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1 Ross 12.10

From the reverse direction, if lim sup |sn| < +∞, then we know that for any
N ∈ N, lim sup sn > sn for n > N and hence upper bounds the tail and is not
∞. In addition, we can take M1 = max(s1, ..., sN−1) to be an upper bound for
the first chunk. Therefore, |sn| is bounded by max(lim sup sn,M1). From the
forward direction, if sn is bounded, the values of sn will never go outside the
bounds, therefore the lim sup ̸= ∞. Hence the statement is iff.

2 Ross 12.12

1. The middle inequality is true by definition, hence we only prove the first
and last inequality. For the first inequality, we propose an intuitive argu-
ment. First, let us argue that inf{σn : n > N} ≥ inf{sn : n > n}. Since σ
is the average of the terms up until n, it will always be larger than or equal
to the small term up until n. We can prove this by contradiction, suppose
the average µ is smaller than the smallest value x, then that means there
must be smaller values pulling the average down, hence x is not the small-
est value. Since this holds true for all subsets of the sequence sn, then it
also holds as N → ∞. Through a similar argument, we can prove that
the supσn is less than sup sn. Averaging the values of sn will cause the
largest value of σn to be dragged down by small values, and hence will
necessarily be smaller than sup sn.

2. If lim sn exists, then sn converges. Therefore, we can treat σn as a series.
Since sn converges to s, we can show that σn = 1

n

∑
sn, and as this is an

average of the terms of sn, as sn converges, then σn will also converge to
s, as taking the average to infinity we have an infinite sum of values close
to s divided by an infinite amount. s∞

∞ = s, hence limσn = lim sn = s

3. Any sequence which alternates between constant terms will have σn con-
verge to zero (as consecutive terms cancel each other out, and the limit
will be zero).
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3 Ross 14.2

1. ∑ n− 1

n2

Diverges because in limit this simplifies to 1
n , which we know diverges.

2. ∑
(−1)n

Diverges since this alternates between 1 and 0.

3. ∑ 3n

n3

Converges because this simplifies to 3
n2 , and we know 1

n2 converges

4. ∑ n3

3n

|an|
1
n = |n

3/n

3n/n | = n
3
n

Converges because this is the product of n
1
n which we know converges.

5. ∑ n2

n!

|an+1

an
| =

∣∣∣∣ (n+1)2

(n+1)!

n2

n!

∣∣∣∣ = (n+1)2

n2(n+1) ≈
1

n+1 ≈ 0

Converges by ratio test.

6. ∑ 1

nn

|an|1/n = | 1n |
Converges by root test.

7. ∑ n

2n

|an|1/n = |n
1
n

2 | ≈ 1
2

Converges by root test.
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4 Ross 14.10

Since by Example 8, we know that an = 2(−1)n−n converges, let us replace 2
with 1/2 and hope that it works. We have a similar result as Example 8, for
even n, |an+1/an| = 2 and for odd terms it equal 1/8, hence the ratio gives
no information similar to example 8. For the root test however, we see that

α = |an|1/n =
(

1
2

(−1)n−n
)1/n

is equal to 1
2

1/n−1
for even terms and 1

2

−(1/n)−1

for odd terms, both of which converge to 2. Therefore by the root test, this
sequence diverges.

5 Rudin 3.6

1.
an =

√
n+ 1−

√
n

Notice that an+an+1 =
√
n+ 1−

√
n+

√
n+ 2−

√
n+ 1 =

√
n+ 2−

√
n.

By repeatedly expanding the sum until n = 1, we have
∑

N an =
√
N + 1−

1, which approaches infinity as N → ∞

2.

an =

√
n+ 1−

√
n

n

an =

√
n+ 1−

√
n

n

√
n+ 1 +

√
n√

n+ 1 +
√
n
=

1

n
√
n+ 1 + n3/2

an < sn = 1
n3/2 since n

√
n+ 1 > 0 for all n. Hence by comparison test,

since 1
n3/2 converges we know that an converges as well.

3.
an = (n1/n − 1)n

By root test, α = |(n1/n − 1)n|1/n = |(n1/n − 1)|. We know that (n1/n

converges to 1, hence lim supα = 0 and therefore this converges.

6 Rudin 3.7

If an converges, then we know that by the ratio test lim sup |an|1/n < 1 There-

fore, for bn =
√
an

n , if we apply the ratio test we have |
√
an

n |1/n = | a
1
2n
n

n1/n |. The
denominator converges to 1, and the top is less than one, hence this α is also
less than 1, therefore it converges by the root test.
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7 Rudin 3.9

α = lim sup |cn|1/n, R =
1

α

1. ∑
n3zn

α = lim sup |n3|1/n = lim sup |n3/n| = 1 =⇒ R = 1

2. ∑ 2n

n!
zn

α = lim sup |2
n

n!
|1/n = lim sup | 2

n!1/n
| = 0 =⇒ R = ∞

3. ∑ 2n

n2
zn

α = lim sup |2
n

n2
|1/n = lim sup | 2

n2/n
| = 2

1
=⇒ R =

1

2

4. ∑ n3

3n
zn

α = lim sup |n
3

3n
|1/n = lim sup |n

3/n

3
| = 1

3
=⇒ R = 3

8 Rudin 3.11

1.

lim
an

1 + an
= lim

1

1 + 1
an

→ 1 ̸= 0 and fails sanity check

2.

aN+1

sN+1
+ ...+

aN+k

sN+k
≥ aN+1

sN+k
+ ...+

aN+k

sN+k

since an > 0 =⇒ sn > sm for n > m

=
sN+k − sN

sN+k

= 1− sN
sN+k

Therefore the partial sum does not converge to zero since
∑

an/sn will
converge to 1 as k → ∞ and it diverges.

3.
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