104 Set 11

Ishaan Patkar

34.2.a. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $F(x)=\int_{0}^{x} e^{t^{2}} d t$. We wish to compute $\lim _{x \rightarrow 0} \frac{F(x)}{x}$. Note that $F(0)=$ $\int_{0}^{0} e^{t^{2}} d t=0$. Thus,

$$
\lim _{x \rightarrow 0} \frac{F(x)}{x}=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x}=F^{\prime}(0) .
$$

By the Fundamental Theorem of Calculus, as $e^{t^{2}}$ is continuous, $F^{\prime}(x)=e^{x^{2}}$. Hence, $F^{\prime}(0)=e^{0}=1$, and so $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t=1$.
34.2.b. We similarly approach finding $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}}$. Let $F(x)=\int_{3}^{x} e^{t^{2}} d t$. Noting $0=F(3)$, we have:

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t=\lim _{h \rightarrow 0} \frac{F(3+h)}{h}=\lim _{h \rightarrow 0} \frac{F(3+h)-F(3)}{h}=F^{\prime}(3) .
$$

As before, as $e^{t^{2}}$ is continuous, by the Fundamental Theorem of Calculus, $F^{\prime}(x)=e^{x^{2}}$. Hence, $F^{\prime}(3)=e^{9}$ and so $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t=e^{9}$.
34.5. We have

$$
F(x)=\int_{x-1}^{x+1} f(t) d t=\int_{1}^{x+1} f(t) d t+\int_{x-1}^{1} f(t) d t=\int_{1}^{x+1} f(t) d t-\int_{1}^{x-1} f(t) d t .
$$

The First Fundamental Theorem of Calculus (with the derivative chain rule) tells us each of these integrals are differentiable. In particular:

$$
\begin{aligned}
& \frac{d}{d x} \int_{1}^{x+1} f(t) d t=f(x+1) \frac{d}{d x}(x+1)=f(x+1) \\
& \frac{d}{d x} \int_{1}^{x-1} f(t) d t=f(x-1) \frac{d}{d x}(x-1)=f(x-1)
\end{aligned}
$$

Therefore, as the sum of differentiable functions, F is differentiable, and $F^{\prime}(x)=f(x+1)-f(x-1)$.
34.7. Let $I=\int_{0}^{1} x \sqrt{1-x^{2}} d x$. We use the change of variables theorem (Ross Theorem 34.4) to solve this problem. Let $u(x)=1-x^{2}$, and observe that $u^{\prime}(x)=-2 x$. Hence, we have

$$
I=\int_{0}^{1} x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int_{0}^{1} \sqrt{u} u^{\prime}(x) d x
$$

Now, as the function $x \mapsto \sqrt{x}$ is continuous, we have by the Change of Variables Theorem:

$$
I=-\frac{1}{2} \int_{u(0)}^{u(1)} \sqrt{x} d x
$$

Note that $u(0)=1$ and $u(1)=0$. Also, \sqrt{x} is continuous on this interval and, by the Power Rule, has antiderivative $\frac{2}{3} x^{\frac{3}{2}}$. Hence, we have

$$
I=-\frac{1}{2} \int_{1}^{0} \sqrt{x} d x=-\frac{1}{2}\left(\frac{2}{3} 0^{\frac{3}{2}}-\frac{2}{3} 1^{\frac{3}{2}}\right)=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3} .
$$

