Math 104 Homework 2

Cameron Shotwell

January 4, 2022

Ross 9.9

Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$

(a) Theorem: If $\lim s_n = +\infty$, then $\lim t_n = +\infty$.

Proof: Suppose there exists sequences (s_n) and (t_n) such that there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Furthermore, $\lim s_n = +\infty$. This implies that for each M > 0 there is a number N such that n > N implies $s_n > M$. Define N' such that $N' = max(\{N, N_o\})$. For all n > N', $t_n \geq s_n > M$; therefore, $\lim t_n = +\infty$.

(b) Theorem: If $\lim t_n = -\infty$, then $\lim s_n = -\infty$.

Proof: Suppose there exists sequences (s_n) and (t_n) such that there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Furthermore, $\lim t_n = -\infty$. This implies that for each M > 0 there is a number N such that n > N implies $s_n < M$. Define N' such that $N' = max(\{N, N_o\})$. For all n > N', $s_n \leq t_n < M$; therefore, $\lim s_n = -\infty$.

(c) Theorem: If $\lim s_n$ and $\lim t_n$ exist, then $\lim s_n \leq \lim t_n$. **Proof:**

First I will prove that for any converging sequence b(n), if $b_n \ge a$ for all but finitely many n, then $\lim b_n \ge a$. Let b(n) be a converging sequence such that $b_n < a$ for finitely many n. Let the set of all such n be denoted $A = \{n|b_n < a\} = \{n_1, n_2, ..., n_k\}$ where $k \in \mathbb{N}$. Furthermore, let $N_0 = \max A$. Since (b_n) converges, for all $\epsilon > 0$ there exists a number N such that for all n > N, $|b_n - b| < \epsilon$ where $b = \lim b_n$. Let $N \ge N_0$ and assume for the sake of contradiction that b < a. This implies that a - b > 0. So consider some $\epsilon = a - b > 0$.

$$|b_n - b| < a - b \Rightarrow b_n - b < a - b \Rightarrow b_n < a$$

However, we have reached a contradiction because $n > N_0 \Rightarrow b_n \ge a$. Therefore, by way of contradiction, $b = \lim b_n \ge a$.

Separately, suppose there exists sequences (s_n) and (t_n) such that there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Furthermore, suppose that $\lim s_n$ and $\lim t_n$ exist. Now define $b_n = t_n - s_n$. $s_n \leq t_n$ implies that $b_n = t_n - s_n \geq 0$ for $n > N_0$; therefore, $\lim b_n \geq 0$. This implies that $\lim t_n - \lim s_n \geq 0 \Rightarrow \lim t_n \geq \lim s_n$.

Ross 9.15

Theorem: $\lim_{n\to\infty} \frac{a^n}{n!}$ for $a \in \mathbb{R}$. **Proof:**

First, I will prove that if all $s_n \neq 0$ and the limit $L = \lim_{n \to \infty} |\frac{s_{n+1}}{s_n}| < 1$, then $\lim_{n \to \infty} s_n = 0$. Assume all $s_n \neq 0$ and the limit $L = \lim_{n \to \infty} |\frac{s_{n+1}}{s_n}| < 1$. Consider some a such that L < a < 1. By the definition of limit, for some $\epsilon > 0$, there exists an N_0 that for $n > N_0$,

$$\begin{split} ||\frac{s_{n+1}}{s_n}| - L| < \epsilon \\ \Rightarrow |\frac{s_{n+1}}{s_n}| - L < \epsilon \Rightarrow |\frac{s_{n+1}}{s_n}| < \epsilon + L \end{split}$$

Consider some $\epsilon = a - L > 0$.

$$\left|\frac{s_{n+1}}{s_n}\right| < a \Rightarrow |s_{n+1}| < a|s_n|$$

Define $N = N_0 + 1$. Next, we want to prove $|s_{N+k}| < a^k |s_N|$ for $k \ge 1$ by induction. For the base case, $|s_{N+1}| < a |s_N|$. For the induction step, assume

$$|s_{N+k}| < a^k |s_N|$$

$$\Rightarrow a|s_{N+k}| < a^{k+1}|s_N| \Rightarrow |s_{N+k+1}| < a|s_{N+k}| < a^{k+1}|s_N|$$

$$\Rightarrow |s_{N+k+1}| < a^{k+1}|s_N|$$

This concludes the induction step, proving $|s_{N+k}| < a^k |s_N|$ for $k \ge 1$. We can rewrite as $|s_n| < a^{n-N} |s_N|$ for n > N. The sequence $(b_n)_{n=N}^{\infty}$ where $b_n = a^{n-N}$ converges to 0 since a < 1; therefore, the series $|s_N| * (b_n)$ also converges to 0. By the definition of limit, for some $\epsilon' > 0$, there exists an N that for n > N', $|a^{n-N}|s_N| - 0| < \epsilon'$. This implies that for $n > max(\{N', N\}), |s_n| < a^{n-N} |s_N| < \epsilon' \Rightarrow |s_n - 0| < \epsilon'$. This means the lim $s_n = 0$.

Now for the proof you actually came here for. Suppose there is a sequence (t_n) such that $t_n = \frac{a^n}{n!}$ and $a \in \mathbb{R}$. There are now two cases. If a = 0, $t_n = 0$ and $\lim t_n = 0$. If $a \neq 0$, then $t_n \neq 0$.

$$L = \lim \left| \frac{t_{n+1}}{t_n} \right| = \lim \left| \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}} \right| = \lim \left| \frac{a}{n+1} \right| = 0 < 1$$

Therefore, $\lim t_n = 0$.

Ross 10.7

Theorem: S is a bounded nonempty subset of \mathbb{R} such that sup S is not in S. Prove there is a sequence (s_n) of points in S such that $\lim s_n = \sup S$. **Proof:**

Let S be a bounded nonempty subset of \mathbb{R} such that $\sup S \notin S$. Let (t_n) be a sequence such that $t_n = \sup S$. And let (u_n) be the sequence such that $u_n = t_n + \frac{1}{n}$. By the definition of

supremum, for all $\epsilon > 0$, there exists some element $s \in S$ such that $s > \sup S - \epsilon$. Since 1/n > 0, we can define the sequence (s_n) such that $s_n \in S$ and $s_n > \sup S - \frac{1}{n}$; therefore, $s_n > u_n$ for all n. Furthermore, $\sup S \ge s$ for all $s \in S$. This implies that $t_n \ge s_n > u_n$. Since (t_n) and (u_n) converge to $\sup S$, (s_n) converges to $\sup S$ by the squeeze lemma.

Ross 10.8

Theorem: Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + ... + s_n)$. (σ_n) is an increasing sequence. **Proof:**

Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n)$.

First, I will prove by induction that $\sigma_n \leq s_n$ for all n. Let P(n) be the statement " $\sigma_n \leq s_n$ ". For the base case, P(1):

$$\sigma_1 = s_1 \le s_1$$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume P(n): $\sigma_n \leq s_n$. Since (s_n) is an increasing sequence,

$$\frac{1}{n}(s_1 + s_2 + \dots + s_n) \le s_n \le s_{n+1}$$

$$\Rightarrow s_1 + s_2 + \dots + s_n \le ns_{n+1}$$

$$\Rightarrow s_1 + s_2 + \dots + s_n + s_{n+1} \le ns_{n+1} + s_{n+1} = (n+1)s_{n+1}$$

$$\Rightarrow \frac{1}{n+1}(s_1 + s_2 + \dots + s_n + s_{n+1}) \le s_{n+1}$$

$$\Rightarrow \sigma_{n+1} < s_{n+1}$$

The above statement is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n.

Separately, consider the difference $\sigma_{n+1} - \sigma_n$:

$$\begin{split} \sigma_{n+1} - \sigma_n &= \frac{1}{n+1} (s_1 + s_2 + \ldots + s_n + s_{n+1}) - \frac{1}{n} (s_1 + s_2 + \ldots + s_n) \\ \Rightarrow \sigma_{n+1} - \sigma_n &= \frac{s_{n+1}}{n+1} + \frac{n}{n(n+1)} (s_1 + s_2 + \ldots + s_n) - \frac{n+1}{n(n+1)} (s_1 + s_2 + \ldots + s_n) \\ \Rightarrow \sigma_{n+1} - \sigma_n &= \frac{s_{n+1}}{n+1} - \frac{1}{n(n+1)} (s_1 + s_2 + \ldots + s_n) \\ \Rightarrow (n+1)(\sigma_{n+1} - \sigma_n) &= s_{n+1} - \frac{1}{n} (s_1 + s_2 + \ldots + s_n) \\ \Rightarrow (n+1)(\sigma_{n+1} - \sigma_n) &= s_{n+1} - \sigma_n \end{split}$$

Using the fact that (s_n) is an increasing sequence, we can say that $s_{n+1} \ge s_n \ge \sigma_n$; therefore $s_{n+1} - \sigma_n \ge 0$ which implies that

$$(n+1)(\sigma_{n+1}-\sigma_n) \ge 0 \Rightarrow \sigma_{n+1} \ge \sigma_n$$

for all n; therefore, (σ_n) is an increasing sequence.

Ross 10.9

Let $s_1 = 1$ and $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2$ for $n \ge 1$. (a):

$$s_2 = \left(\frac{1}{2}\right) * 1^2 \Rightarrow s_2 = \frac{1}{2}$$
$$s_3 = \left(\frac{2}{3}\right) * \left(\frac{1}{2}\right)^2 \Rightarrow s_3 = \frac{1}{6}$$
$$s_4 = \left(\frac{3}{4}\right) * \left(\frac{1}{6}\right)^2 \Rightarrow s_4 = \frac{1}{48}$$

(b) Theorem: $\lim s_n$ exists. Proof:

 $s_n^2 \ge 0$ and $\frac{n}{n+1} \ge 0$ implies that $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2 \ge 0$. This in combination with the fact that $s_1 = 1 \ge 0$ implies that (s_n) is bounded below by 0.

Next I will prove by induction that $s_n \leq 1$ for all n. Let P(n) be the statement that $s_n \leq 1$. For the base case, P(1),

 $s_1 = 1 \le 1$

For the induction step, $P(n) \Rightarrow P(n+1)$, Assume P(n). $0 \le s_n \le 1 \Rightarrow s_n^2 \le 1$. Furthermore, $n+1 > n \Rightarrow 0 \le \frac{n}{n+1} < 1$; therefore, $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2 \le 1$. The previous statement is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n.

Separately, $s_n \leq 1$ implies 1 is an upper bound for (s_n) . Also, $0 \leq s_n \leq 1$ implies that $s_n^2 \leq s_n$ and since $\frac{n}{n+1} < 1$, $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2 \leq s_n$; therefore, (s_n) is a monotonically decreasing sequence. Since (s_n) is monotic and bounded, $\lim s_n$ exists.

(c) Theorem: $s = \lim s_n = 0$

Proof: Taking the limit of s_n using its recursive definition, we get

$$\lim s_{n+1} = \lim \left(\left(\frac{n}{n+1} \right) s_n^2 \right)$$
$$\lim s_{n+1} = \lim \left(\frac{n}{n+1} \right) \lim s_n^2$$
$$s = s^2 \Rightarrow s = 0, 1$$

Since (s_n) is a monotonically decreasing sequence with $s_2 = \frac{1}{2}, s \neq 1 \Rightarrow s = 0$.

Ross 10.10

Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.

(a)

$$s_2 = \frac{1}{3}(1+1) \Rightarrow s_2 = \frac{2}{3}$$
$$s_3 = \frac{1}{3}\left(\frac{2}{3}+1\right) \Rightarrow s_3 = \frac{5}{9}$$
$$s_4 = \frac{1}{3}\left(\frac{5}{9}+1\right) \Rightarrow s_4 = \frac{14}{27}$$

(b) Theorem: $s_n > \frac{1}{2}$ for all n. Proof: Let P(n) be the statement " $s_n > \frac{1}{2}$ ". Base Case: P(1)

$$s_1 = 1 > \frac{1}{2}$$

Induction Step: $P(n) \Rightarrow P(n+1)$ Assume P(n).

$$s_n > \frac{1}{2} \Rightarrow s_n + 1 > \frac{3}{2}$$
$$\Rightarrow s_{n+1} = \frac{1}{3}(s_n + 1) > \frac{1}{2}$$

The above statement is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n.

(c) Theorem: (s_n) is a monotonically decreasing sequence. Proof:

First, I will prove by induction that $s_n = \frac{3^{n-1}+1}{2*3^{n-1}}$ for all n. Let P(n) be the statement " $s_n = \frac{3^{n-1}+1}{2*3^{n-1}}$ ". For the base case, P(1),

$$s_1 = \frac{3^{1-1}+1}{2*3^{1-1}} = \frac{1+1}{2*1} = 1$$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume P(n).

$$s_n = \frac{3^{n-1} + 1}{2 * 3^{n-1}} \Rightarrow s_n + 1 = \frac{3^{n-1} + 1}{2 * 3^{n-1}} + 1 = \frac{3^{n-1} + 1 + 2 * 3^{n-1}}{2 * 3^{n-1}} = \frac{3^n + 1}{2 * 3^{n-1}}$$
$$s_{n+1} = \frac{1}{3}(s_n + 1) = \frac{1}{3} * \frac{3^n + 1}{2 * 3^{n-1}} = \frac{3^n + 1}{2 * 3^n}$$

The above statement is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n.

Cameron Shotwell ID: 3035907666 Math 104

Separately, consider s_{n+1} .

$$s_{n+1} = \frac{3^n + 1}{2 * 3^n} = \frac{3^n}{2 * 3^n} + \frac{1}{2 * 3^n} \le \frac{3^n}{2 * 3^n} + \frac{1}{2 * 3^{n-1}}$$
$$\Rightarrow s_{n+1} \le \frac{3^n}{2 * 3^n} + \frac{1}{2 * 3^{n-1}} = \frac{3^{n-1}}{2 * 3^{n-1}} + \frac{1}{2 * 3^{n-1}} = \frac{3^{n-1} + 1}{2 * 3^{n-1}} = s_n$$

 $s_{n+1} \leq s_n$ for all *n* implies (s_n) is a monotonically decreasing sequence.

(d) Theorem: $\lim s_n$ exists and $s = \lim s_n = \frac{1}{2}$. Proof:

Since (s_n) is monotonically decreasing, it is bounded above by $s_1 = 1$. From (b), (s_n) is bounded below by $\frac{1}{2}$. Since (s_n) is monotonic and bounded, $\lim s_n$ exists. Taking the limit of the recursive definition of s_{n+1} ,

$$\lim s_{n+1} = \lim \frac{1}{3}(s_n+1) \Rightarrow s = \frac{1}{3}(s+1) \Rightarrow s = \frac{1}{2}$$

Ross 10.11

Let $t_1 = 1$ and $t_{n+1} = (1 - \frac{1}{4n^2}) t_n$

(a) Theorem: $\lim t_n$ exists.

First, I'll prove the claim that (t_n) is bounded below by 0 by induction. Let P(n) be the statement " $t_n > 0$ ". For the base case, P(1):

 $t_1 = 1 > 0$

For the induction step, $P(n) \Rightarrow P(n+1)$, assume P(n). Using the fact that $n \ge 1$.

$$4n^2>1\Rightarrow \frac{1}{4n^2}<1\Rightarrow 1-\frac{1}{4n^2}>0$$

 $t_n > 0$ implies that $t_{n+1} = \left(1 - \frac{1}{4n^2}\right)t_n > 0$. The previous statement is P(n+1), proving $P(n) \Rightarrow P(n+1)$. By the principle of mathematical induction, P(n) holds for all positive integers n. Separately, $\frac{1}{4n^2} > 0$ and $t_n > 0$ implies $-\frac{1}{4n^2} * t_n < 0$. Adding t_n to both sides of the previous inequality reveals

$$t_{n+1} = \left(1 - \frac{1}{4n^2}\right)t_n = t_n - \frac{1}{4n^2} * t_n < t_n$$

 $t_{n+1} < t_n$ implies (t_n) is a monotonically decreasing sequence. This further implies that $t_1 = 1$ is an upper bound for (t_n) . Since (t_n) is monotonic and bounded, $\lim t_n$ exists.

(b) Since (t_n) is monotonically decreasing and bounded below by 0, I am going to guess that $\lim t_n = 0$. It turns out the limit is $\frac{2}{\pi}$. I was definitely off. What an L.

Squeeze Lemma:

Theorem: Let a_n , b_n , c_n be three sequences such that $a_n \leq b_n \leq c_n$ and $L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$. $\lim_{n \to \infty} b_n = L$.

Proof:

Let a_n, b_n, c_n be three sequences such that $a_n \leq b_n \leq c_n$ and $L = \lim a_n = \lim c_n$. $L = \lim a_n$ implies that for any $\epsilon > 0$, there exists some N_a such that for $n > N_a$, $|a_n - L| < \epsilon$. This implies that $-\epsilon < a_n - L \Rightarrow -\epsilon + L < a_n$. Similarly, for any $\epsilon > 0$, there exists some N_c such that for $n > N_c$, $|c_n - L| < \epsilon$. This implies that $c_n - L < \epsilon \Rightarrow c_n < \epsilon + L$. Now consider $n > N_b = \max(\{N_a, N_c\})$. $a_n \leq b_n \leq c_n$ implies

$$-\epsilon + L < a_n \le b_n \le c_n < \epsilon + L$$
$$-\epsilon + L < b_n < \epsilon + L$$
$$-\epsilon < b_n - L < \epsilon$$
$$|b_n - L| < \epsilon \text{ for } n > N_b$$

Therefore, $\lim b_n = L$.