104 Set 6

Ishaan Patkar

Problem 1. $[0,1]^{2} \subseteq \mathbb{R}^{2}$ is sequentially compact.
First, we show a lemma.
Lemma 1. A sequence in \mathbb{R}^{2} converges if and only if it converges in \mathbb{R}.
Proof. \Longrightarrow Let $\left(\left(a_{n}, b_{n}\right)\right)_{n}$ be a sequence in \mathbb{R}^{2} that converges to (a, b). We will show that $\left(a_{n}\right)$ converges to a and $\left(b_{n}\right)$ converges to b. Take any $\epsilon>0$. Then there exists an $N>0$ such that if $n \geq N$

$$
\epsilon>\left|\left(a_{n}, b_{n}\right)-(a, b)\right|=\sqrt{\left(a_{n}-a\right)^{2}+\left(b_{n}-b\right)^{2}} \geq\left|a_{n}-a\right|,\left|b_{n}-b\right|
$$

It follows that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b . \Longleftarrow$ Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences in \mathbb{R} that converge to a and b respectively. We will show that $\left(\left(a_{n}, b_{n}\right)\right)$ converges to (a, b). For any $\epsilon>0$, there exists an $N>0$ such that if $n \geq N$, then $\left|a_{n}-a\right|<\frac{\epsilon}{2}$ and an $M>0$ such that if $n \geq M,\left|b_{n}-b\right|<\frac{\epsilon}{2}$. Hence, we have $\left|a_{n}-a\right|+\left|b_{n}-b\right|<\epsilon$ whenever $n \geq \max (N, M)$.

Observe now that:

$$
\begin{aligned}
\left|a_{n}-a\right|\left|b_{n}-b\right| & \geq 0 \\
2\left|a_{n}-a\right|\left|b_{n}-b\right| & \geq 0 \\
\left(a_{n}-a\right)^{2}+\left(b_{n}-b\right)^{2}+2\left|a_{n}-a\right|\left|b_{n}-b\right| & \geq\left(a_{n}-a\right)^{2}+\left(b_{n}-b\right)^{2} \\
\left(\left|a_{n}-a\right|+\left|b_{n}-b\right|\right)^{2} & \geq\left(a_{n}-a\right)^{2}+\left(b_{n}-b\right)^{2} \\
\left|a_{n}-a\right|+\left|b_{n}-b\right| & \geq \sqrt{\left(a_{n}-a\right)^{2}+\left(b_{n}-b\right)^{2}}
\end{aligned}
$$

as both sides are nonnegative. Hence, it follows that $\left|\left(a_{n}, b_{n}\right)-(a, b)\right|<\epsilon$, and so $\lim _{n \rightarrow \infty}\left(a_{n}, b_{n}\right)=(a, b)$.

Problem 1 follows.

Proof of Problem 1. Take any sequence $\left(\left(a_{n}, b_{n}\right)\right)$ in $[0,1]^{2}$. Then $\left(a_{n}\right)$ is a sequence in $[0,1]$, so by BolzanoWeierstrass, there exists a subsequence $\left(a_{r_{n}}\right)_{n}$ that converges to a. Note $a \in[0,1]$. Note now that $\left(b_{r_{n}}\right)$ is a sequence in $[0,1]$, so there exists a subsequence $\left(b_{r_{s_{n}}}\right)_{n}$ that converges to $b \in[0,1]$. Note also that $\left(a_{r_{s_{n}}}\right)$ converges to a as it is a subsequence of $\left(a_{r_{n}}\right)$. Thus, $\left(\left(a_{r_{s_{n}}}, b_{r_{s_{n}}}\right)\right)$ converges to $(a, b) \in[0,1]^{2}$ and so $\left(\left(a_{n}, b_{n}\right)\right)$ has a subsequence that converges in $[0,1]^{2}$. Thus, $[0,1]^{2}$ is compact in \mathbb{R}^{2}.

Problem 2. E is uncountable and compact.
Proof. To see that E is uncountable, consider an injection $[0,1] \rightarrow E$ such that for any $x \in[0,1]$, x maps to the decimal number formed from the binary representation of x, where every 0 is replaced with 4 and 1 replaced with 7 . Note this is an element of E, as it contains only 4's and 7's. This map is also injective since if any two sequences differ in at least one place, then they will be different numbers. It follows that E is uncountable, for if E is countable, then this would imply $[0,1]$ is either finite or countably infinite, which is impossible.

To show E is compact, we show it is both closed and bounded. By Heine-Borel, this will imply that E is compact (in particular, being a subset of a closed interval, which is compact). It is clear that E is bounded, being a subset of $[0,1]$, by definition.

Showing closure is trickier. Take any sequence $\left(a_{n}\right)$ in E that converges to some $a \in \mathbb{R}$. Note as $E \subseteq[0,1]$, $a \in[0,1]$. Let the decimal expansion of a_{n} be:

$$
a_{n}=\sum_{k=1}^{\infty} \frac{d_{n k}}{10^{k}}
$$

and the decimal expansion of a be:

$$
a=\sum_{k=1}^{\infty} \frac{d_{k}}{10^{k}}
$$

We will show that for each $r>0$, there exists some $N>0$ such that for all $n \geq N, d_{n r}=d_{r}$. To do this, observe by the limit definition that there exists some $N>0$ such that $\left|a_{n}-a\right|<\frac{1}{10^{r}}$. Then we have:

$$
\begin{aligned}
\frac{1}{10^{r}} & >\left|a_{n}-a\right| \\
& =\left|\sum_{k=1}^{\infty} \frac{d_{n k}}{10^{k}}-\sum_{k=1}^{\infty} \frac{d_{k}}{10^{k}}\right| \\
& =\left|\sum_{k=1}^{\infty} \frac{d_{n k}-d_{k}}{10^{k}}\right| \\
& \geq\left|\sum_{k=1}^{r} \frac{d_{n k}-d_{k}}{10^{k}}\right|+\left|\sum_{k=r+1}^{\infty} \frac{d_{n k}-d_{k}}{10^{k}}\right| \\
& \geq\left|\sum_{k=1}^{r} \frac{d_{n k}-d_{k}}{10^{k}}\right| \\
& \geq \sum_{k=1}^{r} \frac{\left|d_{n k}-d_{k}\right|}{10^{k}}
\end{aligned}
$$

So, for each $1 \leq k \leq r$, we have $\frac{\left|d_{n k}-d_{k}\right|}{10^{k}}<\frac{1}{10^{r}}$ and so $\left|d_{n k}-d_{k}\right|<10^{k-r}$. Note as $k \leq r, k-r \leq 0$, so $\left|d_{n k}-d_{k}\right|<10^{k-r}<1$. As $\left|d_{n k}-d_{k}\right| \geq 0$ is an integer, this implies $\left|d_{n k}-d_{k}\right|=0$, and so $d_{k}=d_{n k}$. It thus follows that the decimal expansion of a consists only of 4 and 7 , as each digit of a is a digit of infinitely many a_{n}.

Thus, $a \in E$, and so E is closed. Heine-Borel implies that E is compact.
Problem 3. There exists a sequence of sets $A_{1}, A_{2}, \ldots \subseteq X$ where X is a metric space, such that $\overline{\bigcup_{k=1}^{\infty} A_{k}} \neq$ $\bigcup_{k=1}^{\infty} \overline{A_{k}}$.

Proof. Consider the metric space \mathbb{R} and the sets A_{1}, A_{2}, \ldots such that:

$$
A_{k}=\left\{\left.\frac{1}{k+1}+a \right\rvert\, a \in \mathbb{Z}\right\}
$$

Observe that the minimum distance between two different points in A_{k} is 1 . This implies that if a sequence $\left(a_{n}\right)$ in A_{k} converges to a, then by the Cauchy criternion there exists an $N>0$ such that whenever $m, n \geq N$, $\left|a_{n}-a_{m}\right|<\frac{1}{2}$, implying that $a_{n}=a_{m}$ or else the distance between a_{n} and a_{m} is at least 1. (Another way to see this is to note that every singleton set in A_{k} is open and thus the induced topology on A_{k} is discrete.)

So, any sequence in A_{k} eventually becomes constant. Thus, it will converge to this constant value, which will be in A_{k}. This implies A_{k} is closed, so $\overline{A_{k}}=A_{k}$.

However, observe that $\bigcup_{k=1}^{\infty} A_{k}$ contains the sequence $\left(\frac{1}{n}\right)_{n=2}^{\infty}$, which converges to 0 . Thus, 0 is in the closure of this set. However, 0 is not in $\bigcup_{k=1}^{\infty} A_{k}=\bigcup_{k=1}^{\infty} \overline{A_{k}}$, since 0 is not contained in any of the A_{k} 's. Thus,

$$
\overline{\bigcup_{k=1}^{\infty} A_{k}} \neq \bigcup_{k=1}^{\infty} \overline{A_{k}}
$$

4. To see this this argument does not lead to the conclusion, let us continue this argument. Assume that $E \subseteq \mathbb{R}$ is our closed set. Then we can write

$$
X \backslash E=\bigcup_{k=1}^{\infty} E_{k}
$$

for some disjoint open intervals E_{1}, E_{2}, \ldots, some of them possibly empty. Then we have:

$$
E=X \backslash \bigcup_{k=1}^{\infty} E_{k}=\bigcap_{k=1}^{\infty} X \backslash E_{k}
$$

It should be clear at this point that this argument will not show that E is the union of closed intervals, since this results in an intersection. We might also note that the sets $X \backslash E_{k}$ will be in the form $(-\infty, a] \cup[b,+\infty)$ if $E_{k}=(a, b)$. Also, for any E_{k} and $E_{k^{\prime}}$, assuming these are bounded open intervals, their complements will intersect. So this is not satisfactory in proving the claim.

Now, for a counterexample, consider the set E from problem 2 above. We claim that no closed interval $[a, b] \subseteq E$, where $a<b$. Otherwise, we might find some k such that $\frac{1}{10^{k}} \leq b-a$ so $a \leq a+\frac{1}{10^{k}} \leq b$. But this means $a, a+\frac{1}{k} \in E$, which is a contradiction, since the digit in the k th position of a will be either 0,4 , or 7 , meaning that the k th digit in $a+\frac{1}{k}$ will be either 1,5 , or 8 , none of which are allowed in elements of E.

So, if E is written as a union of closed intervals, every interval must be a singleton set. For a countable union, this would imply there exists a bijection from a countable set to E, which is impossible as E is uncountable.

