104 Set 7

Ishaan Patkar

1. Let X and Y be compact topological spaces. Then $X \times Y$ is compact, under the product topology.

Proof. Take any open cover $\left\{E_{\alpha}\right\}_{\alpha \in A}$ of $X \times Y$. For every $(x, y) \in X \times Y$, there exists some $\alpha \in A$ such that $(x, y) \in E_{\alpha}$. As E_{α} is open, by definition of the product topology, there exists some $U_{x y} \times V_{x y} \subseteq E_{\alpha}$ with $U_{x y} \subseteq X, V_{x y} \subseteq Y$, open, and $(x, y) \in U_{x y} \times V_{x y}$. Notice that $\left\{U_{x y} \times V_{x y}\right\}_{(x, y) \in X \times Y}$ is an open cover of $X \times Y$.

Now, take any $y \in Y$. Then observe that $\left\{U_{x y}\right\}_{x \in X}$ covers the set X : for any $x \in X$, as $(x, y) \in U_{x y} \times V_{x y}$, $x \in U_{z y}$. Since X is compact, there exists a finite subcover $U_{r_{1}}, U_{r_{2}}, \ldots, U_{r_{n}}$, where $r_{i}=\left(x_{i}, y\right)$ for some $x_{i} \in X$. Now let $W_{y}=\bigcap_{i=1}^{n} V_{r_{i}}$. Observe that W_{y} is open in Y as this is a finite intersection of open sets in Y; it is also nonempty since $y \in V_{r_{i}}$ for each i, and thus $y \in W_{y}$.

As $y \in W_{y}$ for all $y \in Y,\left\{W_{y}\right\}_{y \in Y}$ is an open cover of Y. As Y is compact, there is a finite subcover $W_{y_{1}}, W_{y_{2}}, \ldots, W_{y_{m}}$. For each y_{j}, there exists an open cover of $X, U_{x_{1 j}, y_{j}}, U_{x_{2 j}, y_{j}}, \ldots, U_{x_{n_{j}, j}, y_{j}}$, as defined above. Observe that $W_{y_{j}}=\bigcap_{i=1}^{n_{j}} V_{x_{i j}, y_{j}}$. Thus:

$$
X \times W_{y_{j}} \subseteq \bigcup_{i=1}^{n_{j}} U_{x_{i j}, y_{j}} \times W_{y} \subseteq \bigcup_{i=1}^{n_{j}} U_{x_{i j}, y_{j}} \times V_{x_{i j}, y_{j}}
$$

as $W_{y} \subseteq V_{x_{i j}, y_{j}}$ for each i. As $W_{y_{1}}, W_{y_{2}}, \ldots, W_{y_{m}}$ covers Y, we then have:

$$
X \times Y \subseteq \bigcup_{j=1}^{m} X \times W_{y} \subseteq \bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}} U_{x_{i j}, y_{j}} \times V_{x_{i j}, y_{j}}
$$

Note this is a finite subcovering. By definition of the U 's and V 's, for each ($x_{i j}, y_{j}$), there exists some $\alpha_{i j} \in A$ such that $U_{x_{i j}, y_{j}} \times V_{x_{i j}, y_{j}} \subseteq E_{\alpha_{i j}}$. Therefore, we have:

$$
X \times Y \subseteq \bigcup_{j=1}^{m} \bigcup_{i=1}^{n_{j}} E_{\alpha_{i j}}
$$

which is a finite subcovering of $\left\{E_{\alpha}\right\}_{\alpha \in A}$. Hence, $X \times Y$ is compact.
2.a. If A is open, then $f(A)$ is open. False. Consider the constant map $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ for all $x \in \mathbb{R}$. Then for any open set $E \subseteq \mathbb{R}, f(E)=\{0\}$ which is not open, since no open ball centered at 0 is contained within $f(E)$.
2.b. If A is closed, then $f(A)$ is closed. False. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the map $f(x)=x^{2}$. Observe that \mathbb{R} is closed, but $f(\mathbb{R})=[0,+\infty)$ is not, since no open ball containing 0 is contained within $[0,+\infty)$.
2.c. If A is bounded, then $f(A)$ is bounded. False. Let $f:(0,1) \rightarrow \mathbb{R}$ be the continuous map $f(x)=\frac{1}{x}$. Then $f((0,1))=(1,+\infty)$ which is not bounded, even though $(0,1)$ is bounded.
2.d. If A is compact, then $f(A)$ is compact. True. Take any open cover $\left\{E_{\alpha}\right\}_{\alpha \in I}$ of $f(A)$. Observe that $\left\{f^{-1}\left(E_{\alpha}\right)\right\}_{\alpha \in I}$ is an open cover of A, since if $x \in A, f(x) \in f(A)$, so there exists an $i \in I$ with $f(x) \in E_{i}$, so $x \in f^{-1}\left(E_{i}\right)$. Then there exists a finite subcover $f^{-1}\left(E_{r_{1}}\right), f^{-1}\left(E_{r_{2}}\right), \ldots, f^{-1}\left(E_{r_{n}}\right)$ of A. Then we claim $E_{r_{1}}, E_{r_{2}}, \ldots, E_{r_{n}}$ is an open cover of $f(A)$, since, for any $y \in f(A)$, there exists an $x \in A$ with $f(x)=y$. So, $x \in f^{-1}\left(E_{r_{i}}\right)$ for some i, and so $y=f(x) \in E_{r_{i}}$. Thus, $f(A)$ is contained in the union of the $E_{r_{i}}$'s.
2.e. If A is connected, then $f(A)$ is connected. True. Let $f: X \rightarrow Y$ be continuous, and $A \subseteq X$ connected. Suppose that $f(A)$ is disconnected. Then there exist open sets $U, V \subseteq Y$ such that $f(A) \cap U$ and $f(A) \cap V$ are nonempty, disjoint, and $f(A) \subseteq(f(A) \cap U) \cup(f(A) \cap V)$.

We claim now that $f(A) \cap f^{-1}(U)$ and $f(A) \cap f^{-1}(V)$ are disjoint, nonempty, and open in A, and whose union contains A. First, note they are disjoint since if $x \in A \cap f^{-1}(U) \cap f^{-1}(V)$, then $f(x) \in f(A), U, V$, and so $f(x) \in(f(A) \cap U) \cap(f(A) \cap V)$, which is impossible, as $f(A) \cap U$ and $f(A) \cap V$ are disjoint. Since $f(A) \cap U$ is nonempty, there exists some $y \in f(A) \cap U$. As $y \in f(A)$, there exists an $x \in A$ with $f(x)=y$, so as $y \in U, x \in f^{-1}(U)$. So, $x \in A \cap f^{-1}(U)$. Similarly, $A \cap f^{-1}(V)$ is nonempty. Now, $f^{-1}(U)$ and $f^{-1}(V)$ are open, since U and V are open in Y and f is continuous, so $A \cap f^{-1}(U)$ and $A \cap f^{-1}(V)$ are open in A. Finally, $A \subseteq\left(A \cap f^{-1}(U)\right) \cup\left(A \cap f^{-1}(V)\right)$ since for any $x \in A, f(x) \in f(A) \subseteq(f(A) \cap U) \cup(f(A) \cap V)$, so either $f(x) \in U$ or $f(x) \in V$, implying that $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$.

But this means A is disconnected, which is impossible. So, $f(A)$ must be connected (since $f(A) \neq \emptyset$ since $A \neq \emptyset)$.
3. There does not exist a continuous surjection $f:[0,1] \rightarrow \mathbb{R}$.

Proof. This follows from 2.d: observing that $[0,1]$ is compact, if there existed such a map, then $f([0,1])=\mathbb{R}$ would be compact, which it is not. (For instance, the open covering $\{(n-1, n+1)\}_{n \in \mathbb{Z}}$ has no finite subcovering, as any subcovering must contain every integer, and every integer is contained in a subcovering, but every integer n is contained only in the interval $(n-1, n+1)$, and so this interval must belong in the subcovering. But this leads to an infinite number of subcoverings. Alternatively, one might see this by noting that if \mathbb{R} could be written as a finite subcovering of these open sets, then \mathbb{R} would be bounded, which leads to contradiction.)

