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1 Ross 9.9

1. The definition of lim sn = +∞ is that for each M > 0, there is a number
N such that n > N implies sn > M . If the limit of sn is +∞, starting
from N0 we can apply this definition through sn onto tn. We know that
for all n > N0, tn ≥ sn, and for some M , there exists N such that sn > M .
If we consider all n > N0 ∩n > N , then we know that tn ≥ sn as n > N0,
and sn > M as n > N , which implies tn ≥ sn > M therefore proving that
lim tn = +∞

2. Using similar logic as the previous part, if we know that if lim tn = −∞,
then there exists a number N for each M < 0 such that all n > N implies
tn < M . In addition, there exists some N0 such that sn ≤ tn for all
n > N0. If we consider all n such that n > N0 and n > N , then we know
that sn ≤ tn, and sn < M , and hence sn ≤ tn ≤ M for all n that satisfy
the condition. Since for all aforementioned n, sn is less than M for any
M < 0, sn diverges to −∞

3. If lim sn and lim tn exist, then we can prove that lim tn - lim sn ≥ 0. Let
the limits be represented at a and b respectively. In lecture we proved lim
(sn+ tn) = a+ b, and similarly, we know that lim (tn− sn) = b−a. Using
this definition, we can use the fact that there exists N0, such that for all
n > N0, we will have sn ≤ tn or that tn − sn ≥ 0. Take the maximum
of N and N0, where N represents the value in the proof in lecture where
n > N implies |(tn − sn) − (b − a)| ≤ ϵ. If we consider all n such that
n > N0 and n > N , we know that the tn − sn ≥ 0, and the difference
between these two sequences and their limits will be less than any ϵ > 0,
hence it must be the case that the lim tn - lim sn ≥ 0
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limn→∞
an

n!
=

a× a× a× ...

n× (n− 1)× ...× a× ...× 1

=
aa

a!
× an−a

n!
(a)!

=
ak

k!
× a

a+ 1
× a

a+ 2
× ...

We can treat the first term as a constant. For all a ∈ R, there is some k ∈ N
such that a > k > a+1, where the first k terms in this product will be products

of terms greater than 1, represented as ak

k! , and the last n − k terms will be
products of terms less than 1. Consider the sequence an which represents these
terms. For any ϵ > 0, we can find such N such that for all n > N , |an| <= ϵ.

Since we are multiplying a constant term ak

k! by many fractions smaller than
1, we can simply keep increasing n which means multiplying by smaller and
smaller fractions get below ϵ. By definition, this means the sequence converges
to 0.
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Consider the sequence s′n = sup S − 1
n . Since we can subtract an arbitrarily

small amount from sup S, there will exist a value sn for every index n such
that s′n ≤ sn ≤ sup S. Hence, if we consider all points in S such that it is
greater than s′n, then it will converge to sup S, as we know there exists M such
that any n > M we will have sup S − 1

n ≤ sn < sup S, which implies that
0 > sup S − sn ≥ 1

nS. Since this works for any large n, we have that the limit
of sn is sup S since we can find that the distance is less than any ϵ > 0 by just
increasing n.
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We will prove that σn+1 ≥ σn

σn ≤ σn+1

1

n
(s1 + s2 + ...+ sn) ≤

1

n+ 1
(s1 + s2 + ...+ sn+1)

(n+ 1)(s1 + s2 + ...+ sn) ≤ n(s1 + s2 + ...+ sn+1)

(s1 + s2 + ...+ sn) ≤ n(sn+1)

(s1 + s2 + ...+ sn) ≤ sn+1 + sn+1 + ...+ sn+1
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From the last line, an element wise comparison between si and sn+1 for i < n
verifies the inequality, since sn is an increasing sequence and that implies that
sn ≤ sn+1 for all n.
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s1 = 1, sn+1 =

(
n

n+ 1

)
s2n∀n ≥ 1

1. s2 = 1
2 (1)

2 = 1
2 ,

s3 = 2
3 (

1
2

2
) = 1

6

s4 = 3
4 (

1
6

2
) = 1

48

2. The sequence is bounded from above by 1 and bounded from below by
zero since both terms will always be positive. In addition, n

n+1 and s2n are
decreasing. A decreasing bounded sequence must converge.

3. Consider s′n = 1
n . By inspection, s′n ≥ sn ≥ 0 for all n ≥ 1. We know

s′n converges to 0, and since sn is between s′n and 0, which lower bounds
both of them, it must converge to the limit of 0 and the limit of s′n, which
is 0.
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s1 = 1, sn+1 =
1

3
(sn + 1)∀n ≥ 1

1. s2 = 2
3 ,

s3 = 1
3 (

2
3 + 1) = 5

9
s4 = 1

3 (
5
9 + 1) = 14

27

2. In the base case, s1 = 1 and hence satisfies sn > 1
2 . Assume sn > 1

2 , show
that sn+1 > 1

2 as well.

sn+1 =
1

3
(sn + 1) <

1

3
(
1

2
+ 1) =

1

2

3. We want to show sn+1 ≤ sn
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sn ≥ sn+1

sn ≥ 1

3
(sn + 1)

3sn ≥ (sn + 1)

2sn ≥ 1

sn ≥ 1

2

Since all things are iff, the first line is true and hence sn is a decreasing
statement.

4. sn is decreasing and bounded therefore must have converge to a value.

s =
1

3
(s+ 1) =⇒ s =

1

2
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1. tn is upper bounded by 1 and lower bounded by zero.
[
1− 1

4n2

]
is always

less than 1 for all n > 0, and as a result, tn+1 will always be the previous
term multiplied by a smaller positive term. Hence it is also decreasing.
As a result, it must have a limit since it is bounded and decreasing.

2. Not zero since the discounting over each term gets smaller. Probably
something weird and irrational.

8 Squeeze Test

Let an, bn, cn be three sequences where an ≤ bn ≤ cn and L = lim an = lim cn.
Then limbn = L as well because for an and cn, we know that there exists some
N for any ϵ > 0 where for all n > N , both |an − L| < ϵ and |cn − L| < ϵ by
definition of limits (N is max of (Na, Nc)). Expanding the absolute value we
have:

−ϵ < an − L ≤ cn − L ≤ ϵ

L− ϵ < an ≤ cn ≤ L+ ϵ

=⇒ L− ϵ < an ≤ bn ≤ cn < L+ ϵ

=⇒ L− ϵ < bn < L+ ϵ

=⇒ |bn − L| < ϵ

Which concludes the proof.
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