Homework 1

Ishaan Patkar

Problem 1 (Ross 1.10). For any n € N,
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We will show that 0 € A and if n € A, then n+ 1 € A. First, by convention,
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and observe that 3(0)? = 0. Thus, 0 € A.
Now, for any n € N, observe that
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Now we have
3n?+(dn+1)+ (@dn+3)—2n+1)=3n>+6n+3 =3(n+1)~%

Thus, 3(n+1)? = >°}_,(2n+ 2k + 1) meaning that n+ 1 € A. Thus, A = N meaning this statement is true

for all natural numbers n.

Note that if the reader is uncomfortable with the summation convention used, we could also let A be the
set of natural numbers n that satisfy the equation or n = 0. In this case, proving the inductive step would
be done in two cases, first when n is not 0, and second when n = 0 (which is equivalent to proving the base

case if we were inducting over the set of positive integers).



Problem 2 (Ross 1.12). For any natural number n € N, the following is true for all natural numbers n and
a,b € R, where R is a commmutative ring:

(a+b)" = ; (T;) a’b"l

(Note that (:‘) represents repeated addition of (7) copies of a'b" . It is thus an integer and not necessarily
an element of R in which the explicit formula may not hold in the case that R has nonzero characteristic.
Alternatively, we can consider (7;) here to be the map of (7;) € Z into the copy of Z/kZ C R given by the
canonical projection. )

2.a. The binomial theorem holds for n =0,1,2,3.

Proof. We have (a+b)° = 1 = ({)a’ and (a+b)' = (})a+ (;)b which are the exansions of the summations
for n =0 and n = 1. For n = 2, we have

(a+0b)?

(a+b)(a+Db)
=a(a+b)+b(a+1D)
=a® 4 ab+ ba + b?
=a? 4 ab+ ab + b?
= a® + 2ab + b?

(e (e

(a+b)* = (a+0b)*(a+b)
= (a® + 2ab + b*)(a +b)
= (a® + 2ab + b*)a + (a® + 2ab + b*)b
= a® + 2a°b + ab® + a®b + 2ab® + b?
= a® + 3a®b + 3ab® + b*.

For n = 3:
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The other facts we need is that (8) = (Z) = 1. This follows from the definition:
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2.c. For any natural number n and a,b € R,

(a+b)" = (Z)akb"_k.
k=0

and

Proof. Let:
A={neN|(a+b)" = Z (Z) atbn =y,

k=0
Observe that 0,1,2,3 € A as we have already shown the binomial theorem holds for them. Now we show
that if n € A, thenn+1 € A. Let n € A. Thus:

(a+b)"™" = (a+b)"(a+b)
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Thus, the theorem holds for n+ 1, meaning that n+1 € A. Thus, A = N implying that the binomial theorem
holds for all natural numbers. O
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Problem 3 (Ross 2.1). The numbers \/3,v/5,v/7,v/24,v31 € R are not rational numbers.

Proof. Observe that v/3 is a root of the polynomial 22 — 3 over R. We claim this polynomial has no rational
solutions. Observe that as it has integer coefficients, by the rational root theorem, the only rational solutions
are +1,+3. Notice as (£1)? —3 = —2 # 0 and (£3)? —3 = 6 # 0 (as Q and R have characteristic 0), 2% — 3
has no rational solutions. So, v/3 &€ Q.

Likewise, note that v/5 € R satisfies 22 — 5 = 0. By the Rational Root Theorem, the rational roots of
x? — 5 are contained in {£1,+5}. However, +1 is not a solution as 1 —5 = —4 # 0 and +5 is not a solution
either as 25 — 5 = 20 # 0. Thus, v/5 ¢ Q.



Similarly v/7 € R is a root of 22 — 7. By the Rational Root Theorem, solutions to this polynomial are
contained in {£1,+7}. However, neither 1 nor +7 are roots as 1 — 7= —6 # 0 and 49 — 7 =42 # 0. As
22 — 7 has no rational solutions, \/7 cannot be rational.

For v/24 € R, observe that V24 = 24/6 so if V24 € Q, then as % € Q, V6 € Q. However, V6 is
a root of the polynomial 2 — 6 which, by the Rational Root Theorem, only has solutions contained in
{£1,+2,+3,46}. However, none of these four solutions are roots, so v/6 ¢ Q and thus V24 ¢ Q.

Finally, for v/31, observe it is a root of the polynomial 22 — 31. This polynomial has solutions contained
in {#1, 431}, neither of which are solutions; thus, v/31 is irrational as well. O

Observe we can extend this technique to any squarefree number, showing that in general, square roots of
non-square integers are irrational.

Problem 4 (Ross 2.2). The numbers /2, v/5,v/13 € R\ Q.

Proof. We assume these numbers are contained in R (which can be proven by showing  — z™ is a continuous
function and applying the Intermediate Value Theorem). We now show they are irrational.

Observe /2 is a root of 3 — 2. By the Rational Root Theorem, the solutions to this polynomial are
contained in {£1,4-2}; since these are not solutions, 2® — 2 has no rational solutions and /2 is irrational.

Next, v/5 is a root of 7 — 5. By the Rational Root Theoreme, the solutions to this polynomial arae
contained in {41, 45}; however, neither are solutions as £1—5 # 0 and +57 —5 # 0 as 57 > 5 and —57 < 5.
So, as 7 — 5 has no rational roots, v/5 is irrational.

Finally, v/13 is a root of z* —13; by the Rational Root Theorem, solutions to this polynomial are contained
in {#1,+13}. Since these are not solutions, as 1 — 13 # 0 and 13* > 13, v/13 is irrational. O

Problem 5. Ross 2.7 The real numbers /4 + 2v/3 — /3 and /6 + 4v/2 — /2 are rational.
Proof. We have:

4423 -V3=1/3+1+2V3-V3
=\ (1+V3)2-V3

=[1+V3—V3
=1+vV3-V3

=1.
Similarly:
V6+4vV2—V2=1/4+2+4V2-V2
_Je+var-va
=2+ V2| - V2
=2+V2-V2
= 2.
Thus, both are rational as 1,2 € Q. O

Problem 6 (Ross 3.6). We prove the triangle inequality for any n real numbers.
6.a. For any a,b,c €R, |la+b+c| <la|+ |b] + ]|

Proof. Observe:
la+b+cl=la+ (b+c) <l|a|+|b+c| <lal + |b] + |c].



6.b. For any a1,as,...,a, € R,
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Proof. We proceed by induction.
When n = 0, observe that
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Now, assume that the triangle inequality holds for n real numbers. We show it holds for n + 1. We have:
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Problem 7 (Ross 4.11). For any a,b € R with a < b, there exists an infinite number of rational numbers
between a and b.

Proof. In order to show this statement, we will show for any positive integer n, there exists n rational
numbers strictly between a and b. Thus, for any k, there cannot be exactly k rational numbers between a
and b as there exists k + 1 such numbers, showing that there are infinitly many rational numbers.

By the denseness of R, there exists a p € Q such that a < p < b. Similarly, as p < b and p,b € R, there

exists a ¢ € QQ such that p < ¢ < b. Now consider the numbers rg,r1,...,7, € R such that
(n—1i)p+iq
=
n

Observe that r; € Q as n,4,p,q € Q and Q is a field. We claim that p < r; < q. Notice that:

p<q
i i
v _iq
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Similarly:
p<q
n—1i n—i
(n—p _ (n—i)
n n
n—1)p-+1
(n—i)p+iq _ .
n
Thus, p < r; < ¢ meaning a < r; < basa < p < g <b. Thus, as ry,72,...,7r, are rational numbers
strictly between a and b, there are at least n rational numbers strictly between a and b. This proves the
proposition. O



Problem 8 (Ross 4.14). For any A, B C R, we define
A+B={a+blac Abe B}.

8.a. For any nonempty A, B C R, A+ B is bounded above if and only if A is bounded above and B is bounded
above, and sup(A + B) = sup A + sup B.

Proof. First we show that A+ B is bounded above iff A and B are bounded above. Assume now that A+ B
has upper bound r. We will show that A is bounded above; it follows similarly that B is bounded above.
Since B is nonempty, there exists a b € B. Now for any a € A, observe that a +b € A+ B,soa+b < r.
Thus, a < r—b, meaning that r — b is an upper bound for A. Thus, A and B are bounded above. Conversely,
if A has upper bound r and B has upper bound s, then for all a + b € A+ B, a + b < r + s meaning that
7 + s is an upper bound for A + B.

Now we show that sup(A + B) = sup A +sup B, assuming either A+ B is bounded above or equivalently,
A and B are bounded above. For any a +b € A + B, observe that a < sup A and b < sup B, so a + b <
sup A+sup B, meaning that sup A+sup B is an upper bound on A+ B and thus sup(4A+ B) < sup A+sup B.
Now, take any b € B. For any a € A, observe that a +b € A+ B, so a + b < sup(A + B). Thus,
a < sup(A + B) — b, so sup(A + B) — b is an upper bound for A and thus sup A < sup(A + B) — b.
Rearranging, b < sup(A+ B) —sup A; therefore, sup B < sup(A+ B) sup A. So, sup A+sup B < sup(A+ B).
Because of the antisymmetry of <, sup A 4+ sup B = sup(4 + B). O

8.b. For any nonempty A, B C R, A+ B is bounded below if and only if A is bounded below and B is bounded
below. In either case, inf(A + B) = inf A + inf B.

Proof. We first show A + B is bounded below iff A is bounded below and B is bounded below. Suppose
now that A + B has lower bound r. As B is nonempty, there exists a b € B. For all a € A, observe that
a+be A+ B,sor <a+band thus r — b < a, implying that » — b is a lower bound of A. It similarly follows
that B is bounded below. Conversely, assume that A and B are bounded below. Let r be a lower bound of
A and s a lower bound of B. For any a+b € A+ B witha € A and b € B, we have r < a and s < b, so
r+ s < a+ b, implying r + s is a lower bound of A + B. Thus, A + B is bounded below.

Assuming that both sets are bounded below, we show inf(A + B) = inf A+inf B. For any a+b € A+ B
with @ € A and b € B, notice that inf A < ¢ and inf B < b, so inf A +inf B < a + b. Thus, inf A + inf B <
inf(A + B) as it is a lower bound on A 4+ B. For any b € B, observe that for alla € A, a+b € A+ B, so
inf(A+B) < a+band inf(A+B)—b < a. Thus, inf(A+ B)—bis a lower bound of A, so inf(A+B)—b < inf A.
Thus, inf(A+ B) —inf A < b for all b € B meaning that inf(A + B) — inf A is a lower bound of B and
inf(A+ B) —inf A < inf B. Thus, inf(4 + B) < inf A + inf B. By the antisymmetry of <, we thus have
inf(A + B) = inf A + inf B. O

Problem 9 (Ross 7.5)
Problem 9.a Observe that
2 2
Sn:m_n:(M—n)(m—i—n):(n +1)—n _ 1 .
vVn2+1+n Vvn2+14n  Vn?24+1+n
So, lim s,, = 0 as the denominator goes to +oo.

Problem 9.b As before, we have

4/n2+n_n:(Vn2+n—n)(\/n2+n+n):n2+n—n2: n _ 1
vnZ+n+n vni4+n+n  VnP4+n+n /1_|_;+1.
n

As the limit of the denominator is v/1+ 1 = 2, the limit of this sequence is %



Problem 9.c We have

\/m_Qn: (\/47”&2 —|—n—2n)(\/4n2—|—n+2n)
Vian2 +n+2n
_An? +n—4n?

C VAnZ +n+2n
n
C VAnZ +n+2n
1

4+ 142

Observe that the limit of the denominator is v/4 + 2 = 4 as the limit of % is 0. So, the limit of this

sequence is i.



