January 18th

homework submission: upload to student homepage and then share to discord

also gradescope (gradav fealback)

NJ, Q2, P2	The "S" relation has 3 properties
Notural numbers	O asb,b≤a ⇒ a=b
N: E0,1,2, 3	ⓐ a≤b, b≤c ⇒ a≤c (transituity)
	 3 Vaib EQ, asb OR bea or both
• Successor construction: 2 is a successor of) 3 of 2	G VADE Q, ASD UN DEA DR DOM
3 ***	
so storting from D, one can reach all the northrals	Orderect Field \mathbb{Q} : field structure $(+, -, \cdot, /)$ is
Peans Axioms for natural numbers $(Tao - I)$	computible of relation structure (6)
t mathematical induction property (A-zions):	(a) $acb \implies acc \le bc$, $c \in \mathbb{Q}$
\rightarrow Let $n \in N$). P(n) be a statement depending on n .	f(1), (2) hold, (b) a ≥ 0, b ≥ 0 => a·b≥ 0
(1) P (0)	
$(2) P(k) \Rightarrow P(k+1)$	What's lacking about Q?
than P(n) is two for all nEND	There are certain gaps in Q for example, the equation
" $operations$ allowed for $N^*: +, \times$ (closure)	x ² =2 can't be solved in Q.
(-, / not always defined)	For a bounded subset in @ called E, it may not have
Integers	a "most economical" or "sharpest" upper bound in Q
·Z= {····· -2,-1,0,1,2,3	$e^{\chi}: E = \mathcal{E} \times e \mathcal{Q} \mid \chi^2 \leq 2 \mathcal{F}$
allowed operation: +, -, •	<u> </u>
(formally Z is a ring) (Hamson Chan's note)	-Ja Va 5 is an upper bound of E so is 4
Rational Numbers	but no least upper bound
· Q= E M m,n ∈Z, n≠03	sup (E)
- all 4 operations	Ly we wanna say Ja but Jaka
Q is now a "field"	• · · · · · · · · · · · · · · · · · · ·
$\rightarrow R$ is an ordered field, term is a "relation" \leq .	
f A relation S is a subset of $Q \times Q$, if	
(a,io) €S, we say "a and b has relations" or "a Sb	" [