104 Set 10

Ishaan Patkar

Ross 33.4. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ -1 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Then observe that $|f(x)|=1$ for all $x \in[0,1]$, meaning that $|f|$ is integrable. However, f is not integrable, since we have:

$$
\frac{1}{2}(f(x)+1)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

This function is not integrable, as we have shown. If f is integrable, then this function is also integrable, which is impossible. Hence, f is integrable, though $|f|=1$ is not.
Ross 33.7.a. We start by showing that for any bounded function $f:[a, b] \rightarrow \mathbb{R}$ such that $|f(x)| \leq B$ for all $x \in[a, b]$, the following inequality holds:

$$
\sup _{x \in[a, b]} f^{2}(x)-\inf _{y \in[a, b]} f^{2}(y) \leq 2 B\left(\sup _{x \in[a, b]} f(x)-\inf _{y \in[a, b]} f(y)\right)
$$

We have:

$$
\begin{aligned}
\left|f^{2}(x)-f^{2}(y)\right| & =|(f(x)-f(y))(f(x)+f(y))| \\
& =|f(x)-f(y)||f(x)+f(y)| \\
& \leq|f(x)-f(y)|(|f(x)|+|f(y)|) \\
& \leq 2 B|f(x)-f(y)|
\end{aligned}
$$

Let $m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$. If $f(x) \geq f(y)$, then $|f(x)-f(y)|=f(x)-f(y) \leq M-m$. If $f(x)<f(y)$, then $|f(x)-f(y)|=f(y)-f(x) \leq M-m$. Hence, $|f(x)-f(y)| \leq M-m$, and so:

$$
2 B(M-m) \geq\left|f^{2}(x)-f^{2}(y)\right| \geq f^{2}(x)-f^{2}(y)
$$

Taking the sup with respect to x, we have:

$$
\sup _{x \in[a, b]} f^{2}(x)-f^{2}(y) \leq 2 B(M-m)
$$

Therefore,

$$
\sup _{x \in[a, b]} f^{2}(x)-2 B(M-m) \leq f^{2}(y)
$$

meaning

$$
\sup _{x \in[a, b]} f^{2}(x)-2 B(M-m) \leq \inf _{y \in[a, b]} f^{2}(y)
$$

Hence, we have our inequality:

$$
\sup _{x \in[a, b]} f^{2}(x)-\inf _{y \in[a, b]} f^{2}(y) \leq 2 B(M-m)=2 B\left(\sup _{x \in[a, b]} f(x)-\inf _{y \in[a, b]} f(y)\right) .
$$

Now, consider any bounded function $f:[a, b] \rightarrow \mathbb{R}$, and a partition $P=\left\{p_{0}, p_{1}, \cdots, p_{n}\right\}$. Then we have:

$$
\begin{aligned}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) & =\sum_{i=1}^{n}\left(\sup _{x \in\left[p_{i-1}, p_{i}\right]} f^{2}(x)-\inf _{x \in\left[p_{i-1}, p_{i}\right]} f^{2}(x)\right)\left(p_{i}-p_{i-1}\right) \\
& \leq \sum_{i=1}^{n} 2 B\left(\sup _{x \in\left[p_{i-1}, p_{i}\right]} f(x)-\inf _{x \in\left[p_{i-1}, p_{i}\right]} f(x)\right)\left(p_{i}-p_{i-1}\right) \\
& =2 B(U(f, P)-L(f, P))
\end{aligned}
$$

Ross 33.7.b. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable with $|f| \leq B$. Take any $\epsilon>0$. Then there exists a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\frac{\epsilon}{2 B}
$$

Thus,

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P))<\epsilon
$$

and so f^{2} is integrable.
Ross 33.13. We use the Intermediate Value Theorem for integrals (Ross Thm. 33.9, which can be proven using the Intermediate Value Theorem for continuous functions). Since $\int_{a}^{b} f=\int_{a}^{b} g, \int_{a}^{b}(f-g)=0$. Thus, there exists an $x \in(a, b)$ such that

$$
f(x)-g(x)=\frac{1}{b-a} \int_{a}^{b}(f-g)=0
$$

and so $f(x)=g(x)$.
Ross 35.4. We compute these integrals using Integration by Parts, Ross Thm 35.19. We have:

$$
\int_{a}^{b} x d F(x)+\int_{a}^{b} F(x) d x=b F(b)-a F(a)
$$

since both x and $F(x)=\sin t$ are continuous. In particular, this gives:

$$
\int_{a}^{b} x d F(x)=b \sin b-a \sin a-\int_{a}^{b} \sin x d x=b \sin b+\cos b-a \sin a-\cos a
$$

using the Fundamental Theorem of Calculus.
a. We have:

$$
\int_{0}^{\frac{\pi}{2}} x d F(x)=\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}=\frac{\pi}{2}
$$

b. We have:

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}-\left(-\frac{\pi}{2} \sin \left(-\frac{\pi}{2}\right)-\cos \left(-\frac{\pi}{2}\right)\right)=\pi
$$

Ross 35.9.a. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, and $F:[a, b] \rightarrow \mathbb{R}$ increasing. Then there exists some $x, y \in[a, b]$ such that $f(x)$ is the maximum value of f, and $f(y)$ is the minimum value of f, by the Extreme Value Theorem. We can use these to bound the upper and lower sums. For any partition $P=\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ where $a=p_{0}<p_{1}<\cdots<p_{n}=b$, we have:

$$
\begin{aligned}
L(P, f, F) & =\sum_{i=1}^{n}\left(\inf _{t \in\left[p_{i-1}, p_{i}\right]} f(t)\right)\left(F\left(p_{i}\right)-F\left(p_{i-1}\right)\right) \\
& \geq \sum_{i=1}^{n} f(y)\left(F\left(p_{i}\right)-F\left(p_{i-1}\right)\right) \\
& =f(y)\left(F\left(p_{n}\right)-F\left(p_{0}\right)\right) \\
& =f(y)(F(b)-F(a)) .
\end{aligned}
$$

We similarly have $U(P, f, F) \leq f(x)(F(b)-F(a))$. Hence, we have

$$
f(y)(F(b)-F(a)) \leq \int_{a}^{b} f d F \leq f(x)(F(b)-F(a))
$$

which means

$$
f(y) \leq \frac{1}{F(b)-F(a)} \int_{a}^{b} f d F \leq f(x)
$$

We can now apply the Intermediate Value Theorem on the interval $[x, y]$ or $[y, x]$, depending on if $x \leq y$ or $y \leq x$ to see that there exists some $c \in[x, y]$ with

$$
f(c)=\frac{1}{F(b)-F(a)} \int_{a}^{b} f d F
$$

Thus, we have $c \in[a, b]$ and

$$
f(c)(F(b)-F(a))=\int_{a}^{b} f d F
$$

