104 Set 2

Ishaan Patkar

Ross 9.9. Let s and t be sequences in \mathbb{R} and $N_{0} \in \mathbb{N}$ such that for all $n \geq N_{0}, s_{n} \leq t_{n}$.
a. If $\lim _{n \rightarrow \infty} s_{n}=+\infty$ then $\lim _{n \rightarrow \infty} t_{n}=+\infty$.

Proof. For all $M \in \mathbb{R}$, there exists some $N \in \mathbb{N}$ such that if $n \geq N$, then $s_{n}>M$. So, for all $n \geq \max \left(N, N_{0}\right)$, $t_{n} \geq s_{n}>M$. Thus, $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
b. If $\lim _{n \rightarrow \infty} t_{n}=-\infty$ then $\lim _{n \rightarrow \infty} s_{n}=-\infty$.

Proof. For all $M \in \mathbb{R}$, there exists an $N \in \mathbb{N}$ such that $t_{n}<M$ whenever $n \geq N$. So, for all $n \geq \max \left(N, N_{0}\right)$, $s_{n} \leq t_{n}<M$. Thus, $\lim _{n \rightarrow \infty} s_{n}=-\infty$.
c. If $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$, then $s \leq t$.

Proof. There are a few good ways to prove this; one way is to show that the limit of a sequence of nonnegative real numbers is nonnegative, or alternatively, we could consider the liminf of s_{n} and limsup of t_{n}, observing they are s and t respectively as both sequences converge, and as $s_{n} \leq t_{n}$ for some natural number n, this implies $s \leq t$.

For this problem, however, we will do a proof by contradiction. Suppose that $s>t$. Then there exists some $\epsilon<\frac{s-t}{2}$. Now, there exists some $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|s_{n}-s\right|<\epsilon$ or equivalently, $s-\epsilon<s_{n}<s+\epsilon$. Likewise, there exists some $M \in \mathbb{N}$ such that if $n \geq M$, then $t-\epsilon<t_{n}<t+\epsilon$. Let $n \geq N, M$, and observe that $s-\epsilon<s_{n}$ and $t_{n}<t+\epsilon$. We have

$$
s-\epsilon>s-\frac{s-t}{2}=\frac{s+t}{2}
$$

and

$$
t+\epsilon<t-\frac{s-t}{2}=\frac{s+t}{2}
$$

Thus,

$$
t_{n}<t+\epsilon<\frac{s+t}{2}<s-\epsilon<s_{n}
$$

But, by hypothesis, $s_{n} \leq t_{n}$. So, this is impossible and $s \leq t$.
Ross 9.15. For all $a \in \mathbb{R}, \lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$.
Proof. By the Archimedian Principle, there exists some positive integer $k>|a|$. Observe that $\left|\frac{a^{n}}{n!}\right|=\frac{|a|^{n}}{n!}<$ $\frac{k^{n}}{n!}$ as $|a| \geq 0$. For $n>k$, notice:

$$
\frac{k^{n}}{n!}=\frac{k^{k}}{k!} \cdot \prod_{i=k+1}^{n}\left(\frac{k}{i}\right) \leq \frac{k^{k}}{k!} \cdot\left(\frac{k}{k+1}\right)^{n-k}
$$

as for all $i \geq k, \frac{k}{k+1} \leq \frac{k}{i}$. Observe that

$$
\lim _{n \rightarrow \infty}\left(\frac{k}{k+1}\right)^{n}=0
$$

and so

$$
\lim _{n \rightarrow \infty} \frac{k^{k}}{k!}\left(\frac{k}{k+1}\right)^{n}=0
$$

Thus, for any $\epsilon>0$, there exists some $N \in \mathbb{N}$ such that

$$
\left|\frac{k^{k}}{k!}\left(\frac{k}{k+1}\right)^{n}\right|<\epsilon
$$

Now, if $n \geq N+k$ (observing that $N+k \in \mathbb{N}$), then $n-k \geq N$, so

$$
\epsilon>\left|\frac{k^{k}}{k!}\left(\frac{k}{k+1}\right)^{n-k}\right|=\frac{k^{k}}{k!}\left(\frac{k}{k+1}\right)^{n-k} \geq \frac{k^{n}}{n!} \geq \frac{|a|^{n}}{n!}=\left|\frac{a^{n}}{n!}\right|
$$

So, $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$.
Ross 10.7 For any $S \subseteq \mathbb{R}$ bounded above with $\sup S \notin S$, there exists a sequence a such that for all $n \in \mathbb{N}$, $a_{n} \in S$ and $\lim _{n \rightarrow \infty} a_{n}=\sup S$.

Proof. By definition of supremum, for any $\epsilon>0$, there exists an $s \in S$ such that $\sup S-s<\epsilon$. For all positive integers n, let $s_{n} \in S$ such that $\sup S-s_{n}<\frac{1}{n}$. We claim that $\lim _{n \rightarrow \infty} s_{n}=\sup S$. For every $\epsilon>0$, there exists some integer $N>\frac{1}{\epsilon}$, so for all $n \geq N, n>\frac{1}{\epsilon}$ and $\epsilon>\frac{1}{n}>\sup S-s_{n}=\left|s_{n}-\sup S\right|$. Thus, $\lim _{n \rightarrow \infty} s_{n}=\sup S$.

Ross 10.8 For any increasing sequence s, the sequence σ, where

$$
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i}
$$

is increasing.
Proof. First, notice for all n,

$$
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i} \leq \frac{1}{n} \sum_{i=1}^{n} s_{n}=s_{n}
$$

Now, for all $n>1$,

$$
\begin{aligned}
n \sigma_{n} & =\sum_{i=1}^{n} s_{i} \\
& =\sum_{i=1}^{n-1} s_{i}+s_{n} \\
& =(n-1) \sigma_{n-1}+s_{n} \\
& \geq(n-1) \sigma_{n-1}+s_{n-1} \\
& \geq(n-1) \sigma_{n-1}+\sigma_{n-1} \\
& =\sigma_{n-1}
\end{aligned}
$$

So, σ is also increasing.
Ross 10.9 We have $s_{1}=1$ and $s_{n+1}=\frac{n s_{n}^{2}}{n+1}$ for $n \geq 1$.
a. We have $s_{2}=\frac{1 \cdot s_{1}^{2}}{2}=\frac{1}{2}, s_{3}=\frac{2}{3} \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{6}$, and

$$
s_{4}=\frac{3}{4} \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{48}
$$

b. We show by induction that $0<s_{n} \leq 1$. Observe that $s_{1} \leq 1$. For all n, if $s_{n} \leq 1$, then

$$
s_{n+1}=\frac{n s_{n}^{2}}{n+1} \leq s_{n}^{2} \leq 1
$$

So, $s_{n} \leq 1$. As $\frac{n}{n+1}>0$ and $s_{n}^{2}>0, s_{n+1}>0$ as well. Thus, by induction, $0<s_{n}<1$ for all n.
Now, this implies $s_{n+1} \leq s_{n}^{2}$ and as $s_{n}<1, s_{n}^{2} \leq s_{n}$; thus, s_{n} is decreasing. Also, since $s_{n}>0$ for all n, s_{n} is bounded below and so convergent.
c. Let $s=\lim _{n \rightarrow \infty} s_{n}$. Then we have $s=\lim _{n \rightarrow \infty} s_{n+1}$. Thus:

$$
s=\lim _{n \rightarrow \infty} s_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{n s_{n}^{2}}{n+1}\right)=\lim _{n \rightarrow \infty} \frac{n}{n+1} \lim _{n \rightarrow \infty} s_{n}^{2}=\lim _{n \rightarrow \infty} \frac{n}{n+1}\left(\lim _{n \rightarrow \infty} s_{n}\right)^{2}=1 \cdot s^{2}=s^{2}
$$

So, as $s^{2}=s, s(s-1)=0$, so either $s=0$ or $s=1$. Since s_{n} is decreasing, s is the infimum of the sequence. Thus, as $s_{1}=\frac{1}{2}<1, s \neq 1$, and therefore $s=0$.
Ross 10.10 We have $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$.
a. We have $s_{2}=\frac{1}{3}(1+1)=\frac{2}{3}, s_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9}$ and $s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27}$.
b. Observe that $s_{1}>\frac{1}{2}$. Now, if $s_{n}>\frac{1}{2}$, then $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}$. Thus, by induction $s_{n}>\frac{1}{2}$ for all n.
c. Since $s_{n}>\frac{1}{2}, 2 s_{n}>1$, so $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)<\frac{1}{3}\left(s_{n}+2 s_{n}\right)=s_{n}$. Thus, s_{n} is a decreasing sequence.
d. It follows, as s_{n} has lower bound $\frac{1}{2}$, that s_{n} is convergent. Let $s=\lim _{n \rightarrow \infty} s_{n}$. So,

$$
s=\lim _{n \rightarrow \infty} s_{n+1}=\lim _{n \rightarrow \infty}\left(\frac{1}{3}\left(s_{n}+1\right)\right)=\frac{1}{3}\left(\lim _{n \rightarrow \infty}\left(s_{n}\right)+1\right)=\frac{1}{3}(s+1) .
$$

Thus, $3 s=s+1$ and so $2 s=1$, implying $s=\frac{1}{2}$.
Ross 10.11 We have $t_{1}=1$ and $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}$.
a. For all $n, \frac{1}{4 n^{2}}>0$, so $1-\frac{1}{4 n^{2}}<1$, meaning that $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}<t_{n}$.
b. 0, perhaps?

Theorem (Squeeze Theorem). Let a_{n}, b_{n}, and c_{n} be sequences such that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=b$ and for all n, $a_{n} \leq b_{n} \leq c_{n}$. Then $\lim _{n \rightarrow \infty} b_{n}=b$.

Proof. For any $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that $\left|a_{n}-b\right|<\epsilon$ whenever $n \geq N$. Also, there exists an $M \in \mathbb{N}$ such that $\left|c_{n}-b\right|<\epsilon$ whenever $n \geq M$. For any $n \geq \max (N, M)$, observe both of these are true. So, $b-\epsilon<a_{n}$ and $c_{n}<b+\epsilon$. As $a_{n} \leq b_{n} \leq c_{n}$, this means $b-\epsilon<b_{n}<b+\epsilon$. Thus, $\left|b_{n}-b\right|<\epsilon$. Hence, $\lim _{n \rightarrow \infty} b_{n}=b$.

