Math 104 Homework 2
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Ross 9.9

Suppose there exists Ny such that s, <t, for all n > N

(a) Theorem: If lim s, = 400, then lim ¢, = +o0.

Proof: Suppose there exists sequences (s,) and (t,) such that there exists Ny such that
s, < t, for all n > Ny. Furthermore, lim s, = +o00. This implies that for each M > 0 there
is a number N such that n > N implies s,, > M. Define N’ such that N’ = max({N, N,}).
For all n > N, t, > s, > M; therefore, lim ¢, = +oo.

(b) Theorem: If lim ¢, = —oo, then lim s, = —o0.

Proof: Suppose there exists sequences (s,) and (¢,) such that there exists Ny such that
s, < t, for all n > Ny. Furthermore, lim ¢, = —oo. This implies that for each M > 0 there
is a number N such that n > N implies s,, < M. Define N’ such that N’ = max({N, N,}).
For all n > N, s, < t, < M; therefore, lim s, = —o0.

(c) Theorem: If lim s, and lim ¢, exist, then lim s, < lim ¢,.

Proof:

First I will prove that for any converging sequence b(n), if b, > a for all but finitely many
n, then lim b, > a. Let b(n) be a converging sequence such that b, < a for finitely many
n. Let the set of all such n be denoted A = {n|b, < a} = {ni,n9,...,nx} where k € N.
Furthermore, let Ny = max A. Since (b,) converges, for all € > 0 there exists a number N
such that for all n > N, |b, — b|] < € where b = lim b,,. Let N > Ny and assume for the sake
of contradiction that b < a. This implies that a — b > 0. So consider some ¢ =a — b > 0.

b, —bl<a—-b=b,—b<a—-b=0b,<a

However, we have reached a contradiction because n > Ny = b, > a. Therefore, by way of
contradiction, b = lim b,, > a.

Separately, suppose there exists sequences (s,) and (t,) such that there exists Ny such that
S, < t, for all n > Ny. Furthermore, suppose that lim s, and lim ¢, exist. Now define
b, = t, — Sn. S, < t, implies that b, =t, — s, > 0 for n > Ny; therefore, lim b,, > 0. This
implies that lim ¢,,— lim s,, > 0 = lim ¢,, > lim s,,.
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Theorem: lim,,_,. % for a € R.

Proof: '

First, I will prove that if all s, # 0 and the limit L = lim [ < 1, then lim s, = 0.
Assume all s, # 0 and the limit L = lim |8"“| < 1. Consider some a Such that L < a < 1.
By the definition of limit, for some ¢ > 0, there exists an Ny that for n > Ny,

(R IR
n
|Sn+1| L<e=| n+1|<€+L
n n
Consider some e = a — L > 0.

154 = [sna| < alsnl

n

Define N = Ny + 1. Next, we want to prove |sy.x| < a*|sy| for k > 1 by induction. For the
base case, |syy1]| < alsy|. For the induction step, assume

skl < ak|5N|

= alsnii| < " sy| = [snars] < alsvir] < d s
= |snna| < @ sy

This concludes the induction step, proving |sy x| < a¥|sy| for & > 1. We can rewrite as
|s,| < a®N|sy| for n > N. The sequence (b,)°_5 where b, = a" ¥ converges to 0 since
a < 1; therefore, the series |sy| * (b,) also converges to 0. By the definition of limit, for
some ¢ > 0, there exists an N that for n > N, [a" ¥|sy| — 0] < ¢. This implies that for
n > mazx({N',N}), |sn] < a"N|sy| < € = |s, — 0] < ¢. This means the lim s, = 0.

Now for the proof you actually came here for. Suppose there is a sequence (t,) such that
t, = % and a € R. There are now two cases. If a =0, t, = 0 and lim ¢, = 0. If a # 0, then

t # 0.

n+1

tn . n
L= lim || = lim H+1p_1|—1420<1
! nt1

n

nl

Therefore, lim ¢, = 0.

Ross 10.7

Theorem: S is a bounded nonempty subset of R such that sup S is not in S. Prove there
is a sequence (s,) of points in S such that lim s, = sup S.

Proof:

Let S be a bounded nonempty subset of R such that sup S & S. Let (¢,,) be a sequence such
that t, = sup S. And let (u,) be the sequence such that u, = t, + % By the definition of
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supremum, for all € > 0, there exists some element s € S such that s > sup S — €. Since

1/n > 0, we can define the sequence (s,) such that s, € S and s,, > sup S — %; therefore,
S, > u, for all n. Furthermore, sup S > s for all s € S. This implies that ¢, > s, > u,.
Since (t,) and (u,) converge to sup S, (s,) converges to sup S by the squeeze lemma.

Ross 10.8

Theorem: Let (s,) be an increasing sequence of positive numbers and define o, = (s1 +
So+ ...+ sp). (0,) is an increasing sequence.

Proof:

Let (s,) be an increasing sequence of positive numbers and define o,, = %(51 + S+ ...+ 8p)-

First, I will prove by induction that o, < s, for all n. Let P(n) be the statement “o, < s,”.
For the base case, P(1):
o1 =58 <81

For the induction step, P(n) = P(n+ 1), assume P(n): o, < s,. Since (s,) is an increasing
sequence,

1
E(Sl + 89+ o+ 8n) < S < Spia
= S+ 824+ ...+ 5, < nspp
=51+ 82+ .+ Sy + Spg1 < NSpp1 + S = (N4 1)1

= (514824 .+ 8n + Snp1) < Snta

n+1
= Opt+1 < Spt1

The above statement is P(n+1), proving P(n) = P(n+1). By the principle of mathematical
induction, P(n) holds for all positive integers n.

Separately, consider the difference 0,1 — 0,:
1
n+1
Sn+1 n n + 1
= S1+ 8y + ...+ 8,) — ——

n+1 n(n—l—l)( L szt n(n+1)

_ Sn+1 i
n+1 nn+1)

1
Onil — Op = (s1+ 824 oo + Sp + Spt1) — ﬁ(sl + 594 ... + 5p)

(Sl + 89 + ... + Sn)

= Op+1 — Op

(81 + S+ ...+ Sn)

= Op+1 — Oy

1
= (n+1)(0n41 — 0n) = Spy1 — 5(81 + 824 ..+ 8p)

= (n + 1>(Un+1 - Un) = Sn4+1 — On

Using the fact that (s,) is an increasing sequence, we can say that s,1 > s, > 0,; therefore
Spi1 — 0p > 0 which implies that

(TL + 1)(an+1 - 0n> Z 0= On+1 2 On

for all n; therefore, (0,,) is an increasing sequence.
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Let s; =1 and s,41 = (%) s2 forn > 1.

(a):

(b) Theorem: lim s, exists.

Proof:

s?2 > 0 and -7 > 0 implies that s, = (nLH) s2 > 0. This in combination with the fact
that s; = 1 > 0 implies that (s,) is bounded below by 0.

Next I will prove by induction that s, < 1 for all n. Let P(n) be the statement that s,, < 1.
For the base case, P(1),
S1 = 1 S 1

For the induction step, P(n) = P(n+1), Assume P(n). 0 < s, < 1 = s? < 1. Furthermore,
n+1>n=0< 25 <1 therefore, s, = (nLH) s2 < 1. The previous statement is P(n+1),
proving P(n) = P(n + 1). By the principle of mathematical induction, P(n) holds for all
positive integers n.

Separately, s, < 1 implies 1 is an upper bound for (s,). Also, 0 < s, < 1 implies that

s? < s, and since 2= < 1, §,41 = (HLH) s?2 < s,; therefore, (s,) is a monotonically

n+1
decreasing sequence. Since (s,) is monotic and bounded, lim s, exists.

(c) Theorem: s = lim s, =0
Proof: Taking the limit of s,, using its recursive definition, we get

. ) n
lim s,,1 = lim ((n n 1) si)

n
li = 1; I; 2
1m Sp4q 1m (n+1) m s,

s=s"=s5=0,1

Since (s,) is a monotonically decreasing sequence with s, = %, s#1=s5=0.
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Let sy =1 and 5,41 = %(sn +1) forn > 1.

(a)

(b) Theorem: s, > 1 for all n.
Proof:

Let P(n) be the statement “s, > 37.
Base Case: P(1)

Induction Step: P(n) = P(n+1)
Assume P(n).

>1:> +1>3
Sn - Sn -
2 2

1 1

= Sp41 = g(Sn‘i‘ 1) > 5

The above statement is P(n+1), proving P(n) = P(n+1).
induction, P(n) holds for all positive integers n.

By the principle of mathematical

(c) Theorem: (s,) is a monotonically decreasing sequence.

Proof:
First, I will prove by induction that s, = —%Z;fll for all n. Let P(n) be the statement
“s, = 3 £L7_ For the base case, P(1),

3141 141
f— f— :1
2 % 31-1 2x%1

S1

For the induction step, P(n) = P(n + 1), assume P(n).

_3”_1—{—1i +1_3”_1—|—1+1_3"_1—{—1—1—2*3"_1_3"—|—1
Sn = 2 % 3n—1 Sn - 2 % 3n—1 - 2 % 3n—1 - 2 % 3n—1
1( +1) 1 3" +1 3" +1
= — = — Xk =
Sl = glon 372531 2x3n

The above statement is P(n+1), proving P(n) = P(n+1). By the principle of mathematical
induction, P(n) holds for all positive integers n.
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Separately, consider s,,.1.
3" +1 3" n 1 < 3" n 1
Sn - - >
THT 2% 3n T 2x30 T 2430 T 2x37 | 24301
3" 1 3t 1 341

= 8n+1 = Sp,

< = —
_2*3”—{—2*3"*1 2*3”*14_2*3”*1 2 % 3n—1

Spi1 < 8y, for all n implies (s,,) is a monotonically decreasing sequence.

(d) Theorem: lim s, exists and s = lim s,, = 2.

2
Proof:

Since (s,) is monotonically decreasing, it is bounded above by s; = 1. From (b), (s,) is
bounded below by % Since (s,,) is monotonic and bounded, lim s,, exists. Taking the limit
of the recursive definition of s,,1,

1 1 1
limsn+1:limg(sn+1):>s:§(s+1):>s:§

Ross 10.11
Let t1 =1 and tyy1 = (1 — 25) &,

(a) Theorem: lim t,, exists.
First, I'll prove the claim that (t,) is bounded below by 0 by induction. Let P(n) be the
statement “¢, > 0”. For the base case, P(1):
th=1>0
For the induction step, P(n) = P(n+ 1), assume P(n). Using the fact that n > 1.
> 1o <l 1— 4 50
4n? 4n?

t, > 0 implies that t,.1 = (1 — %) ¢, > 0. The previous statement is P(n -+ 1), proving
P(n) = P(n + 1). By the principle of mathematical induction, P(n) holds for all positive
integers n. Separately, # > 0 and t,, > 0 implies —ﬁ xt, < 0. Adding t,, to both sides of
the previous inequality reveals

1 1
1 =|1—— |th=t, — — *xt, <1,
o ( 4n2) m2

tni1 < t, implies (t,) is a monotonically decreasing sequence. This further implies that
t1 = 1 is an upper bound for (¢,). Since (¢,) is monotonic and bounded, lim #,, exists.

(b) Since (t,) is monotonically decreasing and bounded below by 0, I am going to guess that
lim ¢, = 0. It turns out the limit is 2. T was definitely off. What an L.
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Squeeze Lemma:

Theorem: Let a,, b,, ¢, be three sequences such that a, < b, < ¢, and L = lim a, = lim
¢,. lim b, = L.

Proof:

Let a,, b,, ¢, be three sequences such that a, < b, < ¢, and L = lim a,, = lim ¢,. L = lim
a, implies that for any € > 0, there exists some N, such that for n > N,, |a, — L| < e. This
implies that —e < a, — L = —e + L < a,. Similarly, for any € > 0, there exists some N,
such that for n > N, |¢, — L| < e. This implies that ¢, — L < € = ¢, < e+ L. Now consider
n > N, = max ({N,, N.}). a, <b, < ¢, implies

—e+L<a,<b,<c,<e+ L

—e+L<b,<e+ L
—e<b,—L<e
|b, — L| < e for n > N,
Therefore, lim b, = L.
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