Math 104 Homework 2

Cameron Shotwell

January 4, 2022

Ross 9.9

Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$
(a) Theorem: If $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.

Proof: Suppose there exists sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ such that there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. Furthermore, $\lim s_{n}=+\infty$. This implies that for each $M>0$ there is a number N such that $n>N$ implies $s_{n}>M$. Define N^{\prime} such that $N^{\prime}=\max \left(\left\{N, N_{o}\right\}\right)$. For all $n>N^{\prime}, t_{n} \geq s_{n}>M$; therefore, $\lim t_{n}=+\infty$.
(b) Theorem: If $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.

Proof: Suppose there exists sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ such that there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. Furthermore, $\lim t_{n}=-\infty$. This implies that for each $M>0$ there is a number N such that $n>N$ implies $s_{n}<M$. Define N^{\prime} such that $N^{\prime}=\max \left(\left\{N, N_{o}\right\}\right)$. For all $n>N^{\prime}, s_{n} \leq t_{n}<M$; therefore, $\lim s_{n}=-\infty$.
(c) Theorem: If $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Proof:

First I will prove that for any converging sequence $b(n)$, if $b_{n} \geq a$ for all but finitely many n, then $\lim b_{n} \geq a$. Let $b(n)$ be a converging sequence such that $b_{n}<a$ for finitely many n. Let the set of all such n be denoted $A=\left\{n \mid b_{n}<a\right\}=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ where $k \in \mathbb{N}$. Furthermore, let $N_{0}=\max A$. Since $\left(b_{n}\right)$ converges, for all $\epsilon>0$ there exists a number N such that for all $n>N,\left|b_{n}-b\right|<\epsilon$ where $b=\lim b_{n}$. Let $N \geq N_{0}$ and assume for the sake of contradiction that $b<a$. This implies that $a-b>0$. So consider some $\epsilon=a-b>0$.

$$
\left|b_{n}-b\right|<a-b \Rightarrow b_{n}-b<a-b \Rightarrow b_{n}<a
$$

However, we have reached a contradiction because $n>N_{0} \Rightarrow b_{n} \geq a$. Therefore, by way of contradiction, $b=\lim b_{n} \geq a$.

Separately, suppose there exists sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ such that there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. Furthermore, suppose that $\lim s_{n}$ and $\lim t_{n}$ exist. Now define $b_{n}=t_{n}-s_{n} . s_{n} \leq t_{n}$ implies that $b_{n}=t_{n}-s_{n} \geq 0$ for $n>N_{0}$; therefore, $\lim b_{n} \geq 0$. This implies that $\lim t_{n}-\lim s_{n} \geq 0 \Rightarrow \lim t_{n} \geq \lim s_{n}$.

Ross 9.15

Theorem: $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}$ for $a \in \mathbb{R}$.

Proof:

First, I will prove that if all $s_{n} \neq 0$ and the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|<1$, then $\lim s_{n}=0$. Assume all $s_{n} \neq 0$ and the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|<1$. Consider some a such that $L<a<1$. By the definition of limit, for some $\epsilon>0$, there exists an N_{0} that for $n>N_{0}$,

$$
\begin{gathered}
\| \frac{s_{n+1}}{s_{n}}|-L|<\epsilon \\
\Rightarrow\left|\frac{s_{n+1}}{s_{n}}\right|-L<\epsilon \Rightarrow\left|\frac{s_{n+1}}{s_{n}}\right|<\epsilon+L
\end{gathered}
$$

Consider some $\epsilon=a-L>0$.

$$
\left|\frac{s_{n+1}}{s_{n}}\right|<a \Rightarrow\left|s_{n+1}\right|<a\left|s_{n}\right|
$$

Define $N=N_{0}+1$. Next, we want to prove $\left|s_{N+k}\right|<a^{k}\left|s_{N}\right|$ for $k \geq 1$ by induction. For the base case, $\left|s_{N+1}\right|<a\left|s_{N}\right|$. For the induction step, assume

$$
\begin{gathered}
\left|s_{N+k}\right|<a^{k}\left|s_{N}\right| \\
\Rightarrow a\left|s_{N+k}\right|<a^{k+1}\left|s_{N}\right| \Rightarrow\left|s_{N+k+1}\right|<a\left|s_{N+k}\right|<a^{k+1}\left|s_{N}\right| \\
\Rightarrow\left|s_{N+k+1}\right|<a^{k+1}\left|s_{N}\right|
\end{gathered}
$$

This concludes the induction step, proving $\left|s_{N+k}\right|<a^{k}\left|s_{N}\right|$ for $k \geq 1$. We can rewrite as $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for $n>N$. The sequence $\left(b_{n}\right)_{n=N}^{\infty}$ where $b_{n}=a^{n-N}$ converges to 0 since $a<1$; therefore, the series $\left|s_{N}\right| *\left(b_{n}\right)$ also converges to 0 . By the definition of limit, for some $\epsilon^{\prime}>0$, there exists an N that for $n>N^{\prime},\left|a^{n-N}\right| s_{N}|-0|<\epsilon^{\prime}$. This implies that for $n>\max \left(\left\{N^{\prime}, N\right\}\right),\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|<\epsilon^{\prime} \Rightarrow\left|s_{n}-0\right|<\epsilon^{\prime}$. This means the lim $s_{n}=0$.

Now for the proof you actually came here for. Suppose there is a sequence $\left(t_{n}\right)$ such that $t_{n}=\frac{a^{n}}{n!}$ and $a \in \mathbb{R}$. There are now two cases. If $a=0, t_{n}=0$ and $\lim t_{n}=0$. If $a \neq 0$, then $t_{n} \neq 0$.

$$
L=\lim \left|\frac{t_{n+1}}{t_{n}}\right|=\lim \left|\frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^{n}}{n!}}\right|=\lim \left|\frac{a}{n+1}\right|=0<1
$$

Therefore, $\lim t_{n}=0$.

Ross 10.7

Theorem: S is a bounded nonempty subset of \mathbb{R} such that sup S is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$.

Proof:

Let S be a bounded nonempty subset of \mathbb{R} such that $\sup S \notin S$. Let $\left(t_{n}\right)$ be a sequence such that $t_{n}=\sup S$. And let $\left(u_{n}\right)$ be the sequence such that $u_{n}=t_{n}+\frac{1}{n}$. By the definition of
supremum, for all $\epsilon>0$, there exists some element $s \in S$ such that $s>\sup S-\epsilon$. Since $1 / n>0$, we can define the sequence $\left(s_{n}\right)$ such that $s_{n} \in S$ and $s_{n}>\sup S-\frac{1}{n}$; therefore, $s_{n}>u_{n}$ for all n. Furthermore, $\sup S \geq s$ for all $s \in S$. This implies that $t_{n} \geq s_{n}>u_{n}$. Since $\left(t_{n}\right)$ and $\left(u_{n}\right)$ converge to $\sup S,\left(s_{n}\right)$ converges to $\sup S$ by the squeeze lemma.

Ross 10.8

Theorem: Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=\frac{1}{n}\left(s_{1}+\right.$ $\left.s_{2}+\ldots+s_{n}\right) .\left(\sigma_{n}\right)$ is an increasing sequence.

Proof:

Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right)$.
First, I will prove by induction that $\sigma_{n} \leq s_{n}$ for all n. Let $P(n)$ be the statement " $\sigma_{n} \leq s_{n}$ ". For the base case, $P(1)$:

$$
\sigma_{1}=s_{1} \leq s_{1}
$$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume $P(n): \sigma_{n} \leq s_{n}$. Since $\left(s_{n}\right)$ is an increasing sequence,

$$
\begin{gathered}
\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \leq s_{n} \leq s_{n+1} \\
\Rightarrow s_{1}+s_{2}+\ldots+s_{n} \leq n s_{n+1} \\
\Rightarrow s_{1}+s_{2}+\ldots+s_{n}+s_{n+1} \leq n s_{n+1}+s_{n+1}=(n+1) s_{n+1} \\
\Rightarrow \frac{1}{n+1}\left(s_{1}+s_{2}+\ldots+s_{n}+s_{n+1}\right) \leq s_{n+1} \\
\Rightarrow \sigma_{n+1} \leq s_{n+1}
\end{gathered}
$$

The above statement is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n.

Separately, consider the difference $\sigma_{n+1}-\sigma_{n}$:

$$
\begin{gathered}
\sigma_{n+1}-\sigma_{n}=\frac{1}{n+1}\left(s_{1}+s_{2}+\ldots+s_{n}+s_{n+1}\right)-\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \\
\Rightarrow \sigma_{n+1}-\sigma_{n}=\frac{s_{n+1}}{n+1}+\frac{n}{n(n+1)}\left(s_{1}+s_{2}+\ldots+s_{n}\right)-\frac{n+1}{n(n+1)}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \\
\Rightarrow \sigma_{n+1}-\sigma_{n}=\frac{s_{n+1}}{n+1}-\frac{1}{n(n+1)}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \\
\Rightarrow(n+1)\left(\sigma_{n+1}-\sigma_{n}\right)=s_{n+1}-\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) \\
\Rightarrow(n+1)\left(\sigma_{n+1}-\sigma_{n}\right)=s_{n+1}-\sigma_{n}
\end{gathered}
$$

Using the fact that $\left(s_{n}\right)$ is an increasing sequence, we can say that $s_{n+1} \geq s_{n} \geq \sigma_{n}$; therefore $s_{n+1}-\sigma_{n} \geq 0$ which implies that

$$
(n+1)\left(\sigma_{n+1}-\sigma_{n}\right) \geq 0 \Rightarrow \sigma_{n+1} \geq \sigma_{n}
$$

for all n ; therefore, $\left(\sigma_{n}\right)$ is an increasing sequence.

Ross 10.9

Let $s_{1}=1$ and $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2}$ for $n \geq 1$.
(a):

$$
\begin{gathered}
s_{2}=\left(\frac{1}{2}\right) * 1^{2} \Rightarrow s_{2}=\frac{1}{2} \\
s_{3}=\left(\frac{2}{3}\right) *\left(\frac{1}{2}\right)^{2} \Rightarrow s_{3}=\frac{1}{6} \\
s_{4}=\left(\frac{3}{4}\right) *\left(\frac{1}{6}\right)^{2} \Rightarrow s_{4}=\frac{1}{48}
\end{gathered}
$$

(b) Theorem: $\lim s_{n}$ exists.

Proof:

$s_{n}^{2} \geq 0$ and $\frac{n}{n+1} \geq 0$ implies that $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2} \geq 0$. This in combination with the fact that $s_{1}=1 \geq 0$ implies that $\left(s_{n}\right)$ is bounded below by 0 .

Next I will prove by induction that $s_{n} \leq 1$ for all n. Let $P(n)$ be the statement that $s_{n} \leq 1$. For the base case, $P(1)$,

$$
s_{1}=1 \leq 1
$$

For the induction step, $P(n) \Rightarrow P(n+1)$, Assume $P(n) .0 \leq s_{n} \leq 1 \Rightarrow s_{n}^{2} \leq 1$. Furthermore, $n+1>n \Rightarrow 0 \leq \frac{n}{n+1}<1$; therefore, $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2} \leq 1$. The previous statement is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n.

Separately, $s_{n} \leq 1$ implies 1 is an upper bound for $\left(s_{n}\right)$. Also, $0 \leq s_{n} \leq 1$ implies that $s_{n}^{2} \leq s_{n}$ and since $\frac{n}{n+1}<1, s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2} \leq s_{n}$; therefore, $\left(s_{n}\right)$ is a monotonically decreasing sequence. Since $\left(s_{n}\right)$ is monotic and bounded, $\lim s_{n}$ exists.
(c) Theorem: $s=\lim s_{n}=0$

Proof: Taking the limit of s_{n} using its recursive definition, we get

$$
\begin{aligned}
\lim s_{n+1} & =\lim \left(\left(\frac{n}{n+1}\right) s_{n}^{2}\right) \\
\lim s_{n+1} & =\lim \left(\frac{n}{n+1}\right) \lim s_{n}^{2} \\
s & =s^{2} \Rightarrow s=0,1
\end{aligned}
$$

Since $\left(s_{n}\right)$ is a monotonically decreasing sequence with $s_{2}=\frac{1}{2}, s \neq 1 \Rightarrow s=0$.

Ross 10.10

Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a)

$$
\begin{gathered}
s_{2}=\frac{1}{3}(1+1) \Rightarrow s_{2}=\frac{2}{3} \\
s_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right) \Rightarrow s_{3}=\frac{5}{9} \\
s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right) \Rightarrow s_{4}=\frac{14}{27}
\end{gathered}
$$

(b) Theorem: $s_{n}>\frac{1}{2}$ for all n.

Proof:

Let $P(n)$ be the statement " $s_{n}>\frac{1}{2}$ ".
Base Case: $P(1)$

$$
s_{1}=1>\frac{1}{2}
$$

Induction Step: $P(n) \Rightarrow P(n+1)$
Assume $P(n)$.

$$
\begin{aligned}
& s_{n}>\frac{1}{2} \Rightarrow s_{n}+1>\frac{3}{2} \\
\Rightarrow & s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{2}
\end{aligned}
$$

The above statement is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n.
(c) Theorem: $\left(s_{n}\right)$ is a monotonically decreasing sequence.

Proof:

First, I will prove by induction that $s_{n}=\frac{3^{n-1}+1}{2 * 3^{n-1}}$ for all n. Let $P(n)$ be the statement $" s_{n}=\frac{3^{n-1}+1}{2 * 3^{n-1}}$ ". For the base case, $P(1)$,

$$
s_{1}=\frac{3^{1-1}+1}{2 * 3^{1-1}}=\frac{1+1}{2 * 1}=1
$$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume $P(n)$.

$$
\begin{gathered}
s_{n}=\frac{3^{n-1}+1}{2 * 3^{n-1}} \Rightarrow s_{n}+1=\frac{3^{n-1}+1}{2 * 3^{n-1}}+1=\frac{3^{n-1}+1+2 * 3^{n-1}}{2 * 3^{n-1}}=\frac{3^{n}+1}{2 * 3^{n-1}} \\
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)=\frac{1}{3} * \frac{3^{n}+1}{2 * 3^{n-1}}=\frac{3^{n}+1}{2 * 3^{n}}
\end{gathered}
$$

The above statement is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n.

Separately, consider s_{n+1}.

$$
\begin{gathered}
s_{n+1}=\frac{3^{n}+1}{2 * 3^{n}}=\frac{3^{n}}{2 * 3^{n}}+\frac{1}{2 * 3^{n}} \leq \frac{3^{n}}{2 * 3^{n}}+\frac{1}{2 * 3^{n-1}} \\
\Rightarrow s_{n+1} \leq \frac{3^{n}}{2 * 3^{n}}+\frac{1}{2 * 3^{n-1}}=\frac{3^{n-1}}{2 * 3^{n-1}}+\frac{1}{2 * 3^{n-1}}=\frac{3^{n-1}+1}{2 * 3^{n-1}}=s_{n}
\end{gathered}
$$

$s_{n+1} \leq s_{n}$ for all n implies $\left(s_{n}\right)$ is a monotonically decreasing sequence.
(d) Theorem: $\lim s_{n}$ exists and $s=\lim s_{n}=\frac{1}{2}$.

Proof:
Since $\left(s_{n}\right)$ is monotonically decreasing, it is bounded above by $s_{1}=1$. From (b), (s_{n}) is bounded below by $\frac{1}{2}$. Since $\left(s_{n}\right)$ is monotonic and bounded, $\lim s_{n}$ exists. Taking the limit of the recursive definition of s_{n+1},

$$
\lim s_{n+1}=\lim \frac{1}{3}\left(s_{n}+1\right) \Rightarrow s=\frac{1}{3}(s+1) \Rightarrow s=\frac{1}{2}
$$

Ross 10.11

Let $t_{1}=1$ and $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}$
(a) Theorem: $\lim t_{n}$ exists.

First, I'll prove the claim that $\left(t_{n}\right)$ is bounded below by 0 by induction. Let $P(n)$ be the statement " $t_{n}>0$ ". For the base case, $P(1)$:

$$
t_{1}=1>0
$$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume $P(n)$. Using the fact that $n \geq 1$.

$$
4 n^{2}>1 \Rightarrow \frac{1}{4 n^{2}}<1 \Rightarrow 1-\frac{1}{4 n^{2}}>0
$$

$t_{n}>0$ implies that $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}>0$. The previous statement is $P(n+1)$, proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, $P(n)$ holds for all positive integers n. Separately, $\frac{1}{4 n^{2}}>0$ and $t_{n}>0$ implies $-\frac{1}{4 n^{2}} * t_{n}<0$. Adding t_{n} to both sides of the previous inequality reveals

$$
t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}=t_{n}-\frac{1}{4 n^{2}} * t_{n}<t_{n}
$$

$t_{n+1}<t_{n}$ implies $\left(t_{n}\right)$ is a monotonically decreasing sequence. This further implies that $t_{1}=1$ is an upper bound for $\left(t_{n}\right)$. Since $\left(t_{n}\right)$ is monotonic and bounded, $\lim t_{n}$ exists.
(b) Since $\left(t_{n}\right)$ is monotonically decreasing and bounded below by 0 , I am going to guess that $\lim t_{n}=0$. It turns out the limit is $\frac{2}{\pi}$. I was definitely off. What an L.

Squeeze Lemma:

Theorem: Let a_{n}, b_{n}, c_{n} be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$ and $L=\lim a_{n}=\lim$ $c_{n} . \lim b_{n}=L$.
Proof:
Let a_{n}, b_{n}, c_{n} be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$ and $L=\lim a_{n}=\lim c_{n}$. $L=\lim$ a_{n} implies that for any $\epsilon>0$, there exists some N_{a} such that for $n>N_{a},\left|a_{n}-L\right|<\epsilon$. This implies that $-\epsilon<a_{n}-L \Rightarrow-\epsilon+L<a_{n}$. Similarly, for any $\epsilon>0$, there exists some N_{c} such that for $n>N_{c},\left|c_{n}-L\right|<\epsilon$. This implies that $c_{n}-L<\epsilon \Rightarrow c_{n}<\epsilon+L$. Now consider $n>N_{b}=\max \left(\left\{N_{a}, N_{c}\right\}\right) . a_{n} \leq b_{n} \leq c_{n}$ implies

$$
\begin{gathered}
-\epsilon+L<a_{n} \leq b_{n} \leq c_{n}<\epsilon+L \\
-\epsilon+L<b_{n}<\epsilon+L \\
-\epsilon<b_{n}-L<\epsilon \\
\left|b_{n}-L\right|<\epsilon \text { for } n>N_{b}
\end{gathered}
$$

Therefore, $\lim b_{n}=L$.

