MATH104 Homework 2

Danny Wu

February 2, 2022

1 Ross 9.9

1. The definition of $\lim s_{n}=+\infty$ is that for each $M>0$, there is a number N such that $n>N$ implies $s_{n}>M$. If the limit of s_{n} is $+\infty$, starting from N_{0} we can apply this definition through s_{n} onto t_{n}. We know that for all $n>N_{0}, t_{n} \geq s_{n}$, and for some M, there exists N such that $s_{n}>M$. If we consider all $n>N_{0} \cap n>N$, then we know that $t_{n} \geq s_{n}$ as $n>N_{0}$, and $s_{n}>M$ as $n>N$, which implies $t_{n} \geq s_{n}>M$ therefore proving that $\lim t_{n}=+\infty$
2. Using similar logic as the previous part, if we know that if $\lim t_{n}=-\infty$, then there exists a number N for each $M<0$ such that all $n>N$ implies $t_{n}<M$. In addition, there exists some N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. If we consider all n such that $n>N_{0}$ and $n>N$, then we know that $s_{n} \leq t_{n}$, and $s_{n}<M$, and hence $s_{n} \leq t_{n} \leq M$ for all n that satisfy the condition. Since for all aforementioned n, s_{n} is less than M for any $M<0, s_{n}$ diverges to $-\infty$
3. If $\lim s_{n}$ and $\lim t_{n}$ exist, then we can prove that $\lim t_{n}-\lim s_{n} \geq 0$. Let the limits be represented at a and b respectively. In lecture we proved \lim $\left(s_{n}+t_{n}\right)=a+b$, and similarly, we know that $\lim \left(t_{n}-s_{n}\right)=b-a$. Using this definition, we can use the fact that there exists N_{0}, such that for all $n>N_{0}$, we will have $s_{n} \leq t_{n}$ or that $t_{n}-s_{n} \geq 0$. Take the maximum of N and N_{0}, where N represents the value in the proof in lecture where $n>N$ implies $\left|\left(t_{n}-s_{n}\right)-(b-a)\right| \leq \epsilon$. If we consider all n such that $n>N_{0}$ and $n>N$, we know that the $t_{n}-s_{n} \geq 0$, and the difference between these two sequences and their limits will be less than any $\epsilon>0$, hence it must be the case that the $\lim t_{n}-\lim s_{n} \geq 0$

2 Ross 9.15

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a^{n}}{n!} & =\frac{a \times a \times a \times \ldots}{n \times(n-1) \times \ldots \times a \times \ldots \times 1} \\
& =\frac{a^{a}}{a!} \times \frac{a^{n-a}}{\frac{n!}{(a)!}} \\
& =\frac{a^{k}}{k!} \times \frac{a}{a+1} \times \frac{a}{a+2} \times \ldots
\end{aligned}
$$

We can treat the first term as a constant. For all $a \in R$, there is some $k \in \mathbb{N}$ such that $a>k>a+1$, where the first k terms in this product will be products of terms greater than 1 , represented as $\frac{a^{k}}{k!}$, and the last $n-k$ terms will be products of terms less than 1 . Consider the sequence a_{n} which represents these terms. For any $\epsilon>0$, we can find such N such that for all $n>N,\left|a_{n}\right|<=\epsilon$. Since we are multiplying a constant term $\frac{a^{k}}{k!}$ by many fractions smaller than 1 , we can simply keep increasing n which means multiplying by smaller and smaller fractions get below ϵ. By definition, this means the sequence converges to 0 .

3 Ross 10.7

Consider the sequence $s_{n}^{\prime}=\sup S-\frac{1}{n}$. Since we can subtract an arbitrarily small amount from $\sup S$, there will exist a value s_{n} for every index n such that $s_{n}^{\prime} \leq s_{n} \leq \sup S$. Hence, if we consider all points in S such that it is greater than s_{n}^{\prime}, then it will converge to $\sup S$, as we know there exists M such that any $n>M$ we will have $\sup S-\frac{1}{n} \leq s_{n}<\sup S$, which implies that $0>\sup S-s_{n} \geq \frac{1}{n} S$. Since this works for any large n, we have that the limit of s_{n} is sup S since we can find that the distance is less than any $\epsilon>0$ by just increasing n.

4 Ross 10.8

We will prove that $\sigma_{n+1} \geq \sigma_{n}$

$$
\begin{aligned}
\sigma_{n} & \leq \sigma_{n+1} \\
\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) & \leq \frac{1}{n+1}\left(s_{1}+s_{2}+\ldots+s_{n+1}\right) \\
(n+1)\left(s_{1}+s_{2}+\ldots+s_{n}\right) & \leq n\left(s_{1}+s_{2}+\ldots+s_{n+1}\right) \\
\left(s_{1}+s_{2}+\ldots+s_{n}\right) & \leq n\left(s_{n+1}\right) \\
\left(s_{1}+s_{2}+\ldots+s_{n}\right) & \leq s_{n+1}+s_{n+1}+\ldots+s_{n+1}
\end{aligned}
$$

From the last line, an element wise comparison between s_{i} and s_{n+1} for $i<n$ verifies the inequality, since s_{n} is an increasing sequence and that implies that $s_{n} \leq s_{n+1}$ for all n.

5 Ross 10.9

$$
s_{1}=1, s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2} \forall n \geq 1
$$

1. $s_{2}=\frac{1}{2}(1)^{2}=\frac{1}{2}$,
$s_{3}=\frac{2}{3}\left(\frac{1}{2}^{2}\right)=\frac{1}{6}$
$s_{4}=\frac{3}{4}\left(\frac{1}{6}^{2}\right)=\frac{1}{48}$
2. The sequence is bounded from above by 1 and bounded from below by zero since both terms will always be positive. In addition, $\frac{n}{n+1}$ and s_{n}^{2} are decreasing. A decreasing bounded sequence must converge.
3. Consider $s_{n}^{\prime}=\frac{1}{n}$. By inspection, $s_{n}^{\prime} \geq s_{n} \geq 0$ for all $n \geq 1$. We know s_{n}^{\prime} converges to 0 , and since s_{n} is between s_{n}^{\prime} and 0 , which lower bounds both of them, it must converge to the limit of 0 and the limit of s_{n}^{\prime}, which is 0 .

6 Ross 10.10

$$
s_{1}=1, s_{n+1}=\frac{1}{3}\left(s_{n}+1\right) \forall n \geq 1
$$

1. $s_{2}=\frac{2}{3}$
$s_{2}=\frac{1}{3}$,
$\left.s_{3}=\frac{2}{3}+1\right)=\frac{5}{9}$
$s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27}$
2. In the base case, $s_{1}=1$ and hence satisfies $s_{n}>\frac{1}{2}$. Assume $s_{n}>\frac{1}{2}$, show that $s_{n+1}>\frac{1}{2}$ as well.

$$
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)<\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}
$$

3. We want to show $s_{n+1} \leq s_{n}$

$$
\begin{aligned}
s_{n} & \geq s_{n+1} \\
s_{n} & \geq \frac{1}{3}\left(s_{n}+1\right) \\
3 s_{n} & \geq\left(s_{n}+1\right) \\
2 s_{n} & \geq 1 \\
s_{n} & \geq \frac{1}{2}
\end{aligned}
$$

Since all things are iff, the first line is true and hence s_{n} is a decreasing statement.
4. s_{n} is decreasing and bounded therefore must have converge to a value.

$$
s=\frac{1}{3}(s+1) \Longrightarrow s=\frac{1}{2}
$$

7 Ross 10.11

1. t_{n} is upper bounded by 1 and lower bounded by zero. $\left[1-\frac{1}{4 n^{2}}\right]$ is always less than 1 for all $n>0$, and as a result, t_{n+1} will always be the previous term multiplied by a smaller positive term. Hence it is also decreasing. As a result, it must have a limit since it is bounded and decreasing.
2. Not zero since the discounting over each term gets smaller. Probably something weird and irrational.

8 Squeeze Test

Let a_{n}, b_{n}, c_{n} be three sequences where $a_{n} \leq b_{n} \leq c_{n}$ and $L=\lim a_{n}=\lim c_{n}$. Then $\lim b_{n}=L$ as well because for a_{n} and c_{n}, we know that there exists some N for any $\epsilon>0$ where for all $n>N$, both $\left|a_{n}-L\right|<\epsilon$ and $\left|c_{n}-L\right|<\epsilon$ by definition of limits (N is max of $\left(N_{a}, N_{c}\right)$). Expanding the absolute value we have:

$$
\begin{gathered}
-\epsilon<a_{n}-L \leq c_{n}-L \leq \epsilon \\
L-\epsilon<a_{n} \leq c_{n} \leq L+\epsilon \\
\Longrightarrow L-\epsilon<a_{n} \leq b_{n} \leq c_{n}<L+\epsilon \\
\Longrightarrow L-\epsilon<b_{n}<L+\epsilon \\
\Longrightarrow\left|b_{n}-L\right|<\epsilon
\end{gathered}
$$

Which concludes the proof.

