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Ross 9.9. Let s and t be sequences in R and N0 ∈ N such that for all n ≥ N0, sn ≤ tn.

a. If limn→∞ sn = +∞ then limn→∞ tn = +∞.

Proof. For all M ∈ R, there exists some N ∈ N such that if n ≥ N , then sn > M . So, for all n ≥ max(N,N0),
tn ≥ sn > M . Thus, limn→∞ sn = +∞.

b. If limn→∞ tn = −∞ then limn→∞ sn = −∞.

Proof. For all M ∈ R, there exists an N ∈ N such that tn < M whenever n ≥ N . So, for all n ≥ max(N,N0),
sn ≤ tn < M . Thus, limn→∞ sn = −∞.

c. If limn→∞ sn = s and limn→∞ tn = t, then s ≤ t.

Proof. There are a few good ways to prove this; one way is to show that the limit of a sequence of nonnegative
real numbers is nonnegative, or alternatively, we could consider the lim inf of sn and lim sup of tn, observing
they are s and t respectively as both sequences converge, and as sn ≤ tn for some natural number n, this
implies s ≤ t.

For this problem, however, we will do a proof by contradiction. Suppose that s > t. Then there exists
some ϵ < s−t

2 . Now, there exists some N ∈ N such that if n ≥ N then |sn − s| < ϵ or equivalently,
s − ϵ < sn < s + ϵ. Likewise, there exists some M ∈ N such that if n ≥ M , then t − ϵ < tn < t + ϵ. Let
n ≥ N,M , and observe that s− ϵ < sn and tn < t+ ϵ. We have

s− ϵ > s− s− t

2
=

s+ t

2

and

t+ ϵ < t− s− t

2
=

s+ t

2
.

Thus,

tn < t+ ϵ <
s+ t

2
< s− ϵ < sn.

But, by hypothesis, sn ≤ tn. So, this is impossible and s ≤ t.

Ross 9.15. For all a ∈ R, limn→∞
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n! = 0.

Proof. By the Archimedian Principle, there exists some positive integer k > |a|. Observe that
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and so
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Thus, for any ϵ > 0, there exists some N ∈ N such that∣∣∣∣kkk!
(
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)n∣∣∣∣ < ϵ.

Now, if n ≥ N + k (observing that N + k ∈ N), then n− k ≥ N , so
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So, limn→∞
an

n! = 0.

Ross 10.7 For any S ⊆ R bounded above with supS ̸∈ S, there exists a sequence a such that for all n ∈ N,
an ∈ S and limn→∞ an = supS.

Proof. By definition of supremum, for any ϵ > 0, there exists an s ∈ S such that supS − s < ϵ. For all
positive integers n, let sn ∈ S such that supS−sn < 1

n . We claim that limn→∞ sn = supS. For every ϵ > 0,
there exists some integer N > 1

ϵ , so for all n ≥ N , n > 1
ϵ and ϵ > 1

n > supS − sn = |sn − supS|. Thus,
limn→∞ sn = supS.

Ross 10.8 For any increasing sequence s, the sequence σ, where

σn =
1

n

n∑
i=1

si

is increasing.

Proof. First, notice for all n,

σn =
1

n

n∑
i=1

si ≤
1

n

n∑
i=1

sn = sn.

Now, for all n > 1,

nσn =

n∑
i=1

si

=

n−1∑
i=1

si + sn

= (n− 1)σn−1 + sn

≥ (n− 1)σn−1 + sn−1

≥ (n− 1)σn−1 + σn−1

= σn−1.

So, σ is also increasing.

Ross 10.9 We have s1 = 1 and sn+1 =
ns2n
n+1 for n ≥ 1.

a. We have s2 =
1·s21
2 = 1

2 , s3 = 2
3 ·
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b. We show by induction that 0 < sn ≤ 1. Observe that s1 ≤ 1. For all n, if sn ≤ 1, then

sn+1 =
ns2n
n+ 1

≤ s2n ≤ 1.

So, sn ≤ 1. As n
n+1 > 0 and s2n > 0, sn+1 > 0 as well. Thus, by induction, 0 < sn < 1 for all n.

Now, this implies sn+1 ≤ s2n and as sn < 1, s2n ≤ sn; thus, sn is decreasing. Also, since sn > 0 for all n,
sn is bounded below and so convergent.

c. Let s = limn→∞ sn. Then we have s = limn→∞ sn+1. Thus:

s = lim
n→∞

sn+1 = lim
n→∞

(
ns2n
n+ 1

)
= lim

n→∞

n

n+ 1
lim

n→∞
s2n = lim

n→∞

n

n+ 1

(
lim
n→∞

sn

)2

= 1 · s2 = s2.

So, as s2 = s, s(s− 1) = 0, so either s = 0 or s = 1. Since sn is decreasing, s is the infimum of the sequence.
Thus, as s1 = 1

2 < 1, s ̸= 1, and therefore s = 0.

Ross 10.10 We have s1 = 1 and sn+1 = 1
3 (sn + 1).

a. We have s2 = 1
3 (1 + 1) = 2

3 , s3 = 1
3 (

2
3 + 1) = 5

9 and s4 = 1
3 (

5
9 + 1) = 14

27 .

b. Observe that s1 > 1
2 . Now, if sn > 1

2 , then sn+1 = 1
3 (sn +1) > 1

3 (
1
2 +1) = 1

2 . Thus, by induction sn > 1
2

for all n.

c. Since sn > 1
2 , 2sn > 1, so sn+1 = 1

3 (sn + 1) < 1
3 (sn + 2sn) = sn. Thus, sn is a decreasing sequence.

d. It follows, as sn has lower bound 1
2 , that sn is convergent. Let s = limn→∞ sn. So,

s = lim
n→∞

sn+1 = lim
n→∞

(
1

3
(sn + 1)) =

1

3

(
lim

n→∞
(sn) + 1

)
=

1

3
(s+ 1).

Thus, 3s = s+ 1 and so 2s = 1, implying s = 1
2 .

Ross 10.11 We have t1 = 1 and tn+1 =
(
1− 1

4n2

)
tn.

a. For all n, 1
4n2 > 0, so 1− 1

4n2 < 1, meaning that tn+1 =
(
1− 1

4n2

)
tn < tn.

b. 0, perhaps?

Theorem (Squeeze Theorem). Let an, bn, and cn be sequences such that limn→∞ an = limn→∞ cn = b and
for all n, an ≤ bn ≤ cn. Then limn→∞ bn = b.

Proof. For any ϵ > 0, there exists an N ∈ N such that |an − b| < ϵ whenever n ≥ N . Also, there exists an
M ∈ N such that |cn − b| < ϵ whenever n ≥ M . For any n ≥ max(N,M), observe both of these are true.
So, b − ϵ < an and cn < b + ϵ. As an ≤ bn ≤ cn, this means b − ϵ < bn < b + ϵ. Thus, |bn − b| < ϵ. Hence,
limn→∞ bn = b.
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