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10.6.a. If (sn) is a sequence such that for all n ∈ N, |sn+1 − sn| < 2−n then (sn) is a Cauchy sequence.

Proof. For any n,m ∈ N, assuming m > n, we have:

|sm − sn| =

∣∣∣∣∣
m∑

i=n+1

(si − si−1)

∣∣∣∣∣ ≤
m+n∑
i=n+1

|si − si−1| ≤
m+n∑
i=n+1

2−i =
2−n−1 − 2−m−n−1

1− 2−1
=

1

2n
− 1

2n+m
<

1

2n
.

So, for any n,m ∈ N, we have:

|sm − sn| <
1

2min(m,n)
= max

(
1

2n
,
1

2m

)
,

since if m > n, then |sm − sn| < 1
2n , and if n > m, then |sm − sn| < 1

2m and if m = n then |sm − sn| = 0
and so satisfies both inequalities.

Now, as limn→∞
1
2n = 0 as

∣∣ 1
2

∣∣ < 1, for any ϵ > 0, there exists an N ∈ N such that 1
2n =

∣∣ 1
2n

∣∣ < ϵ for all
n > N . So, for all m,n > N :

|sm − sn| < min

(
1

2m
,
1

2n

)
< ϵ.

Hence, (sn) is Cauchy.

10.6.b. This statement would actually imply that the harmonic series is convergent. Let:

sn =

n∑
i=1

1

i
= sn−1 +

1

n
.

Observe that for all n ∈ N, |sn+1 − sn| = 1
n+1 < 1

n . Assuming this statement is true, then (sn) is Cauchy
and so convergent. But this implies that the harmonic series is convergent, which it is not.

11.2.a. For (an), consider the sequence (a2n)
∞
n=1. Observe that a2n = 1 so this sequence is monotonic. For

(bn), the sequence itself is monotonic, so any subsequence is monotonic and will do. Likewise for (cn); it is
also monotonic and any subsequence is monotonic. For (dn), observe that:

dn =
6n+ 4

7n− 3
=

6

7
+

46

7
· 1

7n− 3
.

As 1
7n−3 is monotonically decreasing and has positive coefficient in this sequence, (dn) is also monotonically

decreasing and any subsequence is thus monotonic.

11.2.b. Clearly, 1 and −1 are subsequential limits of (an) since there is a subsequence containing only 1’s
and a subsequence containing only −1’s. In fact, the lim sup is 1 and the lim inf is −1 as the supremum
and infimum of all n > N for any N ∈ N is 1 and −1 respectively. We desire to show these are the only
subsequential limits of (an). To see this, consider any subsequential limit a. Since it is a subsequential limit,
it must be between −1 and 1. Suppose it is neither 1 nor −1. Then −1 < a < 1, or |a| < 1. Let ϵ such that
0 < ϵ < min(a + 1, 1 − a). So ϵ < a + 1, implying −1 < a − ϵ, and as ϵ < 1 − a, a + ϵ < 1. Since a is a
subsequential limit of (an), there exists infinitely many n ∈ N such that an ∈ (a− ϵ, a+ ϵ). However, either
an = 1 or an = −1, which would respectively imply that 1 < 1 and −1 < −1, either of which are impossible.
Hence we have a contradiction, so either a = 1 or a = −1.
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The other sequences are convergent (in the extended real numbers) and so their sets of subsequential limits
are easier to define. Note limn→∞ bn = 0, so 0 is the only subsequential limit. We have limn→∞ cn = +∞.
Also, limn→∞ dn = 6

7 by the decomposition in the previous part and as 1
7n−3 → 0 as n → ∞.

11.2.c. These can be determined from the previous part, being the maximum and the minimum of the set
of subsequential limits, respectively.

lim supn→∞ an = 1 lim infn→∞ an = −1
lim supn→∞ bn = 0 lim infn→∞ bn = 0

lim supn→∞ cn = +∞ lim infn→∞ cn = +∞
lim supn→∞ dn = 6

7 lim infn→∞ dn = 6
7

11.2.d. It follows from part (b) that (an) diverges, (bn) converges to 0, (cn) diverges to +∞, and (dn)
converges to 6

7 .

11.2.e. Observe that sup{an}∞n=1 = 1 and inf{an}∞n=1 = −1 as 1 and −1 are the maximum and minimum of
the set of values the sequence takes, respectively. Thus, (an) is bounded. As (bn) converges, it is bounded.
As (cn) diverges to +∞, it is not bounded above, though as n2 ≥ 0 for all n ∈ N, it is bounded below. As
(dn) converges, it is bounded.

11.3.a. For (sn), observe that:

sn = cos
(nπ

3

)
=


0 if x ≡ 0 (mod 3)
1
2 if x ≡ 1 (mod 3)

− 1
2 if x ≡ 2 (mod 3).

One monotone subsequence is (s3n)
∞
n=1, as s3n = 0.

For (tn), it is monotone as

tn =
3

4n+ 1
>

3

4n+ 5
= tn+1.

For (un), we have (u2n)
∞
n=1 monotone as

u2n =
1

22n
>

1

22n+2
= u2(n+1).

For (vn), we have (v2n)
∞
n=1 also monotone as

v2n = 1 +
1

2n
> 1 +

1

2n+ 2
= v2(n+1).

11.3.b. The set of subsequential limits of (sn) is {− 1
2 , 0,

1
2}; for (tn) is {0} as it converges to 0; for (vn) is

{0} as (vn) converges to 0 since it is a geometric sequence with common ratio between −1 and 1; and for
(un) is {−1, 1}. The proofs of the subsequential limits for (sn) and (vn) follow similarly to the proof for (an)
in the first problem and will be omitted (since the question doesn’t ask for a proof). We simply justify these
sets by noting that (sn) only takes on a finite number of values, and finite sets are closed, and that vn only
gets arbitrarily close to 1 and −1.

11.3.c. Noting that the lim sup and lim inf are the maximum and minimum in the set of subsequential
limits, we have the following:

lim supn→∞ sn = 1
2 lim infn→∞ sn = − 1

2
lim supn→∞ tn = 0 lim infn→∞ tn = 0
lim supn→∞ un = 0 lim infn→∞ un = 0
lim supn→∞ vn = 1 lim infn→∞ vn = −1

11.3.d. By the set of subsequential limits, the sequence (sn) diverges, (tn) converges to 0, (un) converges
to 0, and (vn) diverges.
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11.3.e. All four sequences are bounded. Observe that − 1
2 ≤ sn ≤ 1

2 , (tn) and (un) are bounded since they
converge, and −1 ≤ vn ≤ 2, so (vn) is bounded.

11.5.a. We claim that the set of subsequential limits of (qn) is [0, 1]. First, observe that every subsequence
of (qn) is contained in [0, 1]; thus, any subsequential limits will be contained in [0, 1]. Now, for any x ∈ [0, 1]
and ϵ > 0, there exists infinitely many rationals p strictly between max(0, x − ϵ) and min(1, x + ϵ), since
0, x − ϵ < 1, x + ϵ. Since each of these rationals lie in (0, 1], they will appear in the sequence (qn) as it
enumerates all of the rationals in (0, 1]. Each of these infinitely many rationals qn will also lie between x− ϵ
and x+ ϵ, meaning that {n ∈ N | |qn − x| < ϵ} is infinite. Thus, x is a subsequential limit of (qn).

11.5.b. We have lim sup qn = 1 and lim inf qn = 0 as these are the maximum and minimum of the set of
subsequential limits, respectively.

limsup. For any sequence (an), we define

lim sup
n→∞

an = lim
n→∞

sup{am | m ≥ n}.

This is different from sup in many regards. For one, sup takes in subsets of R, whereas lim sup takes in
sequences in R. Also, unlike sup, lim sup is also a limit of a particular type of sequence generated from the
sequence (an).

Also, lim sup has a number of interesting, counter-intuitive aspects. For instance, the sequence defined
by lim sup, sup{am | m ≥ n} is decreasing: if we let An = sup{am | m ≥ n}, then observe for any Ai, Aj

with i ≤ j, for all m ≥ j, m ≥ j ≥ i, so am ≤ Ai. This means Ai is an upper bound on {am | m ≥ j}, so,
as Aj is the least upper bound, Aj ≤ Ai. This in some ways counter to the notion that sup represents an
upper bound, although it is natural that subsequent upper bounds should be decreasing.

One similarity between lim sup and sup is that lim sup is actually the supremum of a set: specifically, the
set of subsequential limits of (an) (of which it is also a maximum). In this sense, lim sup is a supremum of
limits.
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