homework submission: upload to student homepage and then share to discord also gradescope (grader feedback)
$\mathbb{N}, \mathbb{Q}, \mathbb{R}$
Natural numbers

$$
N:\{0,1,2, \ldots\}
$$

- Successor construction: 2 is a successor of 1

- Pean Axioms for natural numbers (Tao-I)
$\uparrow_{\text {mathematical induction property (A ion } 5 \text {): }}$
\rightarrow Let $n \in N$. $P(n)$ be a statement depending on n. If $(1),(2)$ hold,
Ordered Fielded \mathbb{Q} : fiehl structure $(t,-, \cdot, 1)$ is compatible or relation structure (\leq)
(a) $a \leqslant b \Rightarrow a+c \leqslant b+c, c \in \mathbb{Q}$
(b) $a \geq 0, b \geq 0 \Rightarrow a \cdot b \geq 0$
(1) $P(0)$
(2) $P(k) \Rightarrow P(k+1)$
then $P(n)$ is tie for all $n \in N$
- "operations allowed for N ": t, x (closure)
(-, / not always defined)
Integers

$$
\mathbb{Z}=\{\cdots-2,-1,0,1,2, \ldots\}
$$

allowed operation: $t,-$.
(formally \mathbb{Z} is a ring)
(Harrison Chen's note)
Rational Numbers

$$
\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, n \neq 0\right\}
$$

- all 4 operations
Q is now a "field"
$\rightarrow Q$ is an ordered field, there is a "relation" \leq.
「A relation S is a subset of $\mathbb{Q} \times \mathbb{Q}$, if
$(a, b) \in S$, we say " a and b has relations" or " $a S b$ "

What's lacking about Q ?
There are certain gaps in Q : for example, the equation $x^{2}=2$ canst be solved in \mathbb{Q}.

For a bounded subset in Q called E, it may not have a "most economical" or "sharpest" upper barrel in Q $e x: E=\left\{x \in \mathbb{Q} \mid x^{2} \leq 2\right\}$

but $\underbrace{\text { no least upper }}_{\sup (E)}$ bound
\rightarrow we wanna say $\sqrt{2}$ but $\sqrt{2} \notin \mathbb{Q}$

