
Math 104 Homework 1

Cameron Shotwell

January 28, 2022

Ross 1.10

Theorem: Prove (2n+1)+(2n+3)+(2n+5)+ ...+(4n−1) = 3n2 for all positive integers
n.
Proof:
P (n) is the statement “(2n+ 1) + (2n+ 3) + (2n+ 5) + ...+ (4n− 1) = 3n2”
Note: The left hand side of the above equation sums a sequence that starts at the (2n+ 1)
term and counts up by 2’s until the sequence reaches the final (4n− 1) term.
Base Case: P (1)
The (2n + 1) term equals 3 and the (4n− 1) term is also 3. We can observe that these are
the same term and, thus, the left hand side sums only one term. Substitution yields

(2(1) + 1) = 3(1)2 ⇒ 3 = 3

Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that

(2n+ 1) + (2n+ 3) + ...+ (4n− 1) = 3n2

We can rewrite the left hand side in terms of n+ 1.

(2(n+ 1)− 1) + (2(n+ 1) + 1) + ...+ (4(n+ 1)− 5) = 3n2

We then add (4(n+1)− 3) and (4(n+1)− 1) and subtract (2(n+1)− 1) on both sides and
simplify.

(2(n+ 1) + 1) + ...+ (4(n+ 1)− 5) + (4(n+ 1)− 3) + (4(n+ 1)− 1)

= 3n2 − (2(n+ 1)− 1) + (4(n+ 1)− 3) + (4(n+ 1)− 1)

⇒ (2(n+ 1) + 1) + ...+ (4(n+ 1)− 1) = 3n2 − 6n+ 3

⇒ (2(n+ 1) + 1) + ...+ (4(n+ 1)− 1) = 3(n+ 1)2

The above equation is P (n+1), proving P (n) ⇒ P (n+1). By the principle of mathematical
induction, P (n) holds for all positive integers n.
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The binomial theorem:

(a+ b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
a0bn

for n ≥ 0 where (
n

k

)
=

n!

k!(n− k)!

for n, k ≥ 0.
(a) Let P (n) be the statement

(a+ b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
a0bn

P(1)

(a+ b)1 =

(
1

0

)
a1b0 +

(
1

0

)
a0b1

⇒ a+ b = a+ b

P (1) is true.
P(2)

(a+ b)2 =

(
2

0

)
a2b0 +

(
2

1

)
a1b1 +

(
2

2

)
a0b2

⇒ a2 + 2ab+ b2 = a2 + 2ab+ b2

P (2) is true.
P(3)

(a+ b)3 =

(
3

0

)
a3b0 +

(
3

1

)
a2b1 +

(
3

2

)
a1b2 +

(
3

3

)
a0b3

⇒ a3 + 3a2b+ 3ab2 + b3 = a3 + 3a2b+ 3ab2 + b3

P (3) is true.
(b) Theorem: (

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
for k ≥ 0.
Proof: (

n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

n!(n− k + 1)

(k)!(n− k + 1)!
+

n!(k)

(k)!(n− k + 1)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

n!(n+ 1)

(k)!(n− k + 1)!
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⇒
(
n

k

)
+

(
n

k − 1

)
=

(n+ 1)!

(k)!((n+ 1)− k)!

⇒
(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
(c) Theorem: P (n) is true for all n ≥ 0
Base Case: P (0)

(a+ b)0 =

(
0

0

)
a0b0 ⇒ 1 = 1

P (0) is true. (Furthermore P (1), P (2), and P (3) were proven in part (a).)
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Multiply both sides by (a+ b)

(a+ b)(a+ b)n = (a+ b)
n∑

k=0

(
n

k

)
an−kbk

⇒ (a+ b)n+1 =
n∑

k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1

Remove the k = 0 term from the first summation and the k = n term from the second
summation.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n

k

)
an−k+1bk +

n−1∑
k=0

(
n

k

)
an−kbk+1 +

(
n

n

)
a0bn+1

Re-index the second summation to start at k = 1.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n

k

)
an−k+1bk +

n∑
k=1

(
n

k − 1

)
an−k+1bk +

(
n

n

)
a0bn+1

⇒ (a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

((
n

k

)
an−k+1bk +

(
n

k − 1

)
an−k+1bk

)
+

(
n

n

)
a0bn+1

Using the result from part (b) we can combine terms in the summation.

(a+ b)n+1 =

(
n

0

)
an+1b0 +

n∑
k=1

(
n+ 1

k

)
an−k+1bk +

(
n

n

)
a0bn+1

Using the fact that
(
n+1
0

)
=

(
n
0

)
=

(
n+1
n+1

)
=

(
n
n

)
= 1 we can make convenient substitutions.

(a+ b)n+1 =

(
n+ 1

0

)
an+1b0 +

n∑
k=1

(
n+ 1

k

)
a(n+1)−kbk +

(
n+ 1

n+ 1

)
a0bn+1
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We can now reincorporate terms into the sum.

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1

k

)
a(n+1)−kbk

The above statement is P (n + 1), proving that P (n) ⇒ P (n + 1). By the principle of
mathematical induction, P(n) is true for all n ≥ 0

Ross 2.1

Theorem:
√
3,

√
5,

√
7,

√
24, and

√
31 are not rational numbers.

Proof:√
3:√
3 is a zero of x2 − 3 = 0. By the Rational Zeroes Theorem (RZT), the only possible

rational zeroes of the above equation are ±1,±3. Substitution shows that none of these
possible zeroes is a zero to the above equation; therefore, the above equation has no rational
zeroes. Since

√
3 is a zero of the above equation, it is not rational.√

5:√
5 is a zero of x2 − 5 = 0. The only possible rational zeroes are ±1,±5. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore,
√
5 is not rational.√

7:√
7 is a zero of x2 − 7 = 0. The only possible rational zeroes are ±1,±7. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore,
√
7 is not rational.√

24:√
24 is a zero of x2 − 24 = 0. The only possible rational zeroes are ±1,±2, ±3,±4, ±6,±8,

±12,±24. None of these are in fact zeroes; so, there are no rational zeroes. Therefore,
√
24

is not rational.√
31:√
31 is a zero of x2 − 31 = 0. The only possible rational zeroes are ±1,±31. None of these

are in fact zeroes; so, there are no rational zeroes. Therefore,
√
31 is not rational.

Ross 2.2

Theorem: 3
√
2, 7

√
5, 4

√
13 are not rational numbers.

Proof:
3
√
2:

3
√
2 is a zero of x3 − 2 = 0. The only possible rational zeroes are ±1,±2. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore, 3
√
2 is not rational.

7
√
5:

7
√
5 is a zero of x7 − 5 = 0. The only possible rational zeroes are ±1,±5. None of these are

in fact zeroes; so, there are no rational zeroes. Therefore, 7
√
5 is not rational.

4
√
13:

4
√
13 is a zero of x4 − 13 = 0. The only possible rational zeroes are ±1,±13. None of these

are in fact zeroes; so, there are no rational zeroes. Therefore, 4
√
13 is not rational.
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(a) Theorem:
√

4 + 2
√
3−

√
3 is rational.

Proof:

x =

√
4 + 2

√
3−

√
3

⇒ x+
√
3 =

√
4 + 2

√
3

⇒ (x+
√
3)2 =

(√
4 + 2

√
3

)2

⇒ x2 + 2
√
3x+ 3 = 4 + 2

√
3

⇒ x2 + 2
√
3x− 1− 2

√
3 = 0

⇒ (x− 1)(x+ 1 + 2
√
3) = 0

⇒ x = 1,−1− 2
√
3

x = −1−2
√
3 is the extraneous solution. x > 0 since

√
4 + 2

√
3 > 2 and

√
3 < 2. Therefore,

x = 1 is the only possible solution. 1 is a rational number so x is rational.

(b) Theorem:
√

6 + 4
√
2−

√
2 is rational.

Proof:

y =

√
6 + 4

√
2−

√
2

⇒ y +
√
2 =

√
6 + 4

√
2

⇒ (y +
√
2)2 =

(√
6 + 4

√
2

)2

⇒ y2 + 2
√
2y + 2 = 6 + 4

√
2

⇒ y2 + 2
√
2y − 4− 4

√
2 = 0

⇒ (y − 2)(y + 2 + 2
√
2) = 0

⇒ y = 2,−2− 2
√
2

y = −2−2
√
2 is the extraneous solution. y > 0 since

√
6 + 4

√
2 > 2 and

√
2 < 2. Therefore,

y = 2 is the only possible solution. 2 is rational so y is rational.

Ross 3.6

(a) Theorem: |a+ b+ c| ≤ |a|+ |b|+ |c| for all a, b, c ∈ R.
Proof:
Consider some a, b, c ∈ R and z ≡ b + c. It follows that z ∈ R. According to the triangle
inequality:

|a+ z| ≤ |a|+ |z|

Substituting in z = b+ c we get

(i)|a+ b+ c| ≤ |a|+ |b+ c|
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Saving inequality (i) for later, we can separately use the triangle inequality to determine
that

|b+ c| ≤ |b|+ |c|

⇒ |a|+ |b+ c| ≤ |a|+ |b|+ |c|

Sandwiching this inequality with inequality (i) we conclude that

|a+ b+ c| ≤ |a|+ |b|+ |c|

for all a, b, c ∈ R.
(b) Theorem: |a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an| for n numbers a1, a2, ..., an ∈ R.
Proof:
Let P (n) be the statement that “|a1 + a2 + ... + an| ≤ |a1| + |a2| + ... + |an| for n numbers
a1, a2, ..., an ∈ R.”
Base Cases: P (1), P (2)
n = 1 is a trivial case since it is necessarily the case that |a1| = |a1| ⇒ |a1| ≤ |a1|. n = 2 is
just the case of the Triangle Inequality, which this proof takes to be true.
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore, it is the case that

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

for n numbers a1, a2, ..., an ∈ R. z ≡ a1 + a2 + ...+ an. It follows that z ∈ R. Now consider
some an+1 ∈ R According to the triangle inequality:

|z + an+1| ≤ |z|+ |an+1|

Substituting in z = a1 + a2 + ...+ an we get

(i)|a1 + a2 + ...+ an + an+1| ≤ |a1 + a2 + ...+ an|+ |an+1|

Saving inequality (i) for later, we separately know from our assumption that P (n) is true
that

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

⇒ |a1 + a2 + ...+ an|+ |an+1| ≤ |a1|+ |a2|+ ...+ |an|+ |an+1|

Sandwiching this inequality with inequality (i) we conclude that

|a1 + a2 + ...+ an + an+1| ≤ |a1|+ |a2|+ ...+ |an|+ |an+1|

for n + 1 numbers a1, a2, ..., an, an+1 ∈ R. The above statement is P (n + 1), proving that
P (n) ⇒ P (n+ 1). By the principle of mathematical induction, P (n) is true for all n ≥ 1.
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Theorem: For some a, b ∈ R where a < b, there are infinitely many rationals between a
and b.
Proof:
Let P (n) be the claim “for some a, b ∈ R where a < b, there are n rationals between a and
b”.
Base Case: P (1)
Due to the denseness of Q, there is a rational r1 ∈ Q such that a < r1 < b.
Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n) is true; therefore it is the case that there are n rationals r1, r2, r3, ..., rn between
a and b. Without loss of generality, we can take rn to be the smallest rational. Since rn ∈ Q,
rn ∈ R. Due to the denseness of Q, there is a rational rn+1 ∈ Q such that a < rn+1 < rn.
This rn+1 is a distinct rational from the other n rationals since it is less than the smallest
r. It is strictly smaller than every other r and, therefore, cannot be equal to any of them.
Since rn+1 < rn and rn < b, rn+1 < b; therefore, a < rn+1 < b. There are now n + 1
rationals r1, r2, r3, ..., rn, rn+1 between a and b. The above statement is P (n + 1), proving
that P (n) ⇒ P (n+1). By the principle of mathematical induction, P (n) is true for all n ≥ 1.
Since P (n) holds for infinitely large n ≥ 1, there are infinitely many rationals between a and
b.

Ross 4.14

Let A and B be nonempty bounded subsets of R and let A+B be the set of all sums a+ b
where a ∈ A and b ∈ B.
(a) Theorem: sup(A+B) = supA+ supB
Proof:
By the definition of supremum, supA ≥ a and supB ≥ b where a and b are arbitrary elements
from A and B, respectively. These inequalities can be added to find that

supA+ supB ≥ a+ b

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+B by its definition.
Therefore, supA + supB is an upper bound for A + B and greater than or equal to the
supremum of A+B.

supA+ supB ≥ sup(A+B)

Separately, it is true that for any e > 0, there exists some element a ∈ A such that

a > supA− e

If this were not the case and all a ≤ supA− e, then supA− e is an upper bound for A that
is less than its supremum. This would be a contradiction. Similarly, for that same e, there
exists some element b ∈ B such that

b > supB − e
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Adding these two inequalities together yields.

a+ b > supA+ supB − 2e

It is possible to prove that the above statement implies that sup(A+B) ≥ supA+ supB by
way of contradiction. Assume that sup(A+B) < supA+ supB. This implies that

e =
supA+ supB − sup(A+B)

2
> 0

Substituting this e into the inequality a+ b > supA+ supB − 2e yields the statement

a+ b > sup(A+B)

for some element a+b. We have reached a contradiction since by the definition of supremum,
sup(A+B) ≥ a+b for all a+b since a+b ∈ (A+B). Therefore, sup(A+B) ≥ supA+supB.
Combining this statement with supA + supB ≥ sup(A + B), which was proven above, we
see that sup(A+B) = supA+ supB.
(b) Theorem: inf(A+B) = infA+ infB
Proof:
By the definition of infinum, infA ≤ a and infB ≤ b where a and b are arbitrary elements
from A and B, respectively. These inequalities can be added to find that

infA+ infB ≤ a+ b

Since a and b were arbitrarily selected, a+b is an arbitrary element of A+B by its definition.
Therefore, infA+ infB is a lower bound for A+B and less than or equal to the infinum of
A+B.

infA+ infB ≤ inf(A+B)

Separately, it is true that for any e > 0, there exists some element a ∈ A such that

a < infA+ e

If this were not the case and all a ≥ infA + e, then infA + e is a lower bound for A that
is greater than its infinum. This would be a contradiction. Similarly, for that same e, there
exists some element b ∈ B such that

b < infB + e

Adding these two inequalities together yields.

a+ b < infA+ infB + 2e

It is possible to prove that the above statement implies that inf(A+B) ≤ infA+ infB by
way of contradiction. Assume that inf(A+B) > infA+ infB. This implies that

e =
inf(A+B)− infA− infB

2
> 0

Substituting this e into the inequality a+ b < infA+ infB + 2e yields the statement

a+ b < inf(A+B)

for some element a+ b. We have reached a contradiction since by the definition of infinum,
inf(A+B) ≤ a+b for all a+b since a+b ∈ (A+B). Therefore, inf(A+B) ≤ infA+ infB.
Combining this statement with infA + infB ≤ inf(A + B), which was proven above, we
see that inf(A+B) = infA+ infB.
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(a) sn =
√
n2 + 1− n

sn =

√
n2 + 1− n

1
∗
√
n2 + 1 + n√
n2 + 1 + n

⇒ sn =
n2 + 1− n2

√
n2 + 1 + n

⇒ sn =
1√

n2 + 1 + n

⇒ sn =
1
n√

n2

n2 +
1
n2 +

n
n

=
1
n√

1 + 1
n2 + 1

lim(sn) =
0√

1 + 0 + 1
= 0

(b) sn =
√
n2 + n− n

sn =

√
n2 + n− n

1
∗
√
n2 + n+ n√
n2 + n+ n

⇒ sn =
n2 + n− n2

√
n2 + n+ n

⇒ sn =
n√

n2 + n+ n

⇒ sn =
n
n√

n2

n2 +
1
n2 +

n
n

=
1√

1 + 1
n2 + 1

lim(sn) =
1√

1 + 0 + 1
=

1

2

(c) sn =
√
4n2 + n− 2n

sn =

√
4n2 + n− 2n

1
∗
√
4n2 + n+ 2n√
4n2 + n+ 2n

⇒ sn =
4n2 + n− 4n2

√
4n2 + n+ 2n

⇒ sn =
n√

4n2 + n+ 2n

⇒ sn =
n
n√

4n2

n2 + 1
n2 +

2n
n

=
1√

4 + 1
n2 + 2

lim(sn) =
1√

4 + 0 + 2
=

1

4
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