MATH104 Homework 2

Danny Wu

February 2, 2022

1 Ross 9.9

- 1. The definition of $\lim s_n = +\infty$ is that for each M > 0, there is a number N such that n > N implies $s_n > M$. If the limit of s_n is $+\infty$, starting from N_0 we can apply this definition through s_n onto t_n . We know that for all $n > N_0$, $t_n \ge s_n$, and for some M, there exists N such that $s_n > M$. If we consider all $n > N_0 \cap n > N$, then we know that $t_n \ge s_n$ as $n > N_0$, and $s_n > M$ as n > N, which implies $t_n \ge s_n > M$ therefore proving that $\lim t_n = +\infty$
- 2. Using similar logic as the previous part, if we know that if $\lim t_n = -\infty$, then there exists a number N for each M < 0 such that all n > N implies $t_n < M$. In addition, there exists some N_0 such that $s_n \leq t_n$ for all $n > N_0$. If we consider all n such that $n > N_0$ and n > N, then we know that $s_n \leq t_n$, and $s_n < M$, and hence $s_n \leq t_n \leq M$ for all n that satisfy the condition. Since for all aforementioned n, s_n is less than M for any $M < 0, s_n$ diverges to $-\infty$
- 3. If $\lim s_n$ and $\lim t_n$ exist, then we can prove that $\lim t_n \lim s_n \ge 0$. Let the limits be represented at a and b respectively. In lecture we proved $\lim (s_n + t_n) = a + b$, and similarly, we know that $\lim (t_n - s_n) = b - a$. Using this definition, we can use the fact that there exists N_0 , such that for all $n > N_0$, we will have $s_n \le t_n$ or that $t_n - s_n \ge 0$. Take the maximum of N and N_0 , where N represents the value in the proof in lecture where n > N implies $|(t_n - s_n) - (b - a)| \le \epsilon$. If we consider all n such that $n > N_0$ and n > N, we know that the $t_n - s_n \ge 0$, and the difference between these two sequences and their limits will be less than any $\epsilon > 0$, hence it must be the case that the lim $t_n - \lim s_n \ge 0$

2 Ross 9.15

$$\lim_{n \to \infty} \frac{a^n}{n!} = \frac{a \times a \times a \times \dots}{n \times (n-1) \times \dots \times a \times \dots \times 1}$$
$$= \frac{a^a}{a!} \times \frac{a^{n-a}}{\frac{n!}{(a)!}}$$
$$= \frac{a^k}{k!} \times \frac{a}{a+1} \times \frac{a}{a+2} \times \dots$$

We can treat the first term as a constant. For all $a \in R$, there is some $k \in \mathbb{N}$ such that a > k > a + 1, where the first k terms in this product will be products of terms greater than 1, represented as $\frac{a^k}{k!}$, and the last n - k terms will be products of terms less than 1. Consider the sequence a_n which represents these terms. For any $\epsilon > 0$, we can find such N such that for all n > N, $|a_n| <= \epsilon$. Since we are multiplying a constant term $\frac{a^k}{k!}$ by many fractions smaller than 1, we can simply keep increasing n which means multiplying by smaller and smaller fractions get below ϵ . By definition, this means the sequence converges to 0.

3 Ross 10.7

Consider the sequence $s'_n = \sup S - \frac{1}{n}$. Since we can subtract an arbitrarily small amount from $\sup S$, there will exist a value s_n for every index n such that $s'_n \leq s_n \leq \sup S$. Hence, if we consider all points in S such that it is greater than s'_n , then it will converge to $\sup S$, as we know there exists M such that any n > M we will have $\sup S - \frac{1}{n} \leq s_n < \sup S$, which implies that $0 > \sup S - s_n \geq \frac{1}{n}S$. Since this works for any large n, we have that the limit of s_n is $\sup S$ since we can find that the distance is less than any $\epsilon > 0$ by just increasing n.

4 Ross 10.8

We will prove that $\sigma_{n+1} \geq \sigma_n$

$$\sigma_n \leq \sigma_{n+1}$$

$$\frac{1}{n}(s_1 + s_2 + \dots + s_n) \leq \frac{1}{n+1}(s_1 + s_2 + \dots + s_{n+1})$$

$$(n+1)(s_1 + s_2 + \dots + s_n) \leq n(s_1 + s_2 + \dots + s_{n+1})$$

$$(s_1 + s_2 + \dots + s_n) \leq n(s_{n+1})$$

$$(s_1 + s_2 + \dots + s_n) \leq s_{n+1} + s_{n+1} + \dots + s_{n+1}$$

From the last line, an element wise comparison between s_i and s_{n+1} for i < n verifies the inequality, since s_n is an increasing sequence and that implies that $s_n \leq s_{n+1}$ for all n.

5 Ross 10.9

$$s_1 = 1, s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2 \forall n \ge 1$$

- 1. $s_2 = \frac{1}{2}(1)^2 = \frac{1}{2},$ $s_3 = \frac{2}{3}(\frac{1}{2}^2) = \frac{1}{6}$ $s_4 = \frac{3}{4}(\frac{1}{6}^2) = \frac{1}{48}$
- 2. The sequence is bounded from above by 1 and bounded from below by zero since both terms will always be positive. In addition, $\frac{n}{n+1}$ and s_n^2 are decreasing. A decreasing bounded sequence must converge.
- 3. Consider $s'_n = \frac{1}{n}$. By inspection, $s'_n \ge s_n \ge 0$ for all $n \ge 1$. We know s'_n converges to 0, and since s_n is between s'_n and 0, which lower bounds both of them, it must converge to the limit of 0 and the limit of s'_n , which is 0.

6 Ross 10.10

$$s_1 = 1, s_{n+1} = \frac{1}{3}(s_n + 1) \forall n \ge 1$$

- 1. $s_2 = \frac{2}{3},$ $s_3 = \frac{1}{3}(\frac{2}{3}+1) = \frac{5}{9}$ $s_4 = \frac{1}{3}(\frac{5}{9}+1) = \frac{14}{27}$
- 2. In the base case, $s_1 = 1$ and hence satisfies $s_n > \frac{1}{2}$. Assume $s_n > \frac{1}{2}$, show that $s_{n+1} > \frac{1}{2}$ as well.

$$s_{n+1} = \frac{1}{3}(s_n+1) < \frac{1}{3}(\frac{1}{2}+1) = \frac{1}{2}$$

3. We want to show $s_{n+1} \leq s_n$

$$s_n \ge s_{n+1}$$

$$s_n \ge \frac{1}{3}(s_n+1)$$

$$3s_n \ge (s_n+1)$$

$$2s_n \ge 1$$

$$s_n \ge \frac{1}{2}$$

Since all things are iff, the first line is true and hence s_n is a decreasing statement.

4. s_n is decreasing and bounded therefore must have converge to a value.

$$s=\frac{1}{3}(s+1)\implies s=\frac{1}{2}$$

7 Ross 10.11

- 1. t_n is upper bounded by 1 and lower bounded by zero. $\left[1 \frac{1}{4n^2}\right]$ is always less than 1 for all n > 0, and as a result, t_{n+1} will always be the previous term multiplied by a smaller positive term. Hence it is also decreasing. As a result, it must have a limit since it is bounded and decreasing.
- 2. Not zero since the discounting over each term gets smaller. Probably something weird and irrational.

8 Squeeze Test

Let a_n, b_n, c_n be three sequences where $a_n \leq b_n \leq c_n$ and $L = \lim a_n = \lim c_n$. Then $\lim b_n = L$ as well because for a_n and c_n , we know that there exists some N for any $\epsilon > 0$ where for all n > N, both $|a_n - L| < \epsilon$ and $|c_n - L| < \epsilon$ by definition of limits (N is max of (N_a, N_c)). Expanding the absolute value we have:

$$-\epsilon < a_n - L \le c_n - L \le \epsilon$$

$$L - \epsilon < a_n \le c_n \le L + \epsilon$$

$$\implies L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

$$\implies L - \epsilon < b_n < L + \epsilon$$

$$\implies |b_n - L| < \epsilon$$

Which concludes the proof.