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et’dt. We wish to compute lim,_,q @ Note that F(0) =

34.2.a. Let F : R — R such that F(z) = fox
fo et dt = 0. Thus,
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By the Fundamental Theorem of Calculus, as e is continuous, F’(z) = ¢®". Hence, F'(0) = ¢® = 1, and so

1imx_>0 % foz €t2 dt = 1.

34.2.b. We similarly approach finding limy,_,o + 33+h et’. Let F(z) = fs e’ dt. Noting 0 = F(3), we have:
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= F'(3).

As before, as ¢! is continuous, by the Fundamental Theorem of Calculus, F'(z) = ¢®’. Hence, F'(3) = ¢°
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and so limy, o 4 [ €' dt = €.
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The First Fundamental Theorem of Calculus (with the derivative chain rule) tells us each of these integrals
are differentiable. In particular:
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Therefore, as the sum of differentiable functions, F is differentiable, and F'(z) = f(z + 1) — f(x — 1).

34.7. Let [ = fol xV'1 — 22dz. We use the change of variables theorem (Ross Theorem 34.4) to solve this
problem. Let u(x) = 1 — 22, and observe that u'(x) = —2z. Hence, we have
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Now, as the function x — /7 is continuous, we have by the Change of Variables Theorem:
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Note that «(0) = 1 and u(1) = 0. Also, y/z is continuous on this interval and, by the Power Rule, has
antiderivative 2z3. Hence, we have
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