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1 Ross 1.10

We can rewrite (2n + 1) + (2n + 3) + ... + (4n − 1) as
∑n

i=1 2n + (2i − 1) and
proceed to prove by induction.

The base case is n = 1.
∑n

i=1 2n + (2i − 1)|n=1 = 3, which is equivalent to
3n2|n=1 = 3 which is true.

For the induction hypothesis, we assume that this holds for n = k, and seek
to show that it also holds for n = k+1. Assuming

∑n
i=1 2n+(2i−1)|n=k = 3k2,

we prove
∑n

i=1 2n+ (2i− 1)|n=k+1 = 3(k + 1)2 through the following

n∑
i=1

2n+ (2i− 1)|n=k+1 =

k+1∑
i=1

2(k + 1) + (2i− 1)

=

{
k∑

i=1

2(k + 1) + (2i− 1)

}
+ 4k + 3

=

{
k∑

i=1

2k + (2i− 1)

}
+

k∑
i=1

2 + 4k + 3

=

{
k∑

i=1

2k + (2i− 1)

}
+ 6k + 3

= 3k2 + 6k + 3

= 3(k + 1)2

2 Ross 1.12

1. (a) n = 1

(a+ b)1 =

(
1

0

)
a1 +

(
1

1

)
a1−1b

= a1 + 1a1−1b

= a+ b

1



(b) n = 2

(a+ b)2 =

(
2

0

)
a2 +

(
1

1

)
a2−1b+

(
2

2

)
a2−2b2

= a2 + 2a2−1b+
1

2
(2)(1)a2−2b2

= a2 + 2ab+ b2

(c) n = 3

(a+ b)3 =

(
3

0

)
a3 +

(
3

1

)
a3−1b+

(
3

2

)
a3−2b2 +

(
3

3

)
a3−3b3

= a3 + 3a3−1b+
1

2
(3)(3− 1)a3−2b2 + b3

= a3 + 3a2b+ 3ab2 + b3

2. To show
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
for k = 1, 2, ..., n we have the following:

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n− k + 1

n− k + 1

n!

k!(n− k)!
+

k

k

n!

(k − 1)!(n− k + 1)!

=
(n+ 1− k)n! + kn!

k!(n+ 1− k)!

=
(n+ 1)n!

k!((n+ 1)− k)!

=
(n+ 1)!

k!((n+ 1)− k)!

=

(
n+ 1

k

)
3. We’ve already verified the binomial theorem for the base case n = 1. Let

us assume that for the n case the binomial theorem is true, and then prove
that it holds for the n+ 1 case.

For the n case, assume

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn.

Let us show that that for the n+ 1case,

(a+b)(n+1) =

(
n+ 1

0

)
an+1+

(
n+ 1

1

)
anb+...+

(
n+ 1

n

)
abn−1+

(
n+ 1

n+ 1

)
bn+1.
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We proceed as follows:

(a+ b)(n+1) = (a+ b)(a+ b)n

= (a+ b)

{(
n

0

)
an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn
}

= a

{(
n

0

)
an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn
}
+

b

{(
n

0

)
an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn
}

=

{(
n

0

)
an+1 +

(
n

1

)
anb+ ...+

(
n

n− 1

)
a2bn−1 +

(
n

n

)
abn

}
+{(

n

0

)
anb+

(
n

1

)
an−1b2 + ...+

(
n

n− 1

)
abn +

(
n

n

)
bn+1

}
=

(
n

0

)
an+1 +

n∑
i=1

{(
n

i

)
+

(
n

i− 1

)}
an+1−ibi +

(
n

n

)
bn+1

=

(
n

0

)
an+1 +

n∑
i=1

{(
n+ 1

i

)}
an+1−ibi +

(
n

n

)
bn+1

=

(
n

0

)
an+1 +

(
n+ 1

1

)
anb+ ...+

(
n+ 1

n

)
abn−1 +

(
n

n

)
bn+1

=

(
n+ 1

0

)
an+1 +

(
n+ 1

1

)
anb+ ...+

(
n+ 1

n

)
abn−1 +

(
n+ 1

n+ 1

)
bn+1

Hence we have proven the binomial theorem using induction and part (b)
on the third to last step.

3 Ross 2.1

Using the rational zeros theorem:

1. x2 − 3 = 0: The only possible rational roots are ±1,±3, neither of which
solve the equation.

2. x2 − 5 = 0: The only possible rational roots are ±1,±5, neither of which
solve the equation.

3. x2 − 7 = 0: The only possible rational roots are ±1,±7, neither of which
solve the equation.

4. x2−24 = 0: The only possible rational roots are±1,±2,±3,±4,±6,±8,±12,±24,
none of which solve the equation.

5. x2−31 = 0: The only possible rational roots are ±1,±31, neither of which
solve the equation.
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4 Ross 2.2

Using the rational zeros theorem:

1. x3 − 2 = 0: The only possible rational roots are ±1,±2, neither of which
solve the equation.

2. x7 − 5 = 0: The only possible rational roots are ±1,±5, neither of which
solve the equation.

3. x4−13 = 0: The only possible rational roots are ±1,±13, neither of which
solve the equation.

5 Ross 2.7

1. √
4 + 2

√
3−

√
3 = x√

4 + 2
√
3 = x+

√
3

(

√
4 + 2

√
3)2 = (x+

√
3)2

4 + 2
√
3 = x2 + 2

√
3x+ 3

It can be readily seen that 1 solves this expression, hence
√

4 + 2
√
3−

√
3 =

1 and is rational.

2. √
6 + 4

√
2−

√
2 = x√

6 + 4
√
2 = x+

√
2

(

√
6 + 4

√
2)2 = (x+

√
2)2

6 + 4
√
2 = x2 + 2

√
2x+ 2

It can be readily seen that 2 solves this expression, hence
√

6 + 4
√
2−

√
2 =

2 and is rational.

6 Ross 3.6

The triangle inequality states that |a+ b| ≤ |a|+ |b| for all a, b ∈ R. As the hint
says, we will apply this twice to prove that |a+ b+ c| ≤ |a|+ |b|+ |c|.
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1. Let us group together two of the terms and apply triangle inequality.
We know that |(a + b) + c| ≤ |a + b| + |c|. In addition, we know that
|a+ b| ≤ |a|+ |b|. Combining these two terms together, we have |(a+ b)+
c| ≤ |a+ b|+ |c| ≤ |a|+ |b|+ |c| and have hence proven the statement.

2. To prove the general case, with induction, we already have proven the
base case with the triangle inequality. Hence moving onto the induction
hypothesis, we wish to prove that if this hold for the n terms, then it will
also hold for n+ 1 terms. In the n-th case, we assume that:

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

We wish to prove the following with this assumption:

|a1 + a2 + ...+ an + an+1| ≤ |a1|+ |a2|+ ...+ |an+1|.

We can do so by once again grouping them into two separate terms. Let
the first term be the first n elements, and the second term be an+1. What
we have is something similar to what we proved in part 1. We know the
following through the triangle inequality:

|(a1 + a2 + ...+ an) + an+1| ≤ |(a1 + a2 + ...+ an)|+ |an+1|

And from our induction hypothesis we know that:

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|.

Combining these two inequalities we have

|(a1+a2+...+an)+an+1| ≤ |(a1+a2+...+an)|+|an+1| ≤ |a1|+|a2|+...+|an|+|an+1|

which concludes the proof.

7 Ross 4.11

The denseness property of Q states that if a, b ∈ R there is a rational r ∈ Q
such that a < r < b. We can prove that there are an infinite amount of rationals
between a and b by repeatedly using the denseness property between either a
and b with the rational value r that we discover. For any arbitrary n, we can
find n number of rationals between a and b. The base case where n = 1 is given
by the denseness property, since we know there exists at least 1 r between a and
b. Now on the inductive hypothesis, assume have already found n such rational
numbers between a and b, discovered in such a way each ri is between a and
ri−1, that is we keep finding rationals that get progressively closer to a (this
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choice is arbitrary, any pair that has not already been searched between will
work). Assuming we have already found rn, which is the n-th rational number
between a and b, we can find the n + 1-th rational number by applying the
denseness property onto a and rn. There must exist a rational rn+1 number
such that a < rn+1 < rn, hence we have proven the inductive step and shown
that there are an infinite number of rational numbers, as we can arbitrarily
increase n.

8 Ross 4.14

1. First, we show that for any b ∈ B, sup(A+B)− b is an upper bound for
the set A. In order to show this, we need to show that sup(A+B)− b ≥ a
for all a ∈ A. By rearranging this inequality, we have sup(A+B) ≥ a+ b
for a given b ∈ B and any a ∈ A. This is by definition true, since A + B
is defined to be the set of all sums a + b where a ∈ A and b ∈ B. Since
sup(A+B)− b is an upper bound for A, as the hint suggests, this implies
that sup(A+ B)− b is greater than supA. Since we know the inequality
sup(A + B) − b ≥ supA for any b ∈ B, we can rearrange this inequality
to read sup(A + B) − supA ≥ b for any b ∈ B. By definition, this
means that sup(A + B) − supA is an upper bound for B, and hence
sup(A+B)− supA ≥ supB. As a result, supA+ supB ≤ sup(A+B).

We know separately that supA ≥ a for all a ∈ A, and supB ≥ b for
all b ∈ B. Combining these together, we know that supA + supB is an
upperbound for the sum of any a ∈ A, b ∈ B. Since supA+B is defined
to be the least upper bound, it must be the case that supA+B ≤ supA+
supB. However, since we showed before that supA+supB ≤ sup(A+B),
these two statements combined indicate that it must be that case that
supA+ supB = sup (A+B)

2. For any given b ∈ B, inf(A+B)− b ≤ a for all a ∈ A which can be shown
by simply moving b to the other side and observing this is the definition
of the infimum of the set A + B. This indicates that inf(A + B) − b is a
lower bound for a and hence, inf(A + B) − b ≤ inf a. By moving things
around, we also have that for all b ∈ B, inf(A+B)− inf a ≤ b, and hence
by similar reasoning, inf(A + B) − inf a ≤ inf b. As a result, we have
inf(A+B) ≤ inf b+ inf a.

We know that separately inf A ≤ a for all a ∈ A, and inf B ≤ b for
all b ∈ B. Combining these together, we know that inf A + inf B is an
lowerbound for any sum of a ∈ A, b ∈ B. Since inf A+B is defined
to be the greatest lower bound, it must be the case that inf A + inf B ≤
inf A+B. However, since we showed before that inf(A+B) ≤ inf b+inf a,
these two statements combined indicate that it must be that case that
inf A+ inf B = inf (A+B)
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9 Ross 7.5

1. lim sn where sn =
√
n2 + 1− n

√
n2 + 1− n =

(√
n2 + 1− n

) (√
n2 + 1 + n

)(√
n2 + 1 + n

)
=

n2 + 1− n√
n2 + 1 + n

=
1√

n2 + 1 + n

= 0 as n approaches ∞

2. lim
(√

n2 + n− n
)

(√
n2 + n− n

)
=

(√
n2 + n− n

) (√
n2 + n+ n

)(√
n2 + n+ n

)
=

n2 + n− n2

√
n2 + 1 + n

=
n√

n2 + 1 + n

=
1

2
as n approaches ∞ since

√
n2 + 1 approaches n

3. lim
(√

4n2 + n− 2n
)

(√
4n2 + n− 2n

)
=

(√
4n2 + n− 2n

) (√
4n2 + n+ 2n

)(√
4n2 + n+ 2n

)
=

4n2 + n− 4n2(√
4n2 + n+ 2n

)
=

n(√
4n2 + n+ 2n

)
=

n

2n
√

1 + 1
4n + 2n

=
n

4n

=
1

4
as n approaches ∞ since

√
1 +

1

4n
approaches 1
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