The only possible rational zeroes are $\pm 1, \pm 31$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{31}$ is not rational.

Ross 2.2

Theorem: $\sqrt[3]{2}$, $\sqrt[7]{5}$, $\sqrt[4]{13}$ are not rational numbers.

Proof:

 $\sqrt[3]{2}$:

 $\sqrt[3]{2}$ is a zero of $x^3 - 2 = 0$. The only possible rational zeroes are $\pm 1, \pm 2$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[3]{2}$ is not rational.

 $\sqrt[7]{5}$:

 $\sqrt[7]{5}$ is a zero of $x^7 - 5 = 0$. The only possible rational zeroes are $\pm 1, \pm 5$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[7]{5}$ is not rational.

 $\sqrt[4]{13}$ is a zero of $x^4 - 13 = 0$. The only possible rational zeroes are $\pm 1, \pm 13$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[4]{13}$ is not rational.

Ross 2.7

(a) Theorem: $\sqrt{4+2\sqrt{3}}-\sqrt{3}$ is rational. **Proof:**

$$x = \sqrt{4 + 2\sqrt{3}} - \sqrt{3}$$

$$\Rightarrow x + \sqrt{3} = \sqrt{4 + 2\sqrt{3}}$$

$$\Rightarrow (x + \sqrt{3})^2 = \left(\sqrt{4 + 2\sqrt{3}}\right)^2 \Rightarrow x^2 + 2\sqrt{3}x + 3 = 4 + 2\sqrt{3}$$

$$\Rightarrow x^2 + 2\sqrt{3}x - 1 - 2\sqrt{3} = 0$$

$$\Rightarrow (x - 1)(x + 1 + 2\sqrt{3}) = 0$$

$$\Rightarrow x = 1, -1 - 2\sqrt{3}$$

 $x = -1 - 2\sqrt{3}$ is the extraneous solution. x > 0 since $\sqrt{4 + 2\sqrt{3}} > 2$ and $\sqrt{3} < 2$. Therefore, x = 1 is the only possible solution. 1 is a rational number so x is rational.

(b) Theorem: $\sqrt{6+4\sqrt{2}}-\sqrt{2}$ is rational. **Proof:**

$$y = \sqrt{6 + 4\sqrt{2}} - \sqrt{2}$$

$$\Rightarrow y + \sqrt{2} = \sqrt{6 + 4\sqrt{2}}$$

$$\Rightarrow (y + \sqrt{2})^2 = \left(\sqrt{6 + 4\sqrt{2}}\right)^2 \Rightarrow y^2 + 2\sqrt{2}y + 2 = 6 + 4\sqrt{2}$$

$$\Rightarrow y^2 + 2\sqrt{2}y - 4 - 4\sqrt{2} = 0$$

$$\Rightarrow (y - 2)(y + 2 + 2\sqrt{2}) = 0$$

$$\Rightarrow y = 2, -2 - 2\sqrt{2}$$

 $y = -2 - 2\sqrt{2}$ is the extraneous solution. y > 0 since $\sqrt{6 + 4\sqrt{2}} > 2$ and $\sqrt{2} < 2$. Therefore, y = 2 is the only possible solution. 2 is rational so y is rational.

Ross 3.6

(a) Theorem: $|a+b+c| \le |a|+|b|+|c|$ for all $a,b,c \in \mathbb{R}$. Proof:

Consider some $a, b, c \in \mathbb{R}$ and $z \equiv b + c$. It follows that $z \in \mathbb{R}$. According to the triangle inequality:

$$|a+z| \le |a| + |z|$$

Substituting in z = b + c we get

$$(i)|a+b+c| \le |a|+|b+c|$$

Saving inequality (i) for later, we can separately use the triangle inequality to determine that

$$|b+c| \le |b| + |c|$$

$$\Rightarrow |a| + |b+c| \le |a| + |b| + |c|$$

Sandwiching this inequality with inequality (i) we conclude that

$$|a+b+c| \le |a| + |b| + |c|$$

for all $a, b, c \in \mathbb{R}$.

(b) Theorem: $|a_1 + a_2 + ... + a_n| \le |a_1| + |a_2| + ... + |a_n|$ for n numbers $a_1, a_2, ..., a_n \in \mathbb{R}$. Proof:

Let P(n) be the statement that " $|a_1 + a_2 + ... + a_n| \le |a_1| + |a_2| + ... + |a_n|$ for n numbers $a_1, a_2, ..., a_n \in \mathbb{R}$."

Base Cases: P(1), P(2)

n=1 is a trivial case since it is necessarily the case that $|a_1|=|a_1|\Rightarrow |a_1|\leq |a_1|$. n=2 is just the case of the Triangle Inequality, which this proof takes to be true.

Induction Step: $P(n) \Rightarrow P(n+1)$

Assume P(n) is true; therefore, it is the case that

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$

for n numbers $a_1, a_2, ..., a_n \in \mathbb{R}$. $z \equiv a_1 + a_2 + ... + a_n$. It follows that $z \in \mathbb{R}$. Now consider some $a_{n+1} \in \mathbb{R}$ According to the triangle inequality:

$$|z + a_{n+1}| \le |z| + |a_{n+1}|$$

Substituting in $z = a_1 + a_2 + ... + a_n$ we get

(i)
$$|a_1 + a_2 + \dots + a_n + a_{n+1}| \le |a_1 + a_2 + \dots + a_n| + |a_{n+1}|$$

Saving inequality (i) for later, we separately know from our assumption that P(n) is true that

$$\begin{aligned} |a_1+a_2+\ldots+a_n| &\leq |a_1|+|a_2|+\ldots+|a_n| \\ \Rightarrow |a_1+a_2+\ldots+a_n|+|a_{n+1}| &\leq |a_1|+|a_2|+\ldots+|a_n|+|a_{n+1}| \end{aligned}$$

Sandwiching this inequality with inequality (i) we conclude that

$$|a_1 + a_2 + \dots + a_n + a_{n+1}| \le |a_1| + |a_2| + \dots + |a_n| + |a_{n+1}|$$

for n+1 numbers $a_1, a_2, ..., a_n, a_{n+1} \in \mathbb{R}$. The above statement is P(n+1), proving that $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) is true for all $n \geq 1$.

Ross 4.11

Theorem: For some $a, b \in \mathbb{R}$ where a < b, there are infinitely many rationals between a and b.

Proof:

Let $a, b \in \mathbb{R}$ where a < b. Due to the denseness of \mathbb{Q} , there is a rational $r_1 \in \mathbb{Q}$ such that $a < r_1 < b$; therefore, $n \ge 1$ where n is the number of rationals between a and b. Now assume for the sake of contradiction that there are finitely many rationals $R = \{r_1, r_2, r_3, ..., r_n\}$ between a and b and |R| = n. Since R is a finite set with cardinality $n \ge 1$ it has a min(R) = m. Due to the denseness of \mathbb{Q} , there is a rational $r \in \mathbb{Q}$ such that a < r < m < b. This premise produces a contradiction since $r \in R$, but r < min(R). So, by way of contradiction, there are infinitely many rational between a and b.

Ross 4.14

Let A and B be nonempty bounded subsets of \mathbb{R} and let A+B be the set of all sums a+b where $a \in A$ and $b \in B$.

(a) Theorem: sup(A + B) = supA + supB

Proof:

By the definition of supremum, $sup A \ge a$ and $sup B \ge b$ where a and b are arbitrary elements from A and B, respectively. These inequalities can be added to find that

$$supA + supB \ge a + b$$

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+B by its definition. Therefore, supA + supB is an upper bound for A+B and greater than or equal to the supremum of A+B.

$$supA + supB \ge sup(A + B)$$

Separately, it is true that for any e > 0, there exists some element $a \in A$ such that

$$a > supA - e$$

If this were not the case and all $a \leq supA - e$, then supA - e is an upper bound for A that is less than its supremum. This would be a contradiction. Similarly, for that same e, there exists some element $b \in B$ such that

$$b > supB - e$$

Adding these two inequalities together yields.

$$a + b > supA + supB - 2e$$

It is possible to prove that the above statement implies that $sup(A+B) \ge supA + supB$ by way of contradiction. Assume that sup(A+B) < supA + supB. This implies that

$$e = \frac{supA + supB - sup(A+B)}{2} > 0$$

Substituting this e into the inequality a + b > supA + supB - 2e yields the statement

$$a + b > sup(A + B)$$

for some element a+b. We have reached a contradiction since by the definition of supremum, $sup(A+B) \ge a+b$ for all a+b since $a+b \in (A+B)$. Therefore, $sup(A+B) \ge supA + supB$. Combining this statement with $supA + supB \ge sup(A+B)$, which was proven above, we see that sup(A+B) = supA + supB.

(b) Theorem: inf(A+B) = infA + infB

Proof:

By the definition of infinum, $infA \leq a$ and $infB \leq b$ where a and b are arbitrary elements from A and B, respectively. These inequalities can be added to find that

$$infA + infB \le a + b$$

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+B by its definition. Therefore, inf A + inf B is a lower bound for A+B and less than or equal to the infinum of A+B.

$$infA + infB \le inf(A+B)$$

Separately, it is true that for any e > 0, there exists some element $a \in A$ such that

$$a < infA + e$$

If this were not the case and all $a \ge infA + e$, then infA + e is a lower bound for A that is greater than its infinum. This would be a contradiction. Similarly, for that same e, there exists some element $b \in B$ such that

$$b < infB + e$$

Adding these two inequalities together yields.

$$a + b < infA + infB + 2e$$

It is possible to prove that the above statement implies that $inf(A+B) \le infA + infB$ by way of contradiction. Assume that inf(A+B) > infA + infB. This implies that

$$e = \frac{inf(A+B) - infA - infB}{2} > 0$$

Substituting this e into the inequality a + b < infA + infB + 2e yields the statement

$$a + b < inf(A + B)$$

for some element a+b. We have reached a contradiction since by the definition of infinum, $inf(A+B) \le a+b$ for all a+b since $a+b \in (A+B)$. Therefore, $inf(A+B) \le infA+infB$. Combining this statement with $infA+infB \le inf(A+B)$, which was proven above, we see that inf(A+B)=infA+infB.

Ross 7.5

(a)
$$s_n = \sqrt{n^2 + 1} - n$$

$$s_n = \frac{\sqrt{n^2 + 1} - n}{1} * \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n}$$

$$\Rightarrow s_n = \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n} \Rightarrow s_n = \frac{1}{\sqrt{n^2 + 1} + n}$$

$$\Rightarrow s_n = \frac{\frac{1}{n}}{\sqrt{\frac{n^2}{n^2} + \frac{1}{n^2} + \frac{n}{n}}} = \frac{\frac{1}{n}}{\sqrt{1 + \frac{1}{n^2} + 1}}$$

$$\lim(s_n) = \frac{0}{\sqrt{1 + 0} + 1} = 0$$
(b) $s_n = \sqrt{n^2 + n} - n$

$$s_n = \frac{\sqrt{n^2 + n} - n}{1} * \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n}$$

$$\Rightarrow s_n = \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} \Rightarrow s_n = \frac{n}{\sqrt{n^2 + n} + n}$$

$$\Rightarrow s_n = \frac{n}{\sqrt{n^2 + \frac{1}{n^2} + \frac{n}{n}}} = \frac{1}{\sqrt{1 + \frac{1}{n^2} + 1}}$$

$$\lim(s_n) = \frac{1}{\sqrt{1 + 0} + 1} = \frac{1}{2}$$
(c) $s_n = \sqrt{4n^2 + n} - 2n$

$$s_n = \frac{\sqrt{4n^2 + n} - 2n}{1} * \frac{\sqrt{4n^2 + n} + 2n}{\sqrt{4n^2 + n} + 2n}$$

$$\Rightarrow s_n = \frac{4n^2 + n - 4n^2}{\sqrt{4n^2 + n} + 2n} \Rightarrow s_n = \frac{n}{\sqrt{4n^2 + n} + 2n}$$

$$\Rightarrow s_n = \frac{\frac{n}{n}}{\sqrt{\frac{4n^2}{n^2} + \frac{1}{n^2} + \frac{2n}{n}}} = \frac{1}{\sqrt{4 + \frac{1}{n^2} + 2}}$$

$$\lim(s_n) = \frac{1}{\sqrt{4 + 0} + 2} = \frac{1}{4}$$