104 Set 4

Ishaan Patkar

Ross 12.10. Let $\left(a_{n}\right)$ be a sequence of real numbers. Then $\left(a_{n}\right)$ is bounded if and only if limsup $\left|a_{n}\right|<\infty$.
Proof. \Longrightarrow Since a_{n} is bounded, there exists an $M \geq 0$ such that $\left|a_{n}\right| \leq M$ for all n. So, as $0 \leq\left|a_{n}\right| \leq M$ for all $n,\left|a_{n}\right|$ is bounded, and thus $\lim \sup \left|a_{n}\right|<\infty$.
\Longleftarrow Assume that $\lim \sup \left|a_{n}\right|<\infty$. Let $a=\lim \sup \left|a_{n}\right|$, and take any $\epsilon>0$. Then there exists an N such that for all $n \geq N,\left|\sup _{m \geq n}\right| a_{m}|-a|<\epsilon$, so $\sup _{m \geq n}\left|a_{m}\right|-a<\epsilon$. So for all $n \geq N$, $\left|a_{n}\right|-a \leq \sup _{m \geq n}\left|a_{m}\right|-a<\epsilon$, so $0 \leq\left|a_{n}\right|<a+\epsilon$. Thus, the set $\left\{a_{n} \mid n \geq N\right\}$ is bounded. Observe $\left\{a_{n} \mid n<N\right\}$ is bounded as well, since it is finite; we can construct bounds by taking the minimum and maximum of the elements in the set. So, the set $\left\{\left|a_{n}\right| \mid n>0\right\}$ is bounded as it is the union of these two bounded sets; we can construct an upper bound by taking the maximum of the upper bound of the two sets, and we can construct a lower bound by taking the minimum of the lower bound of the two sets.

In particular, this means there exists some $M \geq 0$ such that $\left|a_{n}\right| \leq M$ for all n. Therefore, $-M \leq a_{n} \leq M$ for all n, and so $\left(a_{n}\right)$ is bounded.

Ross 12.12. Let $\left(s_{n}\right)$ be a sequence of nonnegative reals, and σ_{n} such that

$$
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i}
$$

a. Then:

$$
\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}
$$

Proof. We will prove that $\lim \sup \sigma_{n} \leq \limsup s_{n}$; observe that $\lim \inf \sigma_{n} \leq \lim \sup \sigma_{n}$ necessarily. The proof for the first inequality, that $\lim \inf s_{n} \leq \liminf \sigma_{n}$, follows the proof for the last inequality and will be omitted.

First, observe that if $\limsup s_{n}=\infty$, then clearly $\limsup \sigma_{n} \leq \infty=\lim \sup s_{n}$. So, take the case that $\limsup s_{n}<\infty$. Let $S=\lim \sup s_{n}$. For any $\epsilon>0$, there exists an N such that if $n \geq N$:

$$
0 \leq \sup _{m \geq n} s_{m}-S<\epsilon
$$

so $s_{n}<S+\epsilon$. So, for all $n>N$:

$$
\begin{aligned}
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i} & =\frac{1}{n} \sum_{i=1}^{N} s_{i}+\frac{1}{n} \sum_{i=N+1}^{n} s_{i} \\
& <\frac{1}{n} \sum_{i=1}^{N} s_{i}+\frac{1}{n} \sum_{i=N+1}^{n}(S+\epsilon) \\
& =\frac{1}{n} \sum_{i=1}^{N} s_{i}+\frac{(n-N)(S+\epsilon)}{n} \\
& =\frac{1}{n} \sum_{i=1}^{N} s_{i}-\frac{N}{n}(S+\epsilon)+S+\epsilon
\end{aligned}
$$

Now, let

$$
S_{n}=\frac{1}{n} \sum_{i=1}^{N} s_{i}-\frac{N}{n}(S+\epsilon)+S+\epsilon
$$

for all $n>N$, and let $S_{n}=0$ otherwise. Observe that:

$$
\lim S_{n}=\lim \left(\frac{1}{n} \sum_{i=1}^{N} s_{i}-\frac{N}{n}(S+\epsilon)+S+\epsilon\right)=\lim \left(\frac{1}{n}\right) \sum_{i=1}^{N} s_{i}-N(S+\epsilon) \lim \frac{1}{n}+S+\epsilon=S+\epsilon
$$

since we can ignore the first, finite part of the sequence.
Therefore, $\lim \sup S_{n}=S+\epsilon$. For all $n \geq N$ and $i \geq n$, observe that $\sigma_{i} \leq S_{i} \leq \sup _{j \geq n} S_{j}$, so $\sup _{i \geq n} \sigma_{i} \leq \sup _{j \geq n} S_{j}$. Hence,

$$
\limsup \sigma_{n} \leq \lim \sup S_{n}=S+\epsilon
$$

as again, we can ignore the first N terms of the sequence, for which the inequalities $\sigma_{n} \leq S_{n}$ and $\sup _{i \geq n} \sigma_{i} \leq$ $\sup _{i \geq n} S_{i}$ may not hold.

So, for all $\epsilon>0$, we have that $\limsup \sigma_{n} \leq S+\epsilon$. It follows that $\limsup \sigma_{n} \leq S=\limsup s_{n}$.
The proof for the lim inf inequality follows similarly.
b. If $\lim s_{n}$ exists, then $\liminf s_{n}=\limsup s_{n}=\lim s_{n}$, so

$$
\lim s_{n}=\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}=\lim s_{n}
$$

and so $\lim \inf \sigma_{n}=\limsup \sigma_{n}=\lim s_{n}$. Thus, σ_{n} converges an $\lim \sigma_{n}=\lim s_{n}$.
c. Let $s_{n}=1$ if n is even and $s_{n}=-1$ if n is odd. Observe that $\limsup s_{n}=\lim 1=1$ and $\lim \inf s_{n}=$ $\lim (-1)=-1$ as there exist infinitely many s_{n} near 1 and -1 . However:

$$
\sigma_{2 n}=\frac{1}{2 n} \sum_{i=1}^{2 n}(-1)^{i}=\frac{1}{2 n} \sum_{i=1}^{n}\left((-1)^{2 i-1}+(-1)^{2 i}\right)=0
$$

and

$$
\begin{aligned}
\sigma_{2 n+1} & =\frac{1}{2 n+1} \sum_{i=1}^{2 n+1}(-1)^{i} \\
& =\frac{1}{2 n+1} \sum_{i=1}^{2 n}(-1)^{i}+\frac{1}{2 n+1}(-1)^{2 n+1} \\
& =\frac{1}{2 n+1} \sum_{i=1}^{n}\left((-1)^{2 i-1}+(-1)^{2 i}\right)-\frac{1}{2 n+1} \\
& =-\frac{1}{2 n+1}
\end{aligned}
$$

So, $\lim \sup \sigma_{n}=\lim \sup 0=0$ as there are infinitely many σ_{n} close to 0 , and $\lim \inf \sigma_{n}=\lim \inf \left(-\frac{1}{2 n+1}\right)=0$ as well, so $\lim \sigma_{n}=0$. So, $\left(\sigma_{n}\right)$ is convergent, while $\left(s_{n}\right)$ is divergent.

Ross 14.2.

a. The series $\sum \frac{n-1}{n^{2}}$ cannot converge, for if it does converge, then as $\sum \frac{1}{n^{2}}$ converges, $\sum \frac{(n-1)+1}{n^{2}}=\sum \frac{1}{n}$ converges, which is impossible.
b. Observe:

$$
\sum_{i=1}^{2 n}(-1)^{i}=\sum_{i=1}^{n}\left((-1)^{2 i}+(-1)^{2 i+1}\right)=\sum_{i=1}^{n} 0=0
$$

Therefore,

$$
\sum_{i=1}^{2 n+1}(-1)^{i}=\sum_{i=1}^{2 n}(-1)^{i}+(-1)^{2 n+1}=-1
$$

So, letting $a_{n}=\sum_{i=1}^{n}$, we have

$$
a_{n}= \begin{cases}0 & \text { if } i \text { is even } \\ -1 & \text { if } i \text { is odd }\end{cases}
$$

This sequence clearly diverges; for instance, observe that there are infinitely many elements arbitrarily close to 0 and infinitely many elements arbitrarily close to -1 , implying that 0 and -1 are subsequential limits, and as $0 \neq-1$, implying that the sequence does not converge.
c. We have $\frac{3}{n^{3}}=\frac{3}{n^{2}}$, so the partial sums of the series $\sum \frac{3}{n^{3}}$ are 3 times those of $\sum \frac{1}{n^{2}}$. As $\sum \frac{1}{n^{2}}$ converges, so does $\sum \frac{3^{n^{3}}}{n^{3}}$.
d. Applying the Root Test to this sequence gives $\lim \sup \frac{n^{\frac{3}{n}}}{3}$. We have shown that $\lim n^{\frac{1}{n}}=1$, so $\lim n^{\frac{3}{n}}=1$ and so $\lim \frac{n^{\frac{3}{n}}}{3}=\frac{1}{3}<1$, and so this sequence converges.
e. Applying the Ratio Test gives

$$
\frac{\frac{(n+1)^{2}}{(n+1)!}}{\frac{n^{2}}{n!}}=\frac{(n+1)^{2}}{n^{2}(n+1)}=\frac{n+1}{n^{2}}
$$

Note this sequence converges to $0<1$. Thus, the original series $\sum \frac{n^{2}}{n!}$ converges.
f. Applying the Root Test to this series $\sum \frac{1}{n^{n}}$ gives

$$
\left(\frac{1}{n^{n}}\right)^{\frac{1}{n}}=\frac{1}{n}
$$

which converges to $0<1$, so this series converges.
e. Applying the Root Test gives

$$
\left(\frac{n}{2^{n}}\right)^{\frac{1}{n}}=\frac{n^{\frac{1}{n}}}{2}
$$

Since we have shown $n^{\frac{1}{n}} \rightarrow 0$ as $n \rightarrow \infty$, this sequence converges to $\frac{1}{2}$ and therefore the series $\sum \frac{n}{2^{n}}$ converges.

Ross 14.10. Let $\left(a_{n}\right)$ be a sequence such that $a_{2 n}=\frac{3^{n}}{2^{n}}$ and $a_{2 n+1}=\frac{3^{n}}{2^{n+1}}$ and consider the series $\sum a_{n}$. We start by applying the Ratio Test on this sequence: observe

$$
\frac{a_{2 n}}{a_{2 n-1}}=\frac{\frac{3^{n}}{2^{n}}}{\frac{3^{n-1}}{2^{n}}}=3
$$

and

$$
\frac{a_{2 n+1}}{a_{2 n}}=\frac{\frac{3^{n}}{2^{n+1}}}{\frac{3^{n}}{2^{n}}}=\frac{1}{2}
$$

So:

$$
\frac{a_{n+1}}{a_{n}}= \begin{cases}\frac{1}{2} & \text { if } n \text { even } \\ 3 & \text { if } n \text { odd }\end{cases}
$$

It is thus clear that $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}<1$ and $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|=3>1$, so the Ratio Test gives no information.
However, the Root Test gives that the series diverges. Notice that

$$
a_{2 n}^{\frac{1}{2 n}}=\left(\frac{3^{n}}{2^{n}}\right)^{\frac{1}{2 n}}=\frac{\sqrt{3}}{\sqrt{2}}
$$

and

$$
a_{2 n+1}^{\frac{1}{2 n+1}}=\left(\frac{3^{n}}{2^{n+1}}\right)^{\frac{1}{2 n+1}}=\frac{3^{\frac{n}{2 n+1}}}{2^{\frac{n+1}{2 n+1}}}
$$

As $3^{\frac{n}{2 n+1}}=3^{2 n} 4 n+2<3^{2 n+1} 4 n+2=\sqrt{3}$ and $2^{\frac{n+1}{2 n+1}}=2^{\frac{2 n+2}{4 n+2}}>2^{\frac{2 n+1}{4 n+2}}=\sqrt{2}$,

$$
a_{2 n+1}^{\frac{1}{2 n+2}}<\frac{\sqrt{3}}{\sqrt{2}}
$$

So, it follows that $\lim \sup a_{n}^{\frac{1}{n}}=\frac{\sqrt{3}}{\sqrt{2}}$ as there are infinitely many $a_{n}^{\frac{1}{n}}$ equal to this number, an no elements greater than this number, meaning that $\sup _{m \geq n} a_{m}^{\frac{1}{m}}=\frac{\sqrt{3}}{\sqrt{2}}$ for all n. So, by the Root Test, this sequence diverges as $\sqrt{3}>\sqrt{2}$, so $\frac{\sqrt{3}}{\sqrt{2}}>1$.

Rudin 3-6.

a. Observe that:

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}(\sqrt{i+1}-\sqrt{i})=\sqrt{n+1}+\sum_{i=2}^{n}(-\sqrt{i}+\sqrt{i})-\sqrt{1}=\sqrt{n+1}-1
$$

so the partial sums and the series diverge.
b. Similar to the previous problem, we have:

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \frac{\sqrt{i+1}-\sqrt{i}}{i} & =\sum_{i=1}^{n}\left(\frac{\sqrt{i+1}}{i}-\frac{\sqrt{i}}{i}\right) \\
& =-\frac{\sqrt{1}}{1}+\sum_{i=2}^{n}\left(-\frac{\sqrt{i}}{i}+\frac{\sqrt{i}}{i-1}\right)+\frac{\sqrt{n+1}}{n} \\
& =-1+\sum_{i=2}^{n} \frac{\sqrt{i}}{i(i-1)}+\frac{\sqrt{n+1}}{n} \\
& =-1+\sum_{i=2}^{n} \frac{1}{\sqrt{i}(i-1)}+\frac{\sqrt{n+1}}{n}
\end{aligned}
$$

Note that $\sqrt{i}(i-1)>\sqrt{i-1}(i-1)=(i-1)^{\frac{3}{2}}$, so

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =-1+\sum_{i=2}^{n} \frac{1}{\sqrt{i}(i-1)}+\frac{\sqrt{n+1}}{n} \\
& <-1+\sum_{i=2}^{n} \frac{1}{(i-1)^{\frac{3}{2}}}+\frac{\sqrt{n+1}}{n} \\
& =-1+\sum_{i=1}^{n-1} \frac{1}{i^{\frac{3}{2}}}+\frac{\sqrt{n+1}}{n}
\end{aligned}
$$

Note that $-1, \sum_{i=1}^{n-1} \frac{1}{i^{\frac{3}{2}}}$, and $\frac{\sqrt{n+1}}{n}$ converge, so this series also converges.
c. Applying the Root Test gives $\sqrt[n]{n}-1$ which converges to 0 as $n \rightarrow \infty$. As $0<1$, this sequence converges.
d. We claim that this series converges if and only if $|z|>1$. First, if this series converges, $\lim _{n \rightarrow \infty} \frac{1}{1+z^{n}}=0$. Then $\lim _{n \rightarrow \infty}\left(1+z^{n}\right)=\infty$ so $\lim _{n \rightarrow \infty} z^{n}=\infty$. Note this implies that $\lim _{n \rightarrow \infty}|z|^{n}=\infty$; this will occur only if $|z|>1$ as it is a geometric progression.

On the other hand, assume that $|z|>1$. We will show this series converges by applying the Root Test. To do this, we first show that for any $w \in \mathbb{C}$ with $|w|<1, \lim _{n \rightarrow \infty} \sqrt[n]{\left|1+w^{n}\right|}=1$. Observe

$$
1-|w|^{n} \leq\left|1+w^{n}\right| \leq 1+|w|^{n}
$$

by the Triangle Inequality, implying that, as $1-|w|^{n}>0$,

$$
\sqrt[n]{1-|w|^{n}} \leq \sqrt[n]{\left|1+w^{n}\right|} \leq \sqrt[n]{1+|w|^{n}}
$$

Now, as $|w|^{n}<1,0<1-|w|^{n} \leq 1$, so $1-|w|^{n} \leq \sqrt[n]{1-|w|^{n}}$. Similarly, as $1 \leq 1+|w|^{n}, \sqrt[n]{1+|w|^{n}} \leq 1+|w|^{n}$. Therefore

$$
1-|w|^{n} \leq \sqrt[n]{\left|1+w^{n}\right|} \leq 1+|w|^{n}
$$

Observe that $\lim _{n \rightarrow \infty}\left(1-|w|^{n}\right)=\lim _{n \rightarrow \infty}\left(1+|w|^{n}\right)=1$. Therefore, by the Squeeze Theorem,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|1+w^{n}\right|}=1
$$

Now, when $|z|>1$, observe that $\left|\frac{1}{z}\right|<1$, so $\lim _{n \rightarrow \infty} \sqrt[n]{\left|1+\frac{1}{z^{n}}\right|}=1$ and thus $\lim _{n \rightarrow \infty} \sqrt[n]{\left|1+z^{n}\right|}=|z|$. So,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{\left|1+z^{n}\right|}}=\frac{1}{|z|}<1
$$

meaning that the series $\sum \frac{1}{1+z^{n}}$ converges. Hence, the series converges iff $|z|>1$.
Rudin 7. We claim that $\frac{\sqrt{a_{n}}}{n}<a_{n}+\frac{1}{n^{2}}$. Observe that $\left(n \sqrt{a_{n}}-1\right)^{2}>0$, so $n^{2} a_{n}-2 n \sqrt{a_{n}}+1>0$ and so $\frac{2 \sqrt{a_{n}}}{n}<a_{n}+\frac{1}{n^{2}}$. Thus, by the Comparison Test (as both sides are real and positive), $\sum \frac{2 \sqrt{a_{n}}}{n}$ converges, and so $\sum \frac{\sqrt{a_{n}}}{n}$ converges.
Rudin 9.a. Note that $\lim _{n \rightarrow \infty} \sqrt[n]{n^{3}}=\lim _{n \rightarrow \infty}(\sqrt[n]{n})^{3}=1^{3}=1$. So, the radius of convergence is 1 .
Rudin 9.b. Observe $\lim _{n \rightarrow \infty} \frac{2}{\sqrt[n]{n!}}=0$ as the Ratio Test gives

$$
\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0
$$

So the radius of convergence is ∞ and the sequence always converges.
9.c. We have:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2^{n}}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{2}{(\sqrt[n]{n})^{2}}=\frac{2}{1^{2}}=2
$$

So, the radius of convergence is $\frac{1}{2}$. Note the series is absolutely convergent when $|z|=\frac{1}{2}$ as $\left|\frac{2^{n} z^{n}}{n^{2}}\right|=\frac{1}{n^{2}}$ whose series converges.
9.d. We have:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{3}}{3^{n}}}=\lim _{n \rightarrow \infty} \frac{(\sqrt[n]{n})^{3}}{3}=\frac{1^{3}}{3}=\frac{1}{3}
$$

So the radius of convergence is 3 .
11.a. We wish to show that $\sum a_{n}$ diverges iff $\sum \frac{a_{n}}{1+a_{n}}$ diverges. We will show that $\sum a_{n}$ converges iff $\sum \frac{a_{n}}{1+a_{n}}$ converges. Note as $a_{n}^{2} \geq 0, a_{n} \leq a_{n}\left(1+a_{n}\right)$, so $\frac{a_{n}}{1+a_{n}} \leq a_{n}$, implying that if $\sum a_{n}$ converges, then so does $\sum \frac{a_{n}}{1+a_{n}}$. We will now prove the other direction.

Assume that $\sum \frac{a_{n}}{1+a_{n}}$ converges. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{1+a_{n}}=0$. Since that $\frac{a_{n}}{1+a_{n}}=1-\frac{1}{1+a_{n}}, \lim _{n \rightarrow \infty} \frac{1}{1+a_{n}}=1$. Hence, $\lim _{n \rightarrow \infty}\left(1+a_{n}\right)=1$ and so $\lim a_{n}=0$. This means a_{n} is bounded; let M be that bound, so $\left|a_{n}\right| \leq M$ for all n. Then for all n,

$$
\begin{aligned}
a_{n} & \leq M \\
a_{n}+1 & \leq M+1 \\
1 & \leq \frac{M+1}{a_{n}+1} \\
a_{n} & \leq \frac{(M+1) a_{n}}{a_{n}+1}
\end{aligned}
$$

as $a_{n}>0$. Note that $\sum \frac{(M+1) a_{n}}{1+a_{n}}$ converges since $\sum \frac{a_{n}}{1+a_{n}}$ converges. Thus, because of this inequality and as $a_{n}>0$, the comparison test implies that $\sum a_{n}$ converges.
11.b. Note that for all $N \leq i \leq k, s_{i} \leq s_{N+k}$ as $\left(a_{n}\right)$ is positive and so $\left(s_{n}\right)$ is increasing. Therefore, $\frac{1}{s_{N+k}} \leq \frac{1}{s_{i}}$ and so

$$
\sum_{i=N}^{N+k} \frac{a_{i}}{s_{i}} \geq \sum_{i=N}^{N+k} \frac{a_{i}}{s_{N+k}}=\frac{1}{s_{N+k}} \sum_{i=N}^{N+k} a_{i}=\frac{1}{s_{N+k}}\left(\sum_{i=1}^{N+k} a_{i}-\sum_{i=1}^{N} a_{i}\right)=\frac{1}{s_{N+k}}\left(s_{N+k}-s_{N}\right)=1-\frac{s_{N}}{s_{N+k}}
$$

Notice also that $\lim _{k \rightarrow \infty} \frac{s_{N}}{s_{N+k}}=0$ as $\lim _{k \rightarrow \infty} s_{N+k}=\infty$ as $\sum a_{n}$ diverges. It follows that $\sum \frac{a_{n}}{s_{n}}$ does not satisfy the Cauchy criterion.

Let $\epsilon>0$ such that $0<\epsilon<1$. For any N, note that $\lim _{k \rightarrow \infty} \frac{s_{N}}{s_{N+k}}=0$, meaning there exists some K such that whenever $k \geq K$,

$$
\left|\frac{s_{N}}{s_{N+k}}\right|<1-\epsilon
$$

Then $1-\frac{s_{N}}{s_{N+k}}>\epsilon$. Thus, there exists a $k \geq K$ such that

$$
\sum_{i=N}^{N+k} \frac{a_{i}}{s_{i}}>1-\frac{s_{N}}{s_{N+k}}>\epsilon
$$

so the sum cannot satisfy the Cauchy criterion, as there exists an $\epsilon>0$ such that for any N there will be a point (actually, infinitely many points) where the Cauchy criterion is not met. Therefore, $\sum \frac{a_{n}}{s_{n}}$ diverges.
11.c. We have, for $n>1$

$$
\frac{1}{s_{n-1}}-\frac{1}{s_{n}}=\frac{s_{n}-s_{n-1}}{s_{n-1} s_{n}}=\frac{a_{n}}{s_{n-1} s_{n}}
$$

As $s_{n-1} \leq s_{n}$ as the sequence is increasing, $\frac{1}{s_{n-1}} \geq \frac{1}{s_{n}}$ and so

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

Thus, we have:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{a_{i}}{s_{i}^{2}} & =a_{1}+\sum_{i=1}^{n} \frac{a_{i}}{s_{i}^{2}} \\
& \leq a_{1}+\sum_{i=2}^{n}\left(\frac{1}{s_{i-1}}-\frac{1}{s_{i}}\right) \\
& =a_{1}+\sum_{i=2}^{n} \frac{1}{s_{i-1}}-\sum_{i=2}^{n} \frac{1}{s_{i}} \\
& =a_{1}+\sum_{i=1}^{n-1} \frac{1}{s_{i}}-\sum_{i=2}^{n} \frac{1}{s_{i}} \\
& =a_{1}+\frac{1}{s_{1}}-\frac{1}{s_{n}}
\end{aligned}
$$

Observe that $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=0$ as $\lim _{n \rightarrow \infty} s_{n}=+\infty$. Thus:

$$
\sum_{i=1}^{\infty} \frac{a_{i}}{s_{i}^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{a_{i}}{s_{i}^{2}} \leq a_{1}+\frac{1}{s_{1}}-\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=a_{1}+\frac{1}{s_{1}}
$$

implying that the series $\sum \frac{a_{i}}{s_{i}^{2}}$ converges. Also note that $s_{1}=a_{1}$, so this also shows $a_{1}+\frac{1}{a_{1}}=\frac{1+a_{1}}{a_{1}}$ is an upper bound for this series.
11.d. The first series, $\sum \frac{a_{n}}{1+n a_{n}}$ does not necessarily converge or diverge. For an example where the series diverges, consider $a_{n}=1$; this series then becomes $\sum \frac{1}{n+1}$ which diverges.

For an example where the sum diverges, consider:

$$
a_{n}= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { else }\end{cases}
$$

For any $k^{2} \leq n<(k+1)^{2}$,

$$
\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{k} 1=k=\lfloor\sqrt{n}\rfloor .
$$

It can be shown that $\lfloor\sqrt{n}\rfloor$ diverges to ∞, so $\sum a_{i}$ diverges.
Now, if we consider $\sum \frac{a_{n}}{1+n a_{n}}$ observe that the term $\frac{a_{n}}{1+n a_{n}}$ is nonzero iff $a_{n} \neq 1$, which occurs iff n is a square. So,

$$
\sum_{i=1}^{n} \frac{a_{i}}{1+n a_{i}}=\sum_{i=1}^{k} \frac{1}{i^{2}+1} \leq \sum_{i=1}^{k} \frac{1}{i^{2}} \leq \sum_{i=1}^{\infty} \frac{1}{i^{2}}
$$

Hence, $\sum \frac{a_{i}}{1+n a_{i}}$ converges.
For the second series, note that $\frac{a_{n}}{1+n^{2} a_{n}} \leq \frac{a_{n}}{n^{2} a_{n}}=\frac{1}{n^{2}}$, so by the comparison test, this series diverges.

