Math 104 Homework 1

Cameron Shotwell

January 28, 2022

Ross 1.10

Theorem: Prove $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(4 n-1)=3 n^{2}$ for all positive integers n.
Proof:
$P(n)$ is the statement " $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(4 n-1)=3 n^{2}$ "
Note: The left hand side of the above equation sums a sequence that starts at the $(2 n+1)$ term and counts up by 2 's until the sequence reaches the final $(4 n-1)$ term.
Base Case: $P(1)$
The $(2 n+1)$ term equals 3 and the $(4 n-1)$ term is also 3 . We can observe that these are the same term and, thus, the left hand side sums only one term. Substitution yields

$$
(2(1)+1)=3(1)^{2} \Rightarrow 3=3
$$

Induction Step: $P(n) \Rightarrow P(n+1)$
Assume $P(n)$ is true; therefore it is the case that

$$
(2 n+1)+(2 n+3)+\ldots+(4 n-1)=3 n^{2}
$$

We can rewrite the left hand side in terms of $n+1$.

$$
(2(n+1)-1)+(2(n+1)+1)+\ldots+(4(n+1)-5)=3 n^{2}
$$

We then add $(4(n+1)-3)$ and $(4(n+1)-1)$ and subtract $(2(n+1)-1)$ on both sides and simplify.

$$
\begin{gathered}
(2(n+1)+1)+\ldots+(4(n+1)-5)+(4(n+1)-3)+(4(n+1)-1) \\
=3 n^{2}-(2(n+1)-1)+(4(n+1)-3)+(4(n+1)-1) \\
\Rightarrow(2(n+1)+1)+\ldots+(4(n+1)-1)=3 n^{2}-6 n+3 \\
\quad \Rightarrow(2(n+1)+1)+\ldots+(4(n+1)-1)=3(n+1)^{2}
\end{gathered}
$$

The above equation is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n.

Ross 1.12

The binomial theorem:

$$
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} a^{0} b^{n}
$$

for $n \geq 0$ where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

for $n, k \geq 0$.
(a) Let $P(n)$ be the statement

$$
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} a^{0} b^{n}
$$

$\mathrm{P}(1)$

$$
\begin{aligned}
(a+b)^{1} & =\binom{1}{0} a^{1} b^{0}+\binom{1}{0} a^{0} b^{1} \\
& \Rightarrow a+b=a+b
\end{aligned}
$$

$P(1)$ is true.
$\mathrm{P}(2)$

$$
\begin{gathered}
(a+b)^{2}=\binom{2}{0} a^{2} b^{0}+\binom{2}{1} a^{1} b^{1}+\binom{2}{2} a^{0} b^{2} \\
\Rightarrow a^{2}+2 a b+b^{2}=a^{2}+2 a b+b^{2}
\end{gathered}
$$

$P(2)$ is true.
P(3)

$$
\begin{gathered}
(a+b)^{3}=\binom{3}{0} a^{3} b^{0}+\binom{3}{1} a^{2} b^{1}+\binom{3}{2} a^{1} b^{2}+\binom{3}{3} a^{0} b^{3} \\
\Rightarrow a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{gathered}
$$

$P(3)$ is true.

(b) Theorem:

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}
$$

for $k \geq 0$.
Proof:

$$
\begin{aligned}
\binom{n}{k}+ & \binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
\Rightarrow\binom{n}{k}+ & \left.+\begin{array}{c}
n \\
k-1
\end{array}\right)=\frac{n!(n-k+1)}{(k)!(n-k+1)!}+\frac{n!(k)}{(k)!(n-k+1)!} \\
& \Rightarrow\binom{n}{k}+\binom{n}{k-1}=\frac{n!(n+1)}{(k)!(n-k+1)!}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow\binom{n}{k}+\binom{n}{k-1}=\frac{(n+1)!}{(k)!((n+1)-k)!} \\
\Rightarrow\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}
\end{gathered}
$$

(c) Theorem: $P(n)$ is true for all $n \geq 0$

Base Case: $P(0)$

$$
(a+b)^{0}=\binom{0}{0} a^{0} b^{0} \Rightarrow 1=1
$$

$P(0)$ is true. (Furthermore $P(1), P(2)$, and $P(3)$ were proven in part (a).)
Induction Step: $P(n) \Rightarrow P(n+1)$
Assume $P(n)$ is true; therefore it is the case that

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Multiply both sides by $(a+b)$

$$
\begin{gathered}
(a+b)(a+b)^{n}=(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
\Rightarrow(a+b)^{n+1}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1}
\end{gathered}
$$

Remove the $k=0$ term from the first summation and the $k=n$ term from the second summation.

$$
(a+b)^{n+1}=\binom{n}{0} a^{n+1} b^{0}+\sum_{k=1}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=0}^{n-1}\binom{n}{k} a^{n-k} b^{k+1}+\binom{n}{n} a^{0} b^{n+1}
$$

Re-index the second summation to start at $k=1$.

$$
\begin{aligned}
& (a+b)^{n+1}=\binom{n}{0} a^{n+1} b^{0}+\sum_{k=1}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=1}^{n}\binom{n}{k-1} a^{n-k+1} b^{k}+\binom{n}{n} a^{0} b^{n+1} \\
\Rightarrow & (a+b)^{n+1}=\binom{n}{0} a^{n+1} b^{0}+\sum_{k=1}^{n}\left(\binom{n}{k} a^{n-k+1} b^{k}+\binom{n}{k-1} a^{n-k+1} b^{k}\right)+\binom{n}{n} a^{0} b^{n+1}
\end{aligned}
$$

Using the result from part (b) we can combine terms in the summation.

$$
(a+b)^{n+1}=\binom{n}{0} a^{n+1} b^{0}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n-k+1} b^{k}+\binom{n}{n} a^{0} b^{n+1}
$$

Using the fact that $\binom{n+1}{0}=\binom{n}{0}=\binom{n+1}{n+1}=\binom{n}{n}=1$ we can make convenient substitutions.

$$
(a+b)^{n+1}=\binom{n+1}{0} a^{n+1} b^{0}+\sum_{k=1}^{n}\binom{n+1}{k} a^{(n+1)-k} b^{k}+\binom{n+1}{n+1} a^{0} b^{n+1}
$$

We can now reincorporate terms into the sum.

$$
(a+b)^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k} a^{(n+1)-k} b^{k}
$$

The above statement is $P(n+1)$, proving that $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \geq 0$

Ross 2.1

Theorem: $\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{24}$, and $\sqrt{31}$ are not rational numbers.

Proof:

$\sqrt{3}:$
$\sqrt{3}$ is a zero of $x^{2}-3=0$. By the Rational Zeroes Theorem (RZT), the only possible rational zeroes of the above equation are $\pm 1, \pm 3$. Substitution shows that none of these possible zeroes is a zero to the above equation; therefore, the above equation has no rational zeroes. Since $\sqrt{3}$ is a zero of the above equation, it is not rational.
$\sqrt{5}$:
$\sqrt{5}$ is a zero of $x^{2}-5=0$. The only possible rational zeroes are $\pm 1, \pm 5$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{5}$ is not rational.
$\sqrt{7}$:
$\sqrt{7}$ is a zero of $x^{2}-7=0$. The only possible rational zeroes are $\pm 1, \pm 7$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{7}$ is not rational.
$\sqrt{24}$:
$\sqrt{24}$ is a zero of $x^{2}-24=0$. The only possible rational zeroes are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8$, $\pm 12, \pm 24$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{24}$ is not rational.
$\sqrt{31}$:
$\sqrt{31}$ is a zero of $x^{2}-31=0$. The only possible rational zeroes are $\pm 1, \pm 31$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt{31}$ is not rational.

Ross 2.2

Theorem: $\sqrt[3]{2}, \sqrt[7]{5}, \sqrt[4]{13}$ are not rational numbers.
Proof:
$\sqrt[3]{2}$:
$\sqrt[3]{2}$ is a zero of $x^{3}-2=0$. The only possible rational zeroes are $\pm 1, \pm 2$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[3]{2}$ is not rational.
$\sqrt[7]{5}$:
$\sqrt[7]{5}$ is a zero of $x^{7}-5=0$. The only possible rational zeroes are $\pm 1, \pm 5$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[7]{5}$ is not rational. $\sqrt[4]{13}$:
$\sqrt[4]{13}$ is a zero of $x^{4}-13=0$. The only possible rational zeroes are $\pm 1, \pm 13$. None of these are in fact zeroes; so, there are no rational zeroes. Therefore, $\sqrt[4]{13}$ is not rational.

Ross 2.7

(a) Theorem: $\sqrt{4+2 \sqrt{3}}-\sqrt{3}$ is rational. Proof:

$$
\begin{gathered}
x=\sqrt{4+2 \sqrt{3}}-\sqrt{3} \\
\Rightarrow x+\sqrt{3}=\sqrt{4+2 \sqrt{3}} \\
\Rightarrow(x+\sqrt{3})^{2}=(\sqrt{4+2 \sqrt{3}})^{2} \Rightarrow x^{2}+2 \sqrt{3} x+3=4+2 \sqrt{3} \\
\Rightarrow x^{2}+2 \sqrt{3} x-1-2 \sqrt{3}=0 \\
\Rightarrow(x-1)(x+1+2 \sqrt{3})=0 \\
\Rightarrow x=1,-1-2 \sqrt{3}
\end{gathered}
$$

$x=-1-2 \sqrt{3}$ is the extraneous solution. $x>0$ since $\sqrt{4+2 \sqrt{3}}>2$ and $\sqrt{3}<2$. Therefore, $x=1$ is the only possible solution. 1 is a rational number so x is rational.
(b) Theorem: $\sqrt{6+4 \sqrt{2}}-\sqrt{2}$ is rational.

Proof:

$$
\begin{gathered}
y=\sqrt{6+4 \sqrt{2}}-\sqrt{2} \\
\Rightarrow y+\sqrt{2}=\sqrt{6+4 \sqrt{2}} \\
\Rightarrow(y+\sqrt{2})^{2}=(\sqrt{6+4 \sqrt{2}})^{2} \Rightarrow y^{2}+2 \sqrt{2} y+2=6+4 \sqrt{2} \\
\Rightarrow y^{2}+2 \sqrt{2} y-4-4 \sqrt{2}=0 \\
\Rightarrow(y-2)(y+2+2 \sqrt{2})=0 \\
\Rightarrow y=2,-2-2 \sqrt{2}
\end{gathered}
$$

$y=-2-2 \sqrt{2}$ is the extraneous solution. $y>0$ since $\sqrt{6+4 \sqrt{2}}>2$ and $\sqrt{2}<2$. Therefore, $y=2$ is the only possible solution. 2 is rational so y is rational.

Ross 3.6

(a) Theorem: $|a+b+c| \leq|a|+|b|+|c|$ for all $a, b, c \in \mathbb{R}$.

Proof:

Consider some $a, b, c \in \mathbb{R}$ and $z \equiv b+c$. It follows that $z \in \mathbb{R}$. According to the triangle inequality:

$$
|a+z| \leq|a|+|z|
$$

Substituting in $z=b+c$ we get

$$
\text { (i) }|a+b+c| \leq|a|+|b+c|
$$

Math 104
Saving inequality (i) for later, we can separately use the triangle inequality to determine that

$$
\begin{gathered}
|b+c| \leq|b|+|c| \\
\Rightarrow|a|+|b+c| \leq|a|+|b|+|c|
\end{gathered}
$$

Sandwiching this inequality with inequality (i) we conclude that

$$
|a+b+c| \leq|a|+|b|+|c|
$$

for all $a, b, c \in \mathbb{R}$.
(b) Theorem: $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$ for n numbers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$. Proof:
Let $P(n)$ be the statement that " $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$ for n numbers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$."
Base Cases: $P(1), P(2)$
$n=1$ is a trivial case since it is necessarily the case that $\left|a_{1}\right|=\left|a_{1}\right| \Rightarrow\left|a_{1}\right| \leq\left|a_{1}\right| \cdot n=2$ is just the case of the Triangle Inequality, which this proof takes to be true.
Induction Step: $P(n) \Rightarrow P(n+1)$
Assume $P(n)$ is true; therefore, it is the case that

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

for n numbers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$. $z \equiv a_{1}+a_{2}+\ldots+a_{n}$. It follows that $z \in \mathbb{R}$. Now consider some $a_{n+1} \in \mathbb{R}$ According to the triangle inequality:

$$
\left|z+a_{n+1}\right| \leq|z|+\left|a_{n+1}\right|
$$

Substituting in $z=a_{1}+a_{2}+\ldots+a_{n}$ we get

$$
\text { (i) }\left|a_{1}+a_{2}+\ldots+a_{n}+a_{n+1}\right| \leq\left|a_{1}+a_{2}+\ldots+a_{n}\right|+\left|a_{n+1}\right|
$$

Saving inequality (i) for later, we separately know from our assumption that $P(n)$ is true that

$$
\begin{gathered}
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right| \\
\Rightarrow\left|a_{1}+a_{2}+\ldots+a_{n}\right|+\left|a_{n+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|+\left|a_{n+1}\right|
\end{gathered}
$$

Sandwiching this inequality with inequality (i) we conclude that

$$
\left|a_{1}+a_{2}+\ldots+a_{n}+a_{n+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|+\left|a_{n+1}\right|
$$

for $n+1$ numbers $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1} \in \mathbb{R}$. The above statement is $P(n+1)$, proving that $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ is true for all $n \geq 1$.

Ross 4.11

Theorem: For some $a, b \in \mathbb{R}$ where $a<b$, there are infinitely many rationals between a and b.
Proof:
Let $P(n)$ be the claim "for some $a, b \in \mathbb{R}$ where $a<b$, there are n rationals between a and b".
Base Case: $P(1)$
Due to the denseness of \mathbb{Q}, there is a rational $r_{1} \in \mathbb{Q}$ such that $a<r_{1}<b$.
Induction Step: $P(n) \Rightarrow P(n+1)$
Assume $P(n)$ is true; therefore it is the case that there are n rationals $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$ between a and b. Without loss of generality, we can take r_{n} to be the smallest rational. Since $r_{n} \in \mathbb{Q}$, $r_{n} \in \mathbb{R}$. Due to the denseness of \mathbb{Q}, there is a rational $r_{n+1} \in \mathbb{Q}$ such that $a<r_{n+1}<r_{n}$. This r_{n+1} is a distinct rational from the other n rationals since it is less than the smallest r. It is strictly smaller than every other r and, therefore, cannot be equal to any of them. Since $r_{n+1}<r_{n}$ and $r_{n}<b, r_{n+1}<b$; therefore, $a<r_{n+1}<b$. There are now $n+1$ rationals $r_{1}, r_{2}, r_{3}, \ldots, r_{n}, r_{n+1}$ between a and b. The above statement is $P(n+1)$, proving that $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ is true for all $n \geq 1$. Since $P(n)$ holds for infinitely large $n \geq 1$, there are infinitely many rationals between a and b.

Ross 4.14

Let A and B be nonempty bounded subsets of \mathbb{R} and let $A+B$ be the set of all sums $a+b$ where $a \in A$ and $b \in B$.
(a) Theorem: $\sup (A+B)=\sup A+\sup B$

Proof:
By the definition of supremum, $\sup A \geq a$ and $\sup B \geq b$ where a and b are arbitrary elements from A and B, respectively. These inequalities can be added to find that

$$
\sup A+\sup B \geq a+b
$$

Since a and b were arbitrarily selected, $a+b$ is an arbitrary element of $A+B$ by its definition. Therefore, $\sup A+\sup B$ is an upper bound for $A+B$ and greater than or equal to the supremum of $A+B$.

$$
\sup A+\sup B \geq \sup (A+B)
$$

Separately, it is true that for any $e>0$, there exists some element $a \in A$ such that

$$
a>\sup A-e
$$

If this were not the case and all $a \leq \sup A-e$, then $\sup A-e$ is an upper bound for A that is less than its supremum. This would be a contradiction. Similarly, for that same e, there exists some element $b \in B$ such that

$$
b>\sup B-e
$$

Adding these two inequalities together yields.

$$
a+b>\sup A+\sup B-2 e
$$

It is possible to prove that the above statement implies that $\sup (A+B) \geq \sup A+\sup B$ by way of contradiction. Assume that $\sup (A+B)<\sup A+\sup B$. This implies that

$$
e=\frac{\sup A+\sup B-\sup (A+B)}{2}>0
$$

Substituting this e into the inequality $a+b>\sup A+\sup B-2 e$ yields the statement

$$
a+b>\sup (A+B)
$$

for some element $a+b$. We have reached a contradiction since by the definition of supremum, $\sup (A+B) \geq a+b$ for all $a+b$ since $a+b \in(A+B)$. Therefore, $\sup (A+B) \geq \sup A+\sup B$. Combining this statement with $\sup A+\sup B \geq \sup (A+B)$, which was proven above, we see that $\sup (A+B)=\sup A+\sup B$.
(b) Theorem: $\inf (A+B)=\inf A+\inf B$

Proof:

By the definition of infinum, $\inf A \leq a$ and $\inf B \leq b$ where a and b are arbitrary elements from A and B, respectively. These inequalities can be added to find that

$$
\inf A+\inf B \leq a+b
$$

Since a and b were arbitrarily selected, $a+b$ is an arbitrary element of $A+B$ by its definition. Therefore, $\inf A+\inf B$ is a lower bound for $A+B$ and less than or equal to the infinum of $A+B$.

$$
\inf A+\inf B \leq \inf (A+B)
$$

Separately, it is true that for any $e>0$, there exists some element $a \in A$ such that

$$
a<\inf A+e
$$

If this were not the case and all $a \geq \inf A+e$, then $\inf A+e$ is a lower bound for A that is greater than its infinum. This would be a contradiction. Similarly, for that same e, there exists some element $b \in B$ such that

$$
b<\inf B+e
$$

Adding these two inequalities together yields.

$$
a+b<\inf A+\inf B+2 e
$$

It is possible to prove that the above statement implies that $\inf (A+B) \leq \inf A+\inf B$ by way of contradiction. Assume that $\inf (A+B)>\inf A+\inf B$. This implies that

$$
e=\frac{\inf (A+B)-\inf A-\inf B}{2}>0
$$

Substituting this e into the inequality $a+b<\inf A+\inf B+2 e$ yields the statement

$$
a+b<\inf (A+B)
$$

for some element $a+b$. We have reached a contradiction since by the definition of infinum, $\inf (A+B) \leq a+b$ for all $a+b$ since $a+b \in(A+B)$. Therefore, $\inf (A+B) \leq \inf A+\inf B$. Combining this statement with $\inf A+\inf B \leq \inf (A+B)$, which was proven above, we see that $\inf (A+B)=\inf A+\inf B$.

Ross 7.5

(a) $s_{n}=\sqrt{n^{2}+1}-n$

$$
\begin{gathered}
s_{n}=\frac{\sqrt{n^{2}+1}-n}{1} * \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n} \\
\Rightarrow s_{n}=\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n} \Rightarrow s_{n}=\frac{1}{\sqrt{n^{2}+1}+n} \\
\Rightarrow s_{n}=\frac{\frac{1}{n}}{\sqrt{\frac{n^{2}}{n^{2}}+\frac{1}{n^{2}}}+\frac{n}{n}}=\frac{\frac{1}{n}}{\sqrt{1+\frac{1}{n^{2}}}+1} \\
\\
\lim \left(s_{n}\right)=\frac{0}{\sqrt{1+0}+1}=0
\end{gathered}
$$

(b) $s_{n}=\sqrt{n^{2}+n}-n$

$$
\begin{gathered}
s_{n}=\frac{\sqrt{n^{2}+n}-n}{1} * \frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n} \\
\Rightarrow s_{n}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n} \Rightarrow s_{n}=\frac{n}{\sqrt{n^{2}+n}+n} \\
\Rightarrow s_{n}=\frac{\frac{n}{n}}{\sqrt{\frac{n^{2}}{n^{2}}+\frac{1}{n^{2}}}+\frac{n}{n}}=\frac{1}{\sqrt{1+\frac{1}{n^{2}}}+1} \\
\\
\lim \left(s_{n}\right)=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2}
\end{gathered}
$$

(c) $s_{n}=\sqrt{4 n^{2}+n}-2 n$

$$
\begin{gathered}
s_{n}=\frac{\sqrt{4 n^{2}+n}-2 n}{1} * \frac{\sqrt{4 n^{2}+n}+2 n}{\sqrt{4 n^{2}+n}+2 n} \\
\Rightarrow s_{n}=\frac{4 n^{2}+n-4 n^{2}}{\sqrt{4 n^{2}+n}+2 n} \Rightarrow s_{n}=\frac{n}{\sqrt{4 n^{2}+n}+2 n} \\
\Rightarrow s_{n}=\frac{\frac{n}{n}}{\sqrt{\frac{4 n^{2}}{n^{2}}+\frac{1}{n^{2}}}+\frac{2 n}{n}}=\frac{1}{\sqrt{4+\frac{1}{n^{2}}}+2} \\
\lim \left(s_{n}\right)=\frac{1}{\sqrt{4+0}+2}=\frac{1}{4}
\end{gathered}
$$

