Homework 1

Ishaan Patkar

Problem 1 (Ross 1.10). For any $n \in \mathbb{N}$,

$$
\sum_{k=1}^{n}(2 n+2 k-1)=3 n^{2}
$$

Proof. Let

$$
A=\left\{n \in \mathbb{N} \mid \sum_{k=1}^{n}(2 n+2 k-1)=3 n^{2}\right\}
$$

We will show that $0 \in A$ and if $n \in A$, then $n+1 \in A$. First, by convention,

$$
\sum_{k=1}^{0}(2 n-1+2 k)=0
$$

and observe that $3(0)^{2}=0$. Thus, $0 \in A$.
Now, for any $n \in \mathbb{N}$, observe that

$$
\begin{aligned}
3 n^{2} & =\sum_{k=1}^{n}(2 n+2 k-1) \\
& =\sum_{k=0}^{n-1}(2 n+2(k+1)-1) \\
& =\sum_{k=0}^{n-1}(2 n+2 k+1) \\
& =(2 n+1)+\sum_{k=1}^{n-1}(2 n+2 k+1) \\
3 n^{2}+(4 n+1) & =(2 n+1)+\sum_{k=1}^{n}(2 n+2 k+1) \\
3 n^{2}+(4 n+1)+(4 n+3) & =(2 n+1)+\sum_{k=1}^{n+1}(2 n+2 k+1) \\
3 n^{2}+(4 n+1)+(4 n+3)-(2 n+1) & =\sum_{k=1}^{n}(2 n+2 k+1)
\end{aligned}
$$

Now we have

$$
3 n^{2}+(4 n+1)+(4 n+3)-(2 n+1)=3 n^{2}+6 n+3=3(n+1)^{2}
$$

Thus, $3(n+1)^{2}=\sum_{k=1}^{n}(2 n+2 k+1)$ meaning that $n+1 \in A$. Thus, $A=\mathbb{N}$ meaning this statement is true for all natural numbers n.

Note that if the reader is uncomfortable with the summation convention used, we could also let A be the set of natural numbers n that satisfy the equation or $n=0$. In this case, proving the inductive step would be done in two cases, first when n is not 0 , and second when $n=0$ (which is equivalent to proving the base case if we were inducting over the set of positive integers).

Problem 2 (Ross 1.12). For any natural number $n \in \mathbb{N}$, the following is true for all natural numbers n and $a, b \in R$, where R is a commmutative ring:

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

(Note that $\binom{n}{i}$ represents repeated addition of $\binom{n}{i}$ copies of $a^{i} b^{n-i}$. It is thus an integer and not necessarily an element of R in which the explicit formula may not hold in the case that R has nonzero characteristic. Alternatively, we can consider $\binom{n}{i}$ here to be the map of $\binom{n}{i} \in \mathbb{Z}$ into the copy of $\mathbb{Z} / k \mathbb{Z} \subseteq R$ given by the canonical projection.)
2.a. The binomial theorem holds for $n=0,1,2,3$.

Proof. We have $(a+b)^{0}=1=\binom{0}{0} a^{0} b^{0}$ and $(a+b)^{1}=\binom{1}{0} a+\binom{1}{1} b$ which are the exansions of the summations for $n=0$ and $n=1$. For $n=2$, we have

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =a^{2}+a b+b a+b^{2} \\
& =a^{2}+a b+a b+b^{2} \\
& =a^{2}+2 a b+b^{2} \\
& =\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2} .
\end{aligned}
$$

For $n=3$:

$$
\begin{aligned}
(a+b)^{3} & =(a+b)^{2}(a+b) \\
& =\left(a^{2}+2 a b+b^{2}\right)(a+b) \\
& =\left(a^{2}+2 a b+b^{2}\right) a+\left(a^{2}+2 a b+b^{2}\right) b \\
& =a^{3}+2 a^{2} b+a b^{2}+a^{2} b+2 a b^{2}+b^{3} \\
& =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} .
\end{aligned}
$$

2.b. For any integers $0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof. Observe

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-k-1)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{1}{k}+\frac{1}{n-k}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{n-k}{k(n-k)}+\frac{k}{k(n-k)}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{n}{k(n-k)}\right) \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k}
\end{aligned}
$$

The other facts we need is that $\binom{n}{0}=\binom{n}{n}=1$. This follows from the definition:

$$
\binom{n}{0}=\frac{n!}{n!0!}=1
$$

and

$$
\binom{n}{n}=\frac{n!}{0!n!}=1 .
$$

2.c. For any natural number n and $a, b \in R$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof. Let:

$$
A=\left\{n \in \mathbb{N} \left\lvert\,(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}\right.\right\}
$$

Observe that $0,1,2,3 \in A$ as we have already shown the binomial theorem holds for them. Now we show that if $n \in A$, then $n+1 \in A$. Let $n \in A$. Thus:

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)^{n}(a+b) \\
& =\left(\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}\right)(a+b) \\
& =\left(\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}\right) a+\left(\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}\right) b \\
& =\sum_{i=0}^{n}\binom{n}{i} a^{i+1} b^{n-i}+\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i+1} \\
& =\sum_{i=1}^{n+1}\binom{n}{i-1} a^{i} b^{n-i+1}+\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i+1} \\
& =\binom{n}{n} a^{n+1}+\sum_{i=1}^{n}\binom{n}{i-1} a^{i} b^{n-i+1}+\sum_{i=1}^{n}\binom{n}{i} a^{i} b^{n-i+1}+\binom{n}{0} b^{n+1} \\
& =a^{n+1}+\sum_{i=1}^{n}\left(\binom{n}{i-1}+\binom{n}{i}\right) a^{i} b^{n-i+1}+b^{n+1} \\
& =\binom{n+1}{n+1} a^{n+1}+\sum_{i=1}^{n}\binom{n+1}{i} a^{i} b^{n-i+1}+\binom{n+1}{0} b^{n+1} \\
& =\sum_{i=0}^{n+1}\binom{n+1}{i} a^{i} b^{n-i+1} .
\end{aligned}
$$

Thus, the theorem holds for $n+1$, meaning that $n+1 \in A$. Thus, $A=\mathbb{N}$ implying that the binomial theorem holds for all natural numbers.

Problem 3 (Ross 2.1). The numbers $\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{24}, \sqrt{31} \in \mathbb{R}$ are not rational numbers.
Proof. Observe that $\sqrt{3}$ is a root of the polynomial $x^{2}-3$ over \mathbb{R}. We claim this polynomial has no rational solutions. Observe that as it has integer coefficients, by the rational root theorem, the only rational solutions are $\pm 1, \pm 3$. Notice as $(\pm 1)^{2}-3=-2 \neq 0$ and $(\pm 3)^{2}-3=6 \neq 0$ (as \mathbb{Q} and \mathbb{R} have characteristic 0$), x^{2}-3$ has no rational solutions. So, $\sqrt{3} \notin \mathbb{Q}$.

Likewise, note that $\sqrt{5} \in \mathbb{R}$ satisfies $x^{2}-5=0$. By the Rational Root Theorem, the rational roots of $x^{2}-5$ are contained in $\{ \pm 1, \pm 5\}$. However, ± 1 is not a solution as $1-5=-4 \neq 0$ and ± 5 is not a solution either as $25-5=20 \neq 0$. Thus, $\sqrt{5} \notin \mathbb{Q}$.

Similarly $\sqrt{7} \in \mathbb{R}$ is a root of $x^{2}-7$. By the Rational Root Theorem, solutions to this polynomial are contained in $\{ \pm 1, \pm 7\}$. However, neither ± 1 nor ± 7 are roots as $1-7=-6 \neq 0$ and $49-7=42 \neq 0$. As $x^{2}-7$ has no rational solutions, $\sqrt{7}$ cannot be rational.

For $\sqrt{24} \in \mathbb{R}$, observe that $\sqrt{24}=2 \sqrt{6}$ so if $\sqrt{24} \in \mathbb{Q}$, then as $\frac{1}{2} \in \mathbb{Q}, \sqrt{6} \in \mathbb{Q}$. However, $\sqrt{6}$ is a root of the polynomial $x^{2}-6$ which, by the Rational Root Theorem, only has solutions contained in $\{ \pm 1, \pm 2, \pm 3, \pm 6\}$. However, none of these four solutions are roots, so $\sqrt{6} \notin \mathbb{Q}$ and thus $\sqrt{24} \notin \mathbb{Q}$.

Finally, for $\sqrt{31}$, observe it is a root of the polynomial $x^{2}-31$. This polynomial has solutions contained in $\{ \pm 1, \pm 31\}$, neither of which are solutions; thus, $\sqrt{31}$ is irrational as well.

Observe we can extend this technique to any squarefree number, showing that in general, square roots of non-square integers are irrational.

Problem 4 (Ross 2.2). The numbers $\sqrt[3]{2}, \sqrt[7]{5}, \sqrt[4]{13} \in \mathbb{R} \backslash \mathbb{Q}$.
Proof. We assume these numbers are contained in \mathbb{R} (which can be proven by showing $x \mapsto x^{n}$ is a continuous function and applying the Intermediate Value Theorem). We now show they are irrational.

Observe $\sqrt[3]{2}$ is a root of $x^{3}-2$. By the Rational Root Theorem, the solutions to this polynomial are contained in $\{ \pm 1, \pm 2\}$; since these are not solutions, $x^{3}-2$ has no rational solutions and $\sqrt[3]{2}$ is irrational.

Next, $\sqrt[7]{5}$ is a root of $x^{7}-5$. By the Rational Root Theoreme, the solutions to this polynomial arae contained in $\{ \pm 1, \pm 5\}$; however, neither are solutions as $\pm 1-5 \neq 0$ and $\pm 5^{7}-5 \neq 0$ as $5^{7}>5$ and $-5^{7}<5$. So, as $x^{7}-5$ has no rational roots, $\sqrt[7]{5}$ is irrational.

Finally, $\sqrt[4]{13}$ is a root of $x^{4}-13$; by the Rational Root Theorem, solutions to this polynomial are contained in $\{ \pm 1, \pm 13\}$. Since these are not solutions, as $1-13 \neq 0$ and $13^{4}>13, \sqrt[4]{13}$ is irrational.

Problem 5. Ross 2.7 The real numbers $\sqrt{4+2 \sqrt{3}}-\sqrt{3}$ and $\sqrt{6+4 \sqrt{2}}-\sqrt{2}$ are rational.
Proof. We have:

$$
\begin{aligned}
\sqrt{4+2 \sqrt{3}}-\sqrt{3} & =\sqrt{3+1+2 \sqrt{3}}-\sqrt{3} \\
& =\sqrt{(1+\sqrt{3})^{2}}-\sqrt{3} \\
& =|1+\sqrt{3}|-\sqrt{3} \\
& =1+\sqrt{3}-\sqrt{3} \\
& =1
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\sqrt{6+4 \sqrt{2}}-\sqrt{2} & =\sqrt{4+2+4 \sqrt{2}}-\sqrt{2} \\
& =\sqrt{(2+\sqrt{2})^{2}}-\sqrt{2} \\
& =|2+\sqrt{2}|-\sqrt{2} \\
& =2+\sqrt{2}-\sqrt{2} \\
& =2
\end{aligned}
$$

Thus, both are rational as $1,2 \in \mathbb{Q}$.
Problem 6 (Ross 3.6). We prove the triangle inequality for any n real numbers.
6.a. For any $a, b, c \in \mathbb{R},|a+b+c| \leq|a|+|b|+|c|$.

Proof. Observe:

$$
|a+b+c|=|a+(b+c)| \leq|a|+|b+c| \leq|a|+|b|+|c|
$$

6.b. For any $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$,

$$
\left|\sum_{i=1}^{n} a_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|
$$

Proof. We proceed by induction.
When $n=0$, observe that

$$
\left|\sum_{i=1}^{0} a_{i}\right|=0 \leq 0=\sum_{i=1}^{n}\left|a_{i}\right|
$$

Now, assume that the triangle inequality holds for n real numbers. We show it holds for $n+1$. We have:

$$
\begin{aligned}
\left|\sum_{i=1}^{n+1} a_{i}\right| & =\left|\sum_{i=1}^{n} a_{i}+a_{n+1}\right| \\
& \leq\left|\sum_{i=1}^{n} a_{i}\right|+\left|a_{n+1}\right| \\
& \leq \sum_{i=1}^{n}\left|a_{i}\right|+\left|a_{n+1}\right| \\
& \leq \sum_{i=1}^{n+1}\left|a_{i}\right|
\end{aligned}
$$

Problem 7 (Ross 4.11). For any $a, b \in \mathbb{R}$ with $a<b$, there exists an infinite number of rational numbers between a and b.

Proof. In order to show this statement, we will show for any positive integer n, there exists n rational numbers strictly between a and b. Thus, for any k, there cannot be exactly k rational numbers between a and b as there exists $k+1$ such numbers, showing that there are infinitly many rational numbers.

By the denseness of \mathbb{R}, there exists a $p \in \mathbb{Q}$ such that $a<p<b$. Similarly, as $p<b$ and $p, b \in \mathbb{R}$, there exists a $q \in \mathbb{Q}$ such that $p<q<b$. Now consider the numbers $r_{0}, r_{1}, \ldots, r_{n} \in \mathbb{R}$ such that

$$
r_{i}=\frac{(n-i) p+i q}{n}
$$

Observe that $r_{i} \in \mathbb{Q}$ as $n, i, p, q \in \mathbb{Q}$ and \mathbb{Q} is a field. We claim that $p<r_{i}<q$. Notice that:

$$
\begin{aligned}
p & <q \\
\frac{i p}{n} & <\frac{i q}{n} \\
p & <\frac{(n-i) p+i q}{n}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
p & <q \\
\frac{(n-i) p}{n} & <\frac{(n-i) q}{n} \\
\frac{(n-i) p+i q}{n} & <q
\end{aligned}
$$

Thus, $p<r_{i}<q$ meaning $a<r_{i}<b$ as $a<p<q<b$. Thus, as $r_{1}, r_{2}, \ldots, r_{n}$ are rational numbers strictly between a and b, there are at least n rational numbers strictly between a and b. This proves the proposition.

Problem 8 (Ross 4.14). For any $A, B \subseteq \mathbb{R}$, we define

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

8.a. For any nonempty $A, B \subseteq \mathbb{R}, A+B$ is bounded above if and only if A is bounded above and B is bounded above, and $\sup (A+B)=\sup A+\sup B$.

Proof. First we show that $A+B$ is bounded above iff A and B are bounded above. Assume now that $A+B$ has upper bound r. We will show that A is bounded above; it follows similarly that B is bounded above. Since B is nonempty, there exists a $b \in B$. Now for any $a \in A$, observe that $a+b \in A+B$, so $a+b \leq r$. Thus, $a \leq r-b$, meaning that $r-b$ is an upper bound for A. Thus, A and B are bounded above. Conversely, if A has upper bound r and B has upper bound s, then for all $a+b \in A+B, a+b \leq r+s$ meaning that $r+s$ is an upper bound for $A+B$.

Now we show that $\sup (A+B)=\sup A+\sup B$, assuming either $A+B$ is bounded above or equivalently, A and B are bounded above. For any $a+b \in A+B$, observe that $a \leq \sup A$ and $b \leq \sup B$, so $a+b \leq$ $\sup A+\sup B$, meaning that $\sup A+\sup B$ is an upper bound on $A+B$ and thus $\sup (A+B) \leq \sup A+\sup B$. Now, take any $b \in B$. For any $a \in A$, observe that $a+b \in A+B$, so $a+b \leq \sup (A+B)$. Thus, $a \leq \sup (A+B)-b$, so $\sup (A+B)-b$ is an upper bound for A and thus $\sup A \leq \sup (A+B)-b$. Rearranging, $b \leq \sup (A+B)-\sup A$; therefore, $\sup B \leq \sup (A+B) \sup A$. So, $\sup A+\sup B \leq \sup (A+B)$. Because of the antisymmetry of $\leq, \sup A+\sup B=\sup (A+B)$.
8.b. For any nonempty $A, B \subseteq \mathbb{R}, A+B$ is bounded below if and only if A is bounded below and B is bounded below. In either case, $\inf (A+B)=\inf A+\inf B$.

Proof. We first show $A+B$ is bounded below iff A is bounded below and B is bounded below. Suppose now that $A+B$ has lower bound r. As B is nonempty, there exists a $b \in B$. For all $a \in A$, observe that $a+b \in A+B$, so $r \leq a+b$ and thus $r-b \leq a$, implying that $r-b$ is a lower bound of A. It similarly follows that B is bounded below. Conversely, assume that A and B are bounded below. Let r be a lower bound of A and s a lower bound of B. For any $a+b \in A+B$ with $a \in A$ and $b \in B$, we have $r \leq a$ and $s \leq b$, so $r+s \leq a+b$, implying $r+s$ is a lower bound of $A+B$. Thus, $A+B$ is bounded below.

Assuming that both sets are bounded below, we show $\inf (A+B)=\inf A+\inf B$. For any $a+b \in A+B$ with $a \in A$ and $b \in B$, notice that $\inf A \leq a$ and $\inf B \leq b$, so $\inf A+\inf B \leq a+b$. Thus, $\inf A+\inf B \leq$ $\inf (A+B)$ as it is a lower bound on $A+B$. For any $b \in B$, observe that for all $a \in A, a+b \in A+B$, so $\inf (A+B) \leq a+b$ and $\inf (A+B)-b \leq a$. Thus, $\inf (A+B)-b$ is a lower bound of A, $\operatorname{so} \inf (A+B)-b \leq \inf A$. Thus, $\inf (A+B)-\inf A \leq b$ for all $b \in B$ meaning that $\inf (A+B)-\inf A$ is a lower bound of B and $\inf (A+B)-\inf A \leq \inf B$. Thus, $\inf (A+B) \leq \inf A+\inf B$. By the antisymmetry of \leq, we thus have $\inf (A+B)=\inf A+\inf B$.

Problem 9 (Ross 7.5)

Problem 9.a Observe that

$$
s_{n}=\sqrt{n^{2}+1}-n=\frac{\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)}{\sqrt{n^{2}+1}+n}=\frac{\left(n^{2}+1\right)-n^{2}}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{n^{2}+1}+n} .
$$

So, $\lim s_{n}=0$ as the denominator goes to $+\infty$.
Problem 9.b As before, we have

$$
\sqrt{n^{2}+n}-n=\frac{\left(\sqrt{n^{2}+n}-n\right)\left(\sqrt{n^{2}+n}+n\right)}{\sqrt{n^{2}+n}+n}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n}=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}}+1} .
$$

As the limit of the denominator is $\sqrt{1}+1=2$, the limit of this sequence is $\frac{1}{2}$.

Problem 9.c We have

$$
\begin{aligned}
\sqrt{4 n^{2}+n}-2 n & =\frac{\left(\sqrt{4 n^{2}+n}-2 n\right)\left(\sqrt{4 n^{2}+n}+2 n\right)}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{4 n^{2}+n-4 n^{2}}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{n}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{1}{\sqrt{4+\frac{1}{n}}+2}
\end{aligned}
$$

Observe that the limit of the denominator is $\sqrt{4}+2=4$ as the limit of $\frac{1}{n}$ is 0 . So, the limit of this sequence is $\frac{1}{4}$.

