
Homework 1

Ishaan Patkar

Problem 1 (Ross 1.10). For any n ∈ N,
n∑

k=1

(2n+ 2k − 1) = 3n2.

Proof. Let

A = {n ∈ N |
n∑

k=1

(2n+ 2k − 1) = 3n2}.

We will show that 0 ∈ A and if n ∈ A, then n+ 1 ∈ A. First, by convention,

0∑
k=1

(2n− 1 + 2k) = 0

and observe that 3(0)2 = 0. Thus, 0 ∈ A.
Now, for any n ∈ N, observe that

3n2 =

n∑
k=1

(2n+ 2k − 1)

=

n−1∑
k=0

(2n+ 2(k + 1)− 1)

=

n−1∑
k=0

(2n+ 2k + 1)

= (2n+ 1) +

n−1∑
k=1

(2n+ 2k + 1)

3n2 + (4n+ 1) = (2n+ 1) +

n∑
k=1

(2n+ 2k + 1)

3n2 + (4n+ 1) + (4n+ 3) = (2n+ 1) +

n+1∑
k=1

(2n+ 2k + 1)

3n2 + (4n+ 1) + (4n+ 3)− (2n+ 1) =

n∑
k=1

(2n+ 2k + 1).

Now we have
3n2 + (4n+ 1) + (4n+ 3)− (2n+ 1) = 3n2 + 6n+ 3 = 3(n+ 1)2.

Thus, 3(n+1)2 =
∑n

k=1(2n+2k+1) meaning that n+1 ∈ A. Thus, A = N meaning this statement is true
for all natural numbers n.

Note that if the reader is uncomfortable with the summation convention used, we could also let A be the
set of natural numbers n that satisfy the equation or n = 0. In this case, proving the inductive step would
be done in two cases, first when n is not 0, and second when n = 0 (which is equivalent to proving the base
case if we were inducting over the set of positive integers).
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Problem 2 (Ross 1.12). For any natural number n ∈ N, the following is true for all natural numbers n and
a, b ∈ R, where R is a commmutative ring:

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i.

(Note that
(
n
i

)
represents repeated addition of

(
n
i

)
copies of aibn−i. It is thus an integer and not necessarily

an element of R in which the explicit formula may not hold in the case that R has nonzero characteristic.
Alternatively, we can consider

(
n
i

)
here to be the map of

(
n
i

)
∈ Z into the copy of Z/kZ ⊆ R given by the

canonical projection.)

2.a. The binomial theorem holds for n = 0, 1, 2, 3.

Proof. We have (a+ b)0 = 1 =
(
0
0

)
a0b0 and (a+ b)1 =

(
1
0

)
a+

(
1
1

)
b which are the exansions of the summations

for n = 0 and n = 1. For n = 2, we have

(a+ b)2 = (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= a2 + ab+ ba+ b2

= a2 + ab+ ab+ b2

= a2 + 2ab+ b2

=

(
2

0

)
a2 +

(
2

1

)
ab+

(
2

2

)
b2.

For n = 3:

(a+ b)3 = (a+ b)2(a+ b)

= (a2 + 2ab+ b2)(a+ b)

= (a2 + 2ab+ b2)a+ (a2 + 2ab+ b2)b

= a3 + 2a2b+ ab2 + a2b+ 2ab2 + b3

= a3 + 3a2b+ 3ab2 + b3.

2.b. For any integers 0 < k < n, (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Proof. Observe (
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!

=
(n− 1)!

(k − 1)!(n− k − 1)!

(
1

k
+

1

n− k

)
=

(n− 1)!

(k − 1)!(n− k − 1)!

(
n− k

k(n− k)
+

k

k(n− k)

)
=

(n− 1)!

(k − 1)!(n− k − 1)!

(
n

k(n− k)

)
=

n!

k!(n− k)!

=

(
n

k

)
.
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The other facts we need is that
(
n
0

)
=
(
n
n

)
= 1. This follows from the definition:(
n

0

)
=

n!

n!0!
= 1

and (
n

n

)
=

n!

0!n!
= 1.

2.c. For any natural number n and a, b ∈ R,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Proof. Let:

A = {n ∈ N | (a+ b)n =

n∑
k=0

(
n

k

)
akbn−k}.

Observe that 0, 1, 2, 3 ∈ A as we have already shown the binomial theorem holds for them. Now we show
that if n ∈ A, then n+ 1 ∈ A. Let n ∈ A. Thus:

(a+ b)n+1 = (a+ b)n(a+ b)

=

(
n∑

i=0

(
n

i

)
aibn−i

)
(a+ b)

=

(
n∑

i=0

(
n

i

)
aibn−i

)
a+

(
n∑

i=0

(
n

i

)
aibn−i

)
b

=

n∑
i=0

(
n

i

)
ai+1bn−i +

n∑
i=0

(
n

i

)
aibn−i+1

=

n+1∑
i=1

(
n

i− 1

)
aibn−i+1 +

n∑
i=0

(
n

i

)
aibn−i+1

=

(
n

n

)
an+1 +

n∑
i=1

(
n

i− 1

)
aibn−i+1 +

n∑
i=1

(
n

i

)
aibn−i+1 +

(
n

0

)
bn+1

= an+1 +

n∑
i=1

((
n

i− 1

)
+

(
n

i

))
aibn−i+1 + bn+1

=

(
n+ 1

n+ 1

)
an+1 +

n∑
i=1

(
n+ 1

i

)
aibn−i+1 +

(
n+ 1

0

)
bn+1

=

n+1∑
i=0

(
n+ 1

i

)
aibn−i+1.

Thus, the theorem holds for n+1, meaning that n+1 ∈ A. Thus, A = N implying that the binomial theorem
holds for all natural numbers.

Problem 3 (Ross 2.1). The numbers
√
3,
√
5,
√
7,
√
24,

√
31 ∈ R are not rational numbers.

Proof. Observe that
√
3 is a root of the polynomial x2 − 3 over R. We claim this polynomial has no rational

solutions. Observe that as it has integer coefficients, by the rational root theorem, the only rational solutions
are ±1,±3. Notice as (±1)2 − 3 = −2 ̸= 0 and (±3)2 − 3 = 6 ̸= 0 (as Q and R have characteristic 0), x2 − 3
has no rational solutions. So,

√
3 ̸∈ Q.

Likewise, note that
√
5 ∈ R satisfies x2 − 5 = 0. By the Rational Root Theorem, the rational roots of

x2 − 5 are contained in {±1,±5}. However, ±1 is not a solution as 1− 5 = −4 ̸= 0 and ±5 is not a solution
either as 25− 5 = 20 ̸= 0. Thus,

√
5 ̸∈ Q.
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Similarly
√
7 ∈ R is a root of x2 − 7. By the Rational Root Theorem, solutions to this polynomial are

contained in {±1,±7}. However, neither ±1 nor ±7 are roots as 1 − 7 = −6 ̸= 0 and 49 − 7 = 42 ̸= 0. As
x2 − 7 has no rational solutions,

√
7 cannot be rational.

For
√
24 ∈ R, observe that

√
24 = 2

√
6 so if

√
24 ∈ Q, then as 1

2 ∈ Q,
√
6 ∈ Q. However,

√
6 is

a root of the polynomial x2 − 6 which, by the Rational Root Theorem, only has solutions contained in
{±1,±2,±3,±6}. However, none of these four solutions are roots, so

√
6 ̸∈ Q and thus

√
24 ̸∈ Q.

Finally, for
√
31, observe it is a root of the polynomial x2 − 31. This polynomial has solutions contained

in {±1,±31}, neither of which are solutions; thus,
√
31 is irrational as well.

Observe we can extend this technique to any squarefree number, showing that in general, square roots of
non-square integers are irrational.

Problem 4 (Ross 2.2). The numbers 3
√
2, 7

√
5, 4

√
13 ∈ R \Q.

Proof. We assume these numbers are contained in R (which can be proven by showing x 7→ xn is a continuous
function and applying the Intermediate Value Theorem). We now show they are irrational.

Observe 3
√
2 is a root of x3 − 2. By the Rational Root Theorem, the solutions to this polynomial are

contained in {±1,±2}; since these are not solutions, x3 − 2 has no rational solutions and 3
√
2 is irrational.

Next, 7
√
5 is a root of x7 − 5. By the Rational Root Theoreme, the solutions to this polynomial arae

contained in {±1,±5}; however, neither are solutions as ±1− 5 ̸= 0 and ±57− 5 ̸= 0 as 57 > 5 and −57 < 5.
So, as x7 − 5 has no rational roots, 7

√
5 is irrational.

Finally, 4
√
13 is a root of x4−13; by the Rational Root Theorem, solutions to this polynomial are contained

in {±1,±13}. Since these are not solutions, as 1− 13 ̸= 0 and 134 > 13, 4
√
13 is irrational.

Problem 5. Ross 2.7 The real numbers
√
4 + 2

√
3−

√
3 and

√
6 + 4

√
2−

√
2 are rational.

Proof. We have: √
4 + 2

√
3−

√
3 =

√
3 + 1 + 2

√
3−

√
3

=

√
(1 +

√
3)2 −

√
3

= |1 +
√
3| −

√
3

= 1 +
√
3−

√
3

= 1.

Similarly: √
6 + 4

√
2−

√
2 =

√
4 + 2 + 4

√
2−

√
2

=

√
(2 +

√
2)2 −

√
2

= |2 +
√
2| −

√
2

= 2 +
√
2−

√
2

= 2.

Thus, both are rational as 1, 2 ∈ Q.

Problem 6 (Ross 3.6). We prove the triangle inequality for any n real numbers.

6.a. For any a, b, c ∈ R, |a+ b+ c| ≤ |a|+ |b|+ |c|.

Proof. Observe:
|a+ b+ c| = |a+ (b+ c)| ≤ |a|+ |b+ c| ≤ |a|+ |b|+ |c|.
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6.b. For any a1, a2, . . . , an ∈ R, ∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ ≤
n∑

i=1

|ai|.

Proof. We proceed by induction.
When n = 0, observe that ∣∣∣∣∣

0∑
i=1

ai

∣∣∣∣∣ = 0 ≤ 0 =

n∑
i=1

|ai|,

Now, assume that the triangle inequality holds for n real numbers. We show it holds for n+1. We have:∣∣∣∣∣
n+1∑
i=1

ai

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

ai + an+1

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣+ |an+1|

≤
n∑

i=1

|ai|+ |an+1|

≤
n+1∑
i=1

|ai|.

Problem 7 (Ross 4.11). For any a, b ∈ R with a < b, there exists an infinite number of rational numbers
between a and b.

Proof. In order to show this statement, we will show for any positive integer n, there exists n rational
numbers strictly between a and b. Thus, for any k, there cannot be exactly k rational numbers between a
and b as there exists k + 1 such numbers, showing that there are infinitly many rational numbers.

By the denseness of R, there exists a p ∈ Q such that a < p < b. Similarly, as p < b and p, b ∈ R, there
exists a q ∈ Q such that p < q < b. Now consider the numbers r0, r1, . . . , rn ∈ R such that

ri =
(n− i)p+ iq

n
.

Observe that ri ∈ Q as n, i, p, q ∈ Q and Q is a field. We claim that p < ri < q. Notice that:

p < q

ip

n
<

iq

n

p <
(n− i)p+ iq

n
.

Similarly:

p < q

(n− i)p

n
<

(n− i)q

n
(n− i)p+ iq

n
< q.

Thus, p < ri < q meaning a < ri < b as a < p < q < b. Thus, as r1, r2, . . . , rn are rational numbers
strictly between a and b, there are at least n rational numbers strictly between a and b. This proves the
proposition.
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Problem 8 (Ross 4.14). For any A,B ⊆ R, we define

A+B = {a+ b | a ∈ A, b ∈ B}.

8.a. For any nonempty A,B ⊆ R, A+B is bounded above if and only if A is bounded above and B is bounded
above, and sup(A+B) = supA+ supB.

Proof. First we show that A+B is bounded above iff A and B are bounded above. Assume now that A+B
has upper bound r. We will show that A is bounded above; it follows similarly that B is bounded above.
Since B is nonempty, there exists a b ∈ B. Now for any a ∈ A, observe that a + b ∈ A + B, so a + b ≤ r.
Thus, a ≤ r−b, meaning that r−b is an upper bound for A. Thus, A and B are bounded above. Conversely,
if A has upper bound r and B has upper bound s, then for all a + b ∈ A + B, a + b ≤ r + s meaning that
r + s is an upper bound for A+B.

Now we show that sup(A+B) = supA+supB, assuming either A+B is bounded above or equivalently,
A and B are bounded above. For any a + b ∈ A + B, observe that a ≤ supA and b ≤ supB, so a + b ≤
supA+supB, meaning that supA+supB is an upper bound on A+B and thus sup(A+B) ≤ supA+supB.
Now, take any b ∈ B. For any a ∈ A, observe that a + b ∈ A + B, so a + b ≤ sup(A + B). Thus,
a ≤ sup(A + B) − b, so sup(A + B) − b is an upper bound for A and thus supA ≤ sup(A + B) − b.
Rearranging, b ≤ sup(A+B)− supA; therefore, supB ≤ sup(A+B) supA. So, supA+supB ≤ sup(A+B).
Because of the antisymmetry of ≤, supA+ supB = sup(A+B).

8.b. For any nonempty A,B ⊆ R, A+B is bounded below if and only if A is bounded below and B is bounded
below. In either case, inf(A+B) = inf A+ inf B.

Proof. We first show A + B is bounded below iff A is bounded below and B is bounded below. Suppose
now that A + B has lower bound r. As B is nonempty, there exists a b ∈ B. For all a ∈ A, observe that
a+ b ∈ A+B, so r ≤ a+ b and thus r− b ≤ a, implying that r− b is a lower bound of A. It similarly follows
that B is bounded below. Conversely, assume that A and B are bounded below. Let r be a lower bound of
A and s a lower bound of B. For any a + b ∈ A + B with a ∈ A and b ∈ B, we have r ≤ a and s ≤ b, so
r + s ≤ a+ b, implying r + s is a lower bound of A+B. Thus, A+B is bounded below.

Assuming that both sets are bounded below, we show inf(A+B) = inf A+ inf B. For any a+ b ∈ A+B
with a ∈ A and b ∈ B, notice that inf A ≤ a and inf B ≤ b, so inf A+ inf B ≤ a+ b. Thus, inf A+ inf B ≤
inf(A + B) as it is a lower bound on A + B. For any b ∈ B, observe that for all a ∈ A, a + b ∈ A + B, so
inf(A+B) ≤ a+b and inf(A+B)−b ≤ a. Thus, inf(A+B)−b is a lower bound of A, so inf(A+B)−b ≤ inf A.
Thus, inf(A + B) − inf A ≤ b for all b ∈ B meaning that inf(A + B) − inf A is a lower bound of B and
inf(A + B) − inf A ≤ inf B. Thus, inf(A + B) ≤ inf A + inf B. By the antisymmetry of ≤, we thus have
inf(A+B) = inf A+ inf B.

Problem 9 (Ross 7.5)

Problem 9.a Observe that

sn =
√
n2 + 1− n =

(
√
n2 + 1− n)(

√
n2 + 1 + n)√

n2 + 1 + n
=

(n2 + 1)− n2

√
n2 + 1 + n

=
1√

n2 + 1 + n
.

So, lim sn = 0 as the denominator goes to +∞.

Problem 9.b As before, we have

√
n2 + n− n =

(
√
n2 + n− n)(

√
n2 + n+ n)√

n2 + n+ n
=

n2 + n− n2

√
n2 + n+ n

=
n√

n2 + n+ n
=

1√
1 + 1

n + 1
.

As the limit of the denominator is
√
1 + 1 = 2, the limit of this sequence is 1

2 .
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Problem 9.c We have √
4n2 + n− 2n =

(
√
4n2 + n− 2n)(

√
4n2 + n+ 2n)√

4n2 + n+ 2n

=
4n2 + n− 4n2

√
4n2 + n+ 2n

=
n√

4n2 + n+ 2n

=
1√

4 + 1
n + 2

.

Observe that the limit of the denominator is
√
4 + 2 = 4 as the limit of 1

n is 0. So, the limit of this
sequence is 1

4 .

7


