
Math 104 Homework 2

Cameron Shotwell

January 4, 2022

Ross 9.9

Suppose there exists N0 such that sn ≤ tn for all n > N0

(a) Theorem: If lim sn = +∞, then lim tn = +∞.
Proof: Suppose there exists sequences (sn) and (tn) such that there exists N0 such that
sn ≤ tn for all n > N0. Furthermore, lim sn = +∞. This implies that for each M > 0 there
is a number N such that n > N implies sn > M . Define N ′ such that N ′ = max({N,No}).
For all n > N ′, tn ≥ sn > M ; therefore, lim tn = +∞.

(b) Theorem: If lim tn = −∞, then lim sn = −∞.
Proof: Suppose there exists sequences (sn) and (tn) such that there exists N0 such that
sn ≤ tn for all n > N0. Furthermore, lim tn = −∞. This implies that for each M > 0 there
is a number N such that n > N implies sn < M . Define N ′ such that N ′ = max({N,No}).
For all n > N ′, sn ≤ tn < M ; therefore, lim sn = −∞.

(c) Theorem: If lim sn and lim tn exist, then lim sn ≤ lim tn.
Proof:
First I will prove that for any converging sequence b(n), if bn ≥ a for all but finitely many
n, then lim bn ≥ a. Let b(n) be a converging sequence such that bn < a for finitely many
n. Let the set of all such n be denoted A = {n|bn < a} = {n1, n2, ..., nk} where k ∈ N.
Furthermore, let N0 = max A. Since (bn) converges, for all ϵ > 0 there exists a number N
such that for all n > N , |bn − b| < ϵ where b = lim bn. Let N ≥ N0 and assume for the sake
of contradiction that b < a. This implies that a− b > 0. So consider some ϵ = a− b > 0.

|bn − b| < a− b ⇒ bn − b < a− b ⇒ bn < a

However, we have reached a contradiction because n > N0 ⇒ bn ≥ a. Therefore, by way of
contradiction, b = lim bn ≥ a.

Separately, suppose there exists sequences (sn) and (tn) such that there exists N0 such that
sn ≤ tn for all n > N0. Furthermore, suppose that lim sn and lim tn exist. Now define
bn = tn − sn. sn ≤ tn implies that bn = tn − sn ≥ 0 for n > N0; therefore, lim bn ≥ 0. This
implies that lim tn− lim sn ≥ 0 ⇒ lim tn ≥ lim sn.
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Theorem: limn→∞
an

n!
for a ∈ R.

Proof:
First, I will prove that if all sn ̸= 0 and the limit L = lim | sn+1

sn
| < 1, then lim sn = 0.

Assume all sn ̸= 0 and the limit L = lim | sn+1

sn
| < 1. Consider some a such that L < a < 1.

By the definition of limit, for some ϵ > 0, there exists an N0 that for n > N0,

||sn+1

sn
| − L| < ϵ

⇒ |sn+1

sn
| − L < ϵ ⇒ |sn+1

sn
| < ϵ+ L

Consider some ϵ = a− L > 0.

|sn+1

sn
| < a ⇒ |sn+1| < a|sn|

Define N = N0 +1. Next, we want to prove |sN+k| < ak|sN | for k ≥ 1 by induction. For the
base case, |sN+1| < a|sN |. For the induction step, assume

|sN+k| < ak|sN |

⇒ a|sN+k| < ak+1|sN | ⇒ |sN+k+1| < a|sN+k| < ak+1|sN |

⇒ |sN+k+1| < ak+1|sN |

This concludes the induction step, proving |sN+k| < ak|sN | for k ≥ 1. We can rewrite as
|sn| < an−N |sN | for n > N . The sequence (bn)

∞
n=N where bn = an−N converges to 0 since

a < 1; therefore, the series |sN | ∗ (bn) also converges to 0. By the definition of limit, for
some ϵ′ > 0, there exists an N that for n > N ′, |an−N |sN | − 0| < ϵ′. This implies that for
n > max({N ′, N}), |sn| < an−N |sN | < ϵ′ ⇒ |sn − 0| < ϵ′. This means the lim sn = 0.

Now for the proof you actually came here for. Suppose there is a sequence (tn) such that
tn = an

n!
and a ∈ R. There are now two cases. If a = 0, tn = 0 and lim tn = 0. If a ̸= 0, then

tn ̸= 0.

L = lim |tn+1

tn
| = lim |

an+1

(n+1)!

an

n!

| = lim | a

n+ 1
| = 0 < 1

Therefore, lim tn = 0.

Ross 10.7

Theorem: S is a bounded nonempty subset of R such that sup S is not in S. Prove there
is a sequence (sn) of points in S such that lim sn = sup S.
Proof:
Let S be a bounded nonempty subset of R such that sup S ̸∈ S. Let (tn) be a sequence such
that tn = sup S. And let (un) be the sequence such that un = tn +

1
n
. By the definition of
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supremum, for all ϵ > 0, there exists some element s ∈ S such that s > sup S − ϵ. Since
1/n > 0, we can define the sequence (sn) such that sn ∈ S and sn > sup S − 1

n
; therefore,

sn > un for all n. Furthermore, sup S ≥ s for all s ∈ S. This implies that tn ≥ sn > un.
Since (tn) and (un) converge to sup S, (sn) converges to sup S by the squeeze lemma.

Ross 10.8

Theorem: Let (sn) be an increasing sequence of positive numbers and define σn = 1
n
(s1 +

s2 + ...+ sn). (σn) is an increasing sequence.
Proof:
Let (sn) be an increasing sequence of positive numbers and define σn = 1

n
(s1 + s2 + ...+ sn).

First, I will prove by induction that σn ≤ sn for all n. Let P (n) be the statement “σn ≤ sn”.
For the base case, P (1):

σ1 = s1 ≤ s1

For the induction step, P (n) ⇒ P (n+1), assume P (n): σn ≤ sn. Since (sn) is an increasing
sequence,

1

n
(s1 + s2 + ...+ sn) ≤ sn ≤ sn+1

⇒ s1 + s2 + ...+ sn ≤ nsn+1

⇒ s1 + s2 + ...+ sn + sn+1 ≤ nsn+1 + sn+1 = (n+ 1)sn+1

⇒ 1

n+ 1
(s1 + s2 + ...+ sn + sn+1) ≤ sn+1

⇒ σn+1 ≤ sn+1

The above statement is P (n+1), proving P (n) ⇒ P (n+1). By the principle of mathematical
induction, P (n) holds for all positive integers n.

Separately, consider the difference σn+1 − σn:

σn+1 − σn =
1

n+ 1
(s1 + s2 + ...+ sn + sn+1)−

1

n
(s1 + s2 + ...+ sn)

⇒ σn+1 − σn =
sn+1

n+ 1
+

n

n(n+ 1)
(s1 + s2 + ...+ sn)−

n+ 1

n(n+ 1)
(s1 + s2 + ...+ sn)

⇒ σn+1 − σn =
sn+1

n+ 1
− 1

n(n+ 1)
(s1 + s2 + ...+ sn)

⇒ (n+ 1)(σn+1 − σn) = sn+1 −
1

n
(s1 + s2 + ...+ sn)

⇒ (n+ 1)(σn+1 − σn) = sn+1 − σn

Using the fact that (sn) is an increasing sequence, we can say that sn+1 ≥ sn ≥ σn; therefore
sn+1 − σn ≥ 0 which implies that

(n+ 1)(σn+1 − σn) ≥ 0 ⇒ σn+1 ≥ σn

for all n; therefore, (σn) is an increasing sequence.
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Let s1 = 1 and sn+1 =
(

n
n+1

)
s2n for n ≥ 1.

(a):

s2 =

(
1

2

)
∗ 12 ⇒ s2 =

1

2

s3 =

(
2

3

)
∗
(
1

2

)2

⇒ s3 =
1

6

s4 =

(
3

4

)
∗
(
1

6

)2

⇒ s4 =
1

48

(b) Theorem: lim sn exists.
Proof:
s2n ≥ 0 and n

n+1
≥ 0 implies that sn+1 =

(
n

n+1

)
s2n ≥ 0. This in combination with the fact

that s1 = 1 ≥ 0 implies that (sn) is bounded below by 0.

Next I will prove by induction that sn ≤ 1 for all n. Let P (n) be the statement that sn ≤ 1.
For the base case, P (1),

s1 = 1 ≤ 1

For the induction step, P (n) ⇒ P (n+1), Assume P (n). 0 ≤ sn ≤ 1 ⇒ s2n ≤ 1. Furthermore,
n+1 > n ⇒ 0 ≤ n

n+1
< 1; therefore, sn+1 =

(
n

n+1

)
s2n ≤ 1. The previous statement is P (n+1),

proving P (n) ⇒ P (n + 1). By the principle of mathematical induction, P (n) holds for all
positive integers n.

Separately, sn ≤ 1 implies 1 is an upper bound for (sn). Also, 0 ≤ sn ≤ 1 implies that
s2n ≤ sn and since n

n+1
< 1, sn+1 =

(
n

n+1

)
s2n ≤ sn; therefore, (sn) is a monotonically

decreasing sequence. Since (sn) is monotic and bounded, lim sn exists.

(c) Theorem: s = lim sn = 0
Proof: Taking the limit of sn using its recursive definition, we get

lim sn+1 = lim

((
n

n+ 1

)
s2n

)

lim sn+1 = lim

(
n

n+ 1

)
lim s2n

s = s2 ⇒ s = 0, 1

Since (sn) is a monotonically decreasing sequence with s2 =
1
2
, s ̸= 1 ⇒ s = 0.
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Let s1 = 1 and sn+1 =
1
3
(sn + 1) for n ≥ 1.

(a)

s2 =
1

3
(1 + 1) ⇒ s2 =

2

3

s3 =
1

3

(
2

3
+ 1

)
⇒ s3 =

5

9

s4 =
1

3

(
5

9
+ 1

)
⇒ s4 =

14

27

(b) Theorem: sn > 1
2
for all n.

Proof:
Let P (n) be the statement “sn > 1

2
”.

Base Case: P (1)

s1 = 1 >
1

2

Induction Step: P (n) ⇒ P (n+ 1)
Assume P (n).

sn >
1

2
⇒ sn + 1 >

3

2

⇒ sn+1 =
1

3
(sn + 1) >

1

2

The above statement is P (n+1), proving P (n) ⇒ P (n+1). By the principle of mathematical
induction, P (n) holds for all positive integers n.

(c) Theorem: (sn) is a monotonically decreasing sequence.
Proof:
First, I will prove by induction that sn = 3n−1+1

2∗3n−1 for all n. Let P (n) be the statement

“sn = 3n−1+1
2∗3n−1 ”. For the base case, P (1),

s1 =
31−1 + 1

2 ∗ 31−1
=

1 + 1

2 ∗ 1
= 1

For the induction step, P (n) ⇒ P (n+ 1), assume P (n).

sn =
3n−1 + 1

2 ∗ 3n−1
⇒ sn + 1 =

3n−1 + 1

2 ∗ 3n−1
+ 1 =

3n−1 + 1 + 2 ∗ 3n−1

2 ∗ 3n−1
=

3n + 1

2 ∗ 3n−1

sn+1 =
1

3
(sn + 1) =

1

3
∗ 3n + 1

2 ∗ 3n−1
=

3n + 1

2 ∗ 3n
The above statement is P (n+1), proving P (n) ⇒ P (n+1). By the principle of mathematical
induction, P (n) holds for all positive integers n.
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Separately, consider sn+1.

sn+1 =
3n + 1

2 ∗ 3n
=

3n

2 ∗ 3n
+

1

2 ∗ 3n
≤ 3n

2 ∗ 3n
+

1

2 ∗ 3n−1

⇒ sn+1 ≤
3n

2 ∗ 3n
+

1

2 ∗ 3n−1
=

3n−1

2 ∗ 3n−1
+

1

2 ∗ 3n−1
=

3n−1 + 1

2 ∗ 3n−1
= sn

sn+1 ≤ sn for all n implies (sn) is a monotonically decreasing sequence.

(d) Theorem: lim sn exists and s = lim sn = 1
2
.

Proof:
Since (sn) is monotonically decreasing, it is bounded above by s1 = 1. From (b), (sn) is
bounded below by 1

2
. Since (sn) is monotonic and bounded, lim sn exists. Taking the limit

of the recursive definition of sn+1,

lim sn+1 = lim
1

3
(sn + 1) ⇒ s =

1

3
(s+ 1) ⇒ s =

1

2

Ross 10.11

Let t1 = 1 and tn+1 =
(
1− 1

4n2

)
tn

(a) Theorem: lim tn exists.
First, I’ll prove the claim that (tn) is bounded below by 0 by induction. Let P (n) be the
statement “tn > 0”. For the base case, P (1):

t1 = 1 > 0

For the induction step, P (n) ⇒ P (n+ 1), assume P (n). Using the fact that n ≥ 1.

4n2 > 1 ⇒ 1

4n2
< 1 ⇒ 1− 1

4n2
> 0

tn > 0 implies that tn+1 =
(
1− 1

4n2

)
tn > 0. The previous statement is P (n + 1), proving

P (n) ⇒ P (n + 1). By the principle of mathematical induction, P (n) holds for all positive
integers n. Separately, 1

4n2 > 0 and tn > 0 implies − 1
4n2 ∗ tn < 0. Adding tn to both sides of

the previous inequality reveals

tn+1 =

(
1− 1

4n2

)
tn = tn −

1

4n2
∗ tn < tn

tn+1 < tn implies (tn) is a monotonically decreasing sequence. This further implies that
t1 = 1 is an upper bound for (tn). Since (tn) is monotonic and bounded, lim tn exists.

(b) Since (tn) is monotonically decreasing and bounded below by 0, I am going to guess that
lim tn = 0. It turns out the limit is 2

π
. I was definitely off. What an L.
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Squeeze Lemma:

Theorem: Let an, bn, cn be three sequences such that an ≤ bn ≤ cn and L = lim an = lim
cn. lim bn = L.
Proof:
Let an, bn, cn be three sequences such that an ≤ bn ≤ cn and L = lim an = lim cn. L = lim
an implies that for any ϵ > 0, there exists some Na such that for n > Na, |an −L| < ϵ. This
implies that −ϵ < an − L ⇒ −ϵ + L < an. Similarly, for any ϵ > 0, there exists some Nc

such that for n > Nc, |cn−L| < ϵ. This implies that cn−L < ϵ ⇒ cn < ϵ+L. Now consider
n > Nb = max ({Na, Nc}). an ≤ bn ≤ cn implies

−ϵ+ L < an ≤ bn ≤ cn < ϵ+ L

−ϵ+ L < bn < ϵ+ L

−ϵ < bn − L < ϵ

|bn − L| < ϵ for n > Nb

Therefore, lim bn = L.
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