Math 104 Homework 1

Cameron Shotwell

January 28, 2022

Ross 1.10

Theorem: Prove (2n+1)+ (2n+3)+ (2n+5) +...4 (4n— 1) = 3n? for all positive integers
n.

Proof:

P(n) is the statement “(2n +1) + (2n+3) + (2n +5) + ... + (4n — 1) = 3n?”

Note: The left hand side of the above equation sums a sequence that starts at the (2n + 1)
term and counts up by 2’s until the sequence reaches the final (4n — 1) term.

Base Case: P(1)

The (2n + 1) term equals 3 and the (4n — 1) term is also 3. We can observe that these are
the same term and, thus, the left hand side sums only one term. Substitution yields

(21)+1)=3(1)*=3=3

Induction Step: P(n) = P(n+1)
Assume P(n) is true; therefore it is the case that

(2n+ 1)+ (2n+3) + ... + (4n — 1) = 3n?
We can rewrite the left hand side in terms of n + 1.
2n+1) =1+ 2n+1)+1)+...+ (4(n+1)—5) = 3n?

We then add (4(n+1) —3) and (4(n+ 1) — 1) and subtract (2(n+ 1) — 1) on both sides and
simplify.

Crh+)+1)+...+An+1)=5)+4n+1)-3)+ (4n+1)—1)

=32 - 2n+1) -1+ @n+1)=3)+4n+1)-1)
= Q2n+1)+D)+ .. +(@4n+1)—1)=3n>—6n+3
=2+ +1D)+ .. +@An+1)—1)=3(n+1)?

The above equation is P(n+1), proving P(n) = P(n+1). By the principle of mathematical
induction, P(n) holds for all positive integers n.
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The binomial theorem:

n __ n n10 n n—1 n n—1 n 0On
(a+b) —(O)ab —i—(l)a b+...+(n_1>ab —i—(n)ab

for n > 0 where

for n, k > 0.
(a) Let P(n) be the statement

n __ n n10 n n—1 n n—1 n 0On
(a+b) —(O)ab—l—(l)a b+...+(n_1>ab —l—(n)ab
1 1
(a+0) = (0) vt (0> o

=a+b=a+0

2 2 2
(a+b)?= (()) a?b’ + (1) a'd' + <2> a’b?

= a? + 2ab+ b* = a® + 2ab + b?

(a+b)* = (3) a®b’ + (i)) a’b' + (2) a'b® + (2) a’b?

= a® + 3a%b + 3ab® + b* = a® + 3a*b + 3ab® + b?

P(1)

P(1) is true.
P(2)

P(2) is true.
P(3)

P(3) is true.
(b) Theorem:

for k > 0.
Proof:

(Z) + (k: ’ ) 2_—]2111)) N (k)!(nngkk) 1)

~ (Z) * <k 1> - <k>7§lf"_w il
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~ (Z) i (;L) - <k>!<<<g . 11>)!— B!

- <Z)+<kﬁl) - (n?)

(c) Theorem: P(n) is true for all n > 0
Base Case: P(0)

(a+b)° = (g)aobo =1=1

P(0) is true. (Furthermore P(1), P(2), and P(3) were proven in part (a).)
Induction Step: P(n) = P(n+1)
Assume P(n) is true; therefore it is the case that

(a+0b)" = kz; (Z) a" o

Multiply both sides by (a + b)

(a+b)(a+b)" = (a+b) :0 (Z) "k

n

= (a+b)" = Z (Z) qvRrLpE Z (Z) gk pRtl
k=0

k=0
Remove the £k = 0 term from the first summation and the £ = n term from the second
summation.

n n—1
(a+ )"t = ('g) a0 4 Z (Z) a R pk Z (Z) Ak (Z) a0yt
k=1 k=0

Re-index the second summation to start at £ = 1.

ntl _ (Y nt130 —~ (n n—k+1k - n n—k+1k Y 0,041
(a+0) —(O)a b —|—Z(k)a b +Z(k_1>a b +<n)ab
k=1 k=1
pyntl — n n+130 n n—k+1pk n n—k+1pk n o0pnt1
= (a+0b) (O)a —l—;((k a tlp_q)e +{,)a

Using the result from part (b) we can combine terms in the summation.
(a+ byt = ) g0 4 i n+1 an—krpk (1) goprtt
0 — k n

Using the fact that (”gl) = (g) = (Zﬁ) = (Z) = 1 we can make convenient substitutions.

+1 "~ (n+1 n+ 1
pyntt — (" n+1p0 (n+1)—kpk 0pnt1
(a+ D) ( 0 )a +k§:1 L )e + ni1)?
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We can now reincorporate terms into the sum.

n+1
(a+ b)n+1 _ Z (” ‘]: 1) a(nFD—kpk

k=0

The above statement is P(n + 1), proving that P(n) = P(n + 1). By the principle of
mathematical induction, P(n) is true for all n > 0

Ross 2.1
Theorem: \/3, \/3, VT , \/ﬂ, and /31 are not rational numbers.
Proof:

V/3:

V3 is a zero of z2 — 3 = 0. By the Rational Zeroes Theorem (RZT), the only possible
rational zeroes of the above equation are +1,43. Substitution shows that none of these
possible zeroes is a zero to the above equation; therefore, the above equation has no rational
zeroes. Since v/3 is a zero of the above equation, it is not rational.

V/5:

V5 is a zero of 22 — 5 = 0. The only possible rational zeroes are +1,+5. None of these are
in fact zeroes; so, there are no rational zeroes. Therefore, v/5 is not rational.

VT

V7 is a zero of 22 — 7 = 0. The only possible rational zeroes are £1,47. None of these are
in fact zeroes; so, there are no rational zeroes. Therefore, v/7 is not rational.

V24:

V24 is a zero of 22 — 24 = 0. The only possible rational zeroes are +1, £2, £3, +4, +6, £8,
+12, +£24. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, v/24
is not rational.

V/31:

V31 is a zero of 22 — 31 = 0. The only possible rational zeroes are 41, 431. None of these
are in fact zeroes; so, there are no rational zeroes. Therefore, v/31 is not rational.

Ross 2.2
Theorem: /2, v/5, v/13 are not rational numbers.
Proof:

V/2:

V/2 is a zero of 22 — 2 = 0. The only possible rational zeroes are +1, +2. None of these are
in fact zeroes; so, there are no rational zeroes. Therefore, ¥/2 is not rational.

V/5:

V/5 is a zero of 27 — 5 = 0. The only possible rational zeroes are 1, +£5. None of these are
in fact zeroes; so, there are no rational zeroes. Therefore, ¥/5 is not rational.

V13:

V13 is a zero of 2* — 13 = 0. The only possible rational zeroes are +1,+13. None of these
are in fact zeroes; so, there are no rational zeroes. Therefore, v/13 is not rational.
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(a) Theorem: \/4 + 2/3 — /3 is rational.
Proof:

T = 4+2\/§—\/§

=z+vV3=1/4+2V3

= (v +V3)? = <\/4+2\/§>2:>x2+2\/§x+3:4+2\/§

=22 +2V3:—-1-2V3=0
= (z—1)(z+1+2V3) =0
=z=1-1-2V3

x = —1—2+/3 is the extraneous solution. z > 0 since \/4 + 2v/3 > 2 and v/3 < 2. Therefore,
x = 1 is the only possible solution. 1 is a rational number so x is rational.

(b) Theorem: /6 + 44/2 — /2 is rational.
Proof:

y=16+4v2 -2

=y+V2=1/6+4V2
= (y+V2) = <\/6+4\/§>2:>y2+2\/§y+2:6+4\/§

=2+ 22 —4—4V/2=0
= (y—2)(y+2+2v2) =0
=y=2-2-2V2

y= —92—92+/2 is the extraneous solution. y > 0 since V6 + 44/2 > 2 and V2 < 2. Therefore,
y = 2 is the only possible solution. 2 is rational so y is rational.

Ross 3.6

(a) Theorem: |a + b+ c| < |a|+ |b] + |¢| for all a,b,c € R.
Proof:
Consider some a,b,c € R and z = b+ c. It follows that z € R. According to the triangle
inequality:
o+ 2| <a| + 2]

Substituting in z = b + ¢ we get

()] +b+cf <fa] +[b+¢]
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Saving inequality (i) for later, we can separately use the triangle inequality to determine

that
b+ c| < [b] + |cf

= la| +[b+c| < la| + [b] + |c|
Sandwiching this inequality with inequality (i) we conclude that

o+ b+ ¢l < laf +[b] + ||

for all a, b, c € R.

(b) Theorem: |a; + ag + ... + a,| < |ay| + |az] + ... + |a,| for n numbers aq, as, ..., a, € R.
Proof:

Let P(n) be the statement that “|a; + as + ... + a,| < |a1| + |ag| + ... + |a,| for n numbers
ai,as, ..., a, € R

Base Cases: P(1), P(2)

n = 1is a trivial case since it is necessarily the case that |ai| = |ai| = |ai| < |ar]. n =2 is
just the case of the Triangle Inequality, which this proof takes to be true.

Induction Step: P(n) = P(n+1)

Assume P(n) is true; therefore, it is the case that

lar + ag + ... + a,| < |a1| + |az] + ... + |an|

for n numbers ay, as,...,a, € R. 2z =a; +as + ... + a,. It follows that z € R. Now consider
some a,+1 € R According to the triangle inequality:

2+ anta| < 2| + |ans]
Substituting in z = a1 + as + ... + a, we get
(D)]ar +az + ... + an + anga| < ag +ag + .o + an| + ]

Saving inequality (i) for later, we separately know from our assumption that P(n) is true
that
lay + ag + ... + ay| < ag| + |az| + ... + |ay,]

= |ay + ag + ... + an| + |ans1| < |ar] + |ao] + ... + |an| + |ani1]

Sandwiching this inequality with inequality (i) we conclude that
la1 + ag + ... + ap + api1| < ag| + |as] + ... + |an| + |@ni1]

for n + 1 numbers ay, as, ..., a,, any1 € R. The above statement is P(n + 1), proving that
P(n) = P(n+ 1). By the principle of mathematical induction, P(n) is true for all n > 1.
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Theorem: For some a,b € R where a < b, there are infinitely many rationals between a
and b.

Proof:

Let P(n) be the claim “for some a,b € R where a < b, there are n rationals between a and
b”.

Base Case: P(1)

Due to the denseness of QQ, there is a rational r; € Q such that a < r; < b.

Induction Step: P(n) = P(n+1)

Assume P(n) is true; therefore it is the case that there are n rationals 71,9, 3, ..., 7, between
a and b. Without loss of generality, we can take r, to be the smallest rational. Since r, € Q,
r, € R. Due to the denseness of QQ, there is a rational 7,1 € Q such that a < r, 1 < rp.
This r, is a distinct rational from the other n rationals since it is less than the smallest
r. It is strictly smaller than every other r and, therefore, cannot be equal to any of them.
Since r,11 < r, and r, < b, 7,41 < b; therefore, a < 7,41 < b. There are now n + 1
rationals 71, 79,73, ..., s, Tne1 between a and b. The above statement is P(n + 1), proving
that P(n) = P(n+1). By the principle of mathematical induction, P(n) is true for alln > 1.
Since P(n) holds for infinitely large n > 1, there are infinitely many rationals between a and
b.

Ross 4.14

Let A and B be nonempty bounded subsets of R and let A 4+ B be the set of all sums a + b
where a € A and b € B.

(a) Theorem: sup(A + B) = supA + supB

Proof:

By the definition of supremum, supA > a and supB > b where a and b are arbitrary elements
from A and B, respectively. These inequalities can be added to find that

supA+ supB > a+b

Since a and b were arbitrarily selected, a+0b is an arbitrary element of A+ B by its definition.
Therefore, supA + supB is an upper bound for A + B and greater than or equal to the
supremum of A + B.

supA + supB > sup(A + B)

Separately, it is true that for any e > 0, there exists some element a € A such that
a > supA —e

If this were not the case and all a < supA — e, then supA — e is an upper bound for A that
is less than its supremum. This would be a contradiction. Similarly, for that same e, there
exists some element b € B such that

b > supB —e
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Adding these two inequalities together yields.

a+b> supA+ supB — 2e
It is possible to prove that the above statement implies that sup(A + B) > supA + supB by
way of contradiction. Assume that sup(A + B) < supA + supB. This implies that

supA + supB — sup(A + B)

- >0
¢ 2

Substituting this e into the inequality a + b > supA + supB — 2e yields the statement
a+b> sup(A+ B)

for some element a+0b. We have reached a contradiction since by the definition of supremum,
sup(A+B) > a+b for all a+bsince a+b € (A+ B). Therefore, sup(A+ B) > supA-+ supB.
Combining this statement with supA + supB > sup(A + B), which was proven above, we
see that sup(A + B) = supA + supB.

(b) Theorem: inf(A+ B) =infA+infB

Proof:

By the definition of infinum, infA < a and infB < b where a and b are arbitrary elements
from A and B, respectively. These inequalities can be added to find that

infA+infB<a-+b

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+ B by its definition.
Therefore, inf A+ infB is a lower bound for A+ B and less than or equal to the infinum of
A+ B.

infA+infB <inf(A+ B)

Separately, it is true that for any e > 0, there exists some element a € A such that
a<infA+e

If this were not the case and all @ > infA + e, then infA + e is a lower bound for A that
is greater than its infinum. This would be a contradiction. Similarly, for that same e, there
exists some element b € B such that

b<infB+e
Adding these two inequalities together yields.
a+b<infA+infB+ 2e

It is possible to prove that the above statement implies that inf(A+ B) < infA+infB by
way of contradiction. Assume that inf(A + B) > infA + infB. This implies that
inf(A+ B) —infA—infB
Substituting this e into the inequality a + b < infA + infB + 2e yields the statement
a+b<inf(A+ B)
for some element a + b. We have reached a contradiction since by the definition of infinum,
inf(A+B) < a+bfor all a+bsince a+b € (A+ B). Therefore, inf(A+B) < infA+infB.

Combining this statement with infA 4+ infB < inf(A + B), which was proven above, we
see that inf(A+ B) =infA+infB.

0
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(a) sn=vn?’+1—-n
vn?2+1—n
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vn?+1+n

Sy =
1
n? —I—l—n

\/n2 + n

= Sp =

k
vni+1+n

1
a \/n2 1+n

\/g§+n2+— ~/1+ +1

lim(s,) =

(b) sp=vn:i+n—n
VB Tn-n

\/1—1— —0—1

vVn2+n+n

Sp —

1

n? +n —n?

= Sp = —— = S, =

\/n2+n+n

=5, =

*
vn:i+n-+n

n

\/n2+n+n

lim(s,) =

(c) sp =V4n?2+n —2n

Van2 +n —2n

\/22+n2+— \/1+n2+1

\/1+ 0+1 5

Van?2 +n +2n

Sp = 1

4n? 4+ n — 4n?

_— :}8 _—
\/4n2+n+2n "

*
Van?2 +n + 2n

n
\/4n2 +n4+2n

= S, =

lim(s,) =

47?22—"_”2—’_2_” ‘)4—’— +2

\/4+ 12 4_1
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