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Ross 12.10. Let (an) be a sequence of real numbers. Then (an) is bounded if and only if lim sup |an| < ∞.

Proof. =⇒ Since an is bounded, there exists an M ≥ 0 such that |an| ≤ M for all n. So, as 0 ≤ |an| ≤ M
for all n, |an| is bounded, and thus lim sup |an| < ∞.

⇐= Assume that lim sup |an| < ∞. Let a = lim sup |an|, and take any ϵ > 0. Then there exists
an N such that for all n ≥ N , | supm≥n |am| − a| < ϵ, so supm≥n |am| − a < ϵ. So for all n ≥ N ,
|an| − a ≤ supm≥n |am| − a < ϵ, so 0 ≤ |an| < a + ϵ. Thus, the set {an | n ≥ N} is bounded. Observe
{an | n < N} is bounded as well, since it is finite; we can construct bounds by taking the minimum and
maximum of the elements in the set. So, the set {|an| | n > 0} is bounded as it is the union of these two
bounded sets; we can construct an upper bound by taking the maximum of the upper bound of the two sets,
and we can construct a lower bound by taking the minimum of the lower bound of the two sets.

In particular, this means there exists someM ≥ 0 such that |an| ≤ M for all n. Therefore, −M ≤ an ≤ M
for all n, and so (an) is bounded.

Ross 12.12. Let (sn) be a sequence of nonnegative reals, and σn such that

σn =
1

n

n∑
i=1

si.

a. Then:
lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.

Proof. We will prove that lim supσn ≤ lim sup sn; observe that lim inf σn ≤ lim supσn necessarily. The
proof for the first inequality, that lim inf sn ≤ lim inf σn, follows the proof for the last inequality and will be
omitted.

First, observe that if lim sup sn = ∞, then clearly lim supσn ≤ ∞ = lim sup sn. So, take the case that
lim sup sn < ∞. Let S = lim sup sn. For any ϵ > 0, there exists an N such that if n ≥ N :

0 ≤ sup
m≥n

sm − S < ϵ

so sn < S + ϵ. So, for all n > N :

σn =
1

n

n∑
i=1

si =
1

n

N∑
i=1

si +
1

n

n∑
i=N+1

si

<
1

n

N∑
i=1

si +
1

n

n∑
i=N+1

(S + ϵ)

=
1

n

N∑
i=1

si +
(n−N)(S + ϵ)

n

=
1

n

N∑
i=1

si −
N

n
(S + ϵ) + S + ϵ.
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Now, let

Sn =
1

n

N∑
i=1

si −
N

n
(S + ϵ) + S + ϵ.

for all n > N , and let Sn = 0 otherwise. Observe that:

limSn = lim

(
1

n

N∑
i=1

si −
N

n
(S + ϵ) + S + ϵ

)
= lim

(
1

n

) N∑
i=1

si −N(S + ϵ) lim
1

n
+ S + ϵ = S + ϵ

since we can ignore the first, finite part of the sequence.
Therefore, lim supSn = S + ϵ. For all n ≥ N and i ≥ n, observe that σi ≤ Si ≤ supj≥n Sj , so

supi≥n σi ≤ supj≥n Sj . Hence,
lim supσn ≤ lim supSn = S + ϵ

as again, we can ignore the first N terms of the sequence, for which the inequalities σn ≤ Sn and supi≥n σi ≤
supi≥n Si may not hold.

So, for all ϵ > 0, we have that lim supσn ≤ S + ϵ. It follows that lim supσn ≤ S = lim sup sn.
The proof for the lim inf inequality follows similarly.

b. If lim sn exists, then lim inf sn = lim sup sn = lim sn, so

lim sn = lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn = lim sn

and so lim inf σn = lim supσn = lim sn. Thus, σn converges an limσn = lim sn.

c. Let sn = 1 if n is even and sn = −1 if n is odd. Observe that lim sup sn = lim1 = 1 and lim inf sn =
lim(−1) = −1 as there exist infinitely many sn near 1 and −1. However:

σ2n =
1

2n

2n∑
i=1

(−1)i =
1

2n

n∑
i=1

((−1)2i−1 + (−1)2i) = 0

and

σ2n+1 =
1

2n+ 1

2n+1∑
i=1

(−1)i

=
1

2n+ 1

2n∑
i=1

(−1)i +
1

2n+ 1
(−1)2n+1

=
1

2n+ 1

n∑
i=1

((−1)2i−1 + (−1)2i)− 1

2n+ 1

= − 1

2n+ 1
.

So, lim supσn = lim sup 0 = 0 as there are infinitely many σn close to 0, and lim inf σn = lim inf
(
− 1

2n+1

)
= 0

as well, so limσn = 0. So, (σn) is convergent, while (sn) is divergent.

Ross 14.2.

a. The series
∑

n−1
n2 cannot converge, for if it does converge, then as

∑
1
n2 converges,

∑ (n−1)+1
n2 =

∑
1
n

converges, which is impossible.

b. Observe:
2n∑
i=1

(−1)i =

n∑
i=1

((−1)2i + (−1)2i+1) =

n∑
i=1

0 = 0.
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Therefore,
2n+1∑
i=1

(−1)i =

2n∑
i=1

(−1)i + (−1)2n+1 = −1.

So, letting an =
∑n

i=1, we have

an =

{
0 if i is even

−1 if i is odd.

This sequence clearly diverges; for instance, observe that there are infinitely many elements arbitrarily close
to 0 and infinitely many elements arbitrarily close to −1, implying that 0 and −1 are subsequential limits,
and as 0 ̸= −1, implying that the sequence does not converge.

c. We have 3
n3 = 3

n2 , so the partial sums of the series
∑

3
n3 are 3 times those of

∑
1
n2 . As

∑
1
n2 converges,

so does
∑

3
n3 .

d. Applying the Root Test to this sequence gives lim sup n
3
n

3 . We have shown that limn
1
n = 1, so limn

3
n = 1

and so lim n
3
n

3 = 1
3 < 1, and so this sequence converges.

e. Applying the Ratio Test gives
(n+1)2

(n+1)!

n2

n!

=
(n+ 1)2

n2(n+ 1)
=

n+ 1

n2
.

Note this sequence converges to 0 < 1. Thus, the original series
∑

n2

n! converges.

f. Applying the Root Test to this series
∑

1
nn gives(

1

nn

) 1
n

=
1

n

which converges to 0 < 1, so this series converges.

e. Applying the Root Test gives ( n

2n

) 1
n

=
n

1
n

2
.

Since we have shown n
1
n → 0 as n → ∞, this sequence converges to 1

2 and therefore the series
∑

n
2n

converges.

Ross 14.10. Let (an) be a sequence such that a2n = 3n

2n and a2n+1 = 3n

2n+1 and consider the series
∑

an.
We start by applying the Ratio Test on this sequence: observe

a2n
a2n−1

=
3n

2n

3n−1

2n

= 3

and
a2n+1

a2n
=

3n

2n+1

3n

2n

=
1

2
.

So:
an+1

an
=

{
1
2 if n even

3 if n odd.

It is thus clear that lim inf
∣∣∣an+1

an

∣∣∣ = 1
2 < 1 and lim sup

∣∣∣an+1

an

∣∣∣ = 3 > 1, so the Ratio Test gives no information.

However, the Root Test gives that the series diverges. Notice that

a
1
2n
2n =

(
3n

2n

) 1
2n

=

√
3√
2
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and

a
1

2n+1

2n+1 =

(
3n

2n+1

) 1
2n+1

=
3

n
2n+1

2
n+1
2n+1

.

As 3
n

2n+1 = 32n4n+ 2 < 32n+14n+ 2 =
√
3 and 2

n+1
2n+1 = 2

2n+2
4n+2 > 2

2n+1
4n+2 =

√
2,

a
1

2n+2

2n+1 <

√
3√
2
.

So, it follows that lim sup a
1
n
n =

√
3√
2
as there are infinitely many a

1
n
n equal to this number, an no elements

greater than this number, meaning that supm≥n a
1
m
m =

√
3√
2
for all n. So, by the Root Test, this sequence

diverges as
√
3 >

√
2, so

√
3√
2
> 1.

Rudin 3-6.

a. Observe that:

n∑
i=1

ai =

n∑
i=1

(√
i+ 1−

√
i
)
=

√
n+ 1 +

n∑
i=2

(
−
√
i+

√
i
)
−

√
1 =

√
n+ 1− 1

so the partial sums and the series diverge.

b. Similar to the previous problem, we have:

n∑
i=1

ai =

n∑
i=1

√
i+ 1−

√
i

i
=

n∑
i=1

(√
i+ 1

i
−

√
i

i

)

= −
√
1

1
+

n∑
i=2

(
−
√
i

i
+

√
i

i− 1

)
+

√
n+ 1

n

= −1 +

n∑
i=2

√
i

i(i− 1)
+

√
n+ 1

n

= −1 +

n∑
i=2

1√
i(i− 1)

+

√
n+ 1

n
.

Note that
√
i(i− 1) >

√
i− 1(i− 1) = (i− 1)

3
2 , so

n∑
i=1

ai = −1 +

n∑
i=2

1√
i(i− 1)

+

√
n+ 1

n

< −1 +

n∑
i=2

1

(i− 1)
3
2

+

√
n+ 1

n

= −1 +

n−1∑
i=1

1

i
3
2

+

√
n+ 1

n
.

Note that −1,
∑n−1

i=1
1

i
3
2
, and

√
n+1
n converge, so this series also converges.

c. Applying the Root Test gives n
√
n− 1 which converges to 0 as n → ∞. As 0 < 1, this sequence converges.

d. We claim that this series converges if and only if |z| > 1. First, if this series converges, limn→∞
1

1+zn = 0.
Then limn→∞(1 + zn) = ∞ so limn→∞ zn = ∞. Note this implies that limn→∞ |z|n = ∞; this will occur
only if |z| > 1 as it is a geometric progression.

On the other hand, assume that |z| > 1. We will show this series converges by applying the Root Test.
To do this, we first show that for any w ∈ C with |w| < 1, limn→∞

n
√
|1 + wn| = 1. Observe

1− |w|n ≤ |1 + wn| ≤ 1 + |w|n
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by the Triangle Inequality, implying that, as 1− |w|n > 0,

n
√
1− |w|n ≤ n

√
|1 + wn| ≤ n

√
1 + |w|n.

Now, as |w|n < 1, 0 < 1−|w|n ≤ 1, so 1−|w|n ≤ n
√

1− |w|n. Similarly, as 1 ≤ 1+|w|n, n
√

1 + |w|n ≤ 1+|w|n.
Therefore

1− |w|n ≤ n
√
|1 + wn| ≤ 1 + |w|n.

Observe that limn→∞(1− |w|n) = limn→∞(1 + |w|n) = 1. Therefore, by the Squeeze Theorem,

lim
n→∞

n
√
|1 + wn| = 1.

Now, when |z| > 1, observe that
∣∣ 1
z

∣∣ < 1, so limn→∞
n

√
|1 + 1

zn | = 1 and thus limn→∞
n
√
|1 + zn| = |z|.

So,

lim
n→∞

1
n
√
|1 + zn|

=
1

|z|
< 1

meaning that the series
∑

1
1+zn converges. Hence, the series converges iff |z| > 1.

Rudin 7. We claim that
√
an

n < an + 1
n2 . Observe that (n

√
an − 1)2 > 0, so n2an − 2n

√
an + 1 > 0 and

so
2
√
an

n < an + 1
n2 . Thus, by the Comparison Test (as both sides are real and positive),

∑ 2
√
an

n converges,

and so
∑ √

an

n converges.

Rudin 9.a. Note that limn→∞
n
√
n3 = limn→∞ ( n

√
n)

3
= 13 = 1. So, the radius of convergence is 1.

Rudin 9.b. Observe limn→∞
2

n√
n!

= 0 as the Ratio Test gives

lim
n→∞

2n+1

(n+1)!

2n

n!

= lim
n→∞

2

n+ 1
= 0.

So the radius of convergence is ∞ and the sequence always converges.

9.c. We have:

lim
n→∞

n

√
2n

n2
= lim

n→∞

2

( n
√
n)

2 =
2

12
= 2.

So, the radius of convergence is 1
2 . Note the series is absolutely convergent when |z| = 1

2 as
∣∣ 2nzn

n2

∣∣ = 1
n2

whose series converges.

9.d. We have:

lim
n→∞

n

√
n3

3n
= lim

n→∞

( n
√
n)

3

3
=

13

3
=

1

3
.

So the radius of convergence is 3.

11.a. We wish to show that
∑

an diverges iff
∑ an

1+an
diverges. We will show that

∑
an converges iff

∑ an

1+an

converges. Note as a2n ≥ 0, an ≤ an(1 + an), so
an

1+an
≤ an, implying that if

∑
an converges, then so does∑ an

1+an
. We will now prove the other direction.

Assume that
∑ an

1+an
converges. Then limn→∞

an

1+an
= 0. Since that an

1+an
= 1− 1

1+an
, limn→∞

1
1+an

= 1.
Hence, limn→∞(1+an) = 1 and so lim an = 0. This means an is bounded; let M be that bound, so |an| ≤ M
for all n. Then for all n,

an ≤ M

an + 1 ≤ M + 1

1 ≤ M + 1

an + 1

an ≤ (M + 1)an
an + 1
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as an > 0. Note that
∑ (M+1)an

1+an
converges since

∑ an

1+an
converges. Thus, because of this inequality and as

an > 0, the comparison test implies that
∑

an converges.

11.b. Note that for all N ≤ i ≤ k, si ≤ sN+k as (an) is positive and so (sn) is increasing. Therefore,
1

sN+k
≤ 1

si
and so

N+k∑
i=N

ai
si

≥
N+k∑
i=N

ai
sN+k

=
1

sN+k

N+k∑
i=N

ai =
1

sN+k

(
N+k∑
i=1

ai −
N∑
i=1

ai

)
=

1

sN+k
(sN+k − sN ) = 1− sN

sN+k
.

Notice also that limk→∞
sN

sN+k
= 0 as limk→∞ sN+k = ∞ as

∑
an diverges. It follows that

∑ an

sn
does not

satisfy the Cauchy criterion.
Let ϵ > 0 such that 0 < ϵ < 1. For any N , note that limk→∞

sN
sN+k

= 0, meaning there exists some K

such that whenever k ≥ K, ∣∣∣∣ sN
sN+k

∣∣∣∣ < 1− ϵ

Then 1− sN
sN+k

> ϵ. Thus, there exists a k ≥ K such that

N+k∑
i=N

ai
si

> 1− sN
sN+k

> ϵ

so the sum cannot satisfy the Cauchy criterion, as there exists an ϵ > 0 such that for any N there will be a
point (actually, infinitely many points) where the Cauchy criterion is not met. Therefore,

∑ an

sn
diverges.

11.c. We have, for n > 1
1

sn−1
− 1

sn
=

sn − sn−1

sn−1sn
=

an
sn−1sn

.

As sn−1 ≤ sn as the sequence is increasing, 1
sn−1

≥ 1
sn

and so

an
s2n

≤ 1

sn−1
− 1

sn
.

Thus, we have:

n∑
i=1

ai
s2i

= a1 +

n∑
i=1

ai
s2i

≤ a1 +

n∑
i=2

(
1

si−1
− 1

si

)

= a1 +

n∑
i=2

1

si−1
−

n∑
i=2

1

si

= a1 +

n−1∑
i=1

1

si
−

n∑
i=2

1

si

= a1 +
1

s1
− 1

sn
.

Observe that limn→∞
1
sn

= 0 as limn→∞ sn = +∞. Thus:

∞∑
i=1

ai
s2i

= lim
n→∞

n∑
i=1

ai
s2i

≤ a1 +
1

s1
− lim

n→∞

1

sn
= a1 +

1

s1

implying that the series
∑ ai

s2i
converges. Also note that s1 = a1, so this also shows a1 +

1
a1

= 1+a1

a1
is an

upper bound for this series.
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11.d. The first series,
∑ an

1+nan
does not necessarily converge or diverge. For an example where the series

diverges, consider an = 1; this series then becomes
∑

1
n+1 which diverges.

For an example where the sum diverges, consider:

an =

{
1 if n is a square

0 else.

For any k2 ≤ n < (k + 1)2,
n∑

i=1

ai =

k∑
j=1

1 = k = ⌊
√
n⌋.

It can be shown that ⌊
√
n⌋ diverges to ∞, so

∑
ai diverges.

Now, if we consider
∑ an

1+nan
observe that the term an

1+nan
is nonzero iff an ̸= 1, which occurs iff n is a

square. So,
n∑

i=1

ai
1 + nai

=

k∑
i=1

1

i2 + 1
≤

k∑
i=1

1

i2
≤

∞∑
i=1

1

i2
.

Hence,
∑ ai

1+nai
converges.

For the second series, note that an

1+n2an
≤ an

n2an
= 1

n2 , so by the comparison test, this series diverges.
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