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1. Let (fn) be a sequence of functions fn : R → R with fn = n+sin x
2n+cos(n2x) . Then fn uniformly converges to 1

2 .

Proof. For any n ≥ 1, consider d∞(fn,
1
2 ). We have, for all x ∈ R:

d

(
fn(x),

1

2

)
=

∣∣∣∣ n+ sinx

2n+ cos(n2x)
− 1

2

∣∣∣∣
=

∣∣∣∣ 2n+ sinx

4n+ 2 cos(n2x)
− 2n+ cos(n2x)

4n+ 2 cos(n2x)

∣∣∣∣
=

∣∣∣∣ sinx− cos(n2x)

4n+ 2 cos(n2x)

∣∣∣∣
=

| sinx− cos(n2x)|
|4n+ 2 cos(n2x)|

.

Note that 4n + 2 cos(n2x) ≥ 4n − 2. As n ≥ 1, 4n + 2 cos(n2x) ≥ 4n − 2 ≥ 0, so |4n + 2 cos(n2x)| =
4n+ 2 cos(n2x). Also, we have | sinx− cos(n2x)| ≤ 3. Hence:

d

(
fn(x),

1

2

)
=

| sinx− cos(n2x)|
|4n+ 2 cos(n2x)|

=
| sinx− cos(n2x)|
4n+ 2 cos(n2x)

≤ 3

4n− 2
.

Hence, d∞(fn,
1
2 ) ≤

3
4n−2 . Observe that:

lim
n→∞

3

4n− 2
= lim

n→∞

3
n

4− 2
n

=
limn→∞

3
n

limn→∞(4− 2
n )

=
0

4− 0
= 0.

Hence, for any ϵ > 0, there exists an N > 0 such that
∣∣∣ 3
4n−2

∣∣∣ < ϵ whenever n ≥ N . As 4n− 2 ≥ 0, 3
4n−2 ≥ 0,

meaning that 3
4n−2 < ϵ. Hence:

d∞

(
fn,

1

2

)
≤ 3

4n− 2
< ϵ

whenever n ≥ N . Therefore, fn converges uniformly to 1
2 .

Note we might also have shown uniform convergence using the Weierstrass M -test.

2. Let f(x) =
∑∞

n=1 anx
n, where

∑∞
n=1 |an| is convergent. Then f is continuous on [−1, 1].

Proof. Assume that f : [−1, 1] → R. For all n ≥ 1, let fn : [−1, 1] → R such that fn(x) = anx
n for all

x ∈ [−1, 1]. Then f(x) =
∑∞

n=1 fn(x) for any x ∈ R. We claim that
∑

fn convgerges to f uniformly. We
will prove this using the Weierstrass M -test.

For any n ≥ 1, x ∈ [−1, 1], observe that |f(x)| = |anxn| = |an||x|n ≤ |an| as |x| ≤ 1. Hence, by the
Weierstrass M -test, the series

∑
fn uniformly converges. Since

∑
fn converges pointwise to f , it also must

uniformly converge to f .
As each fn is continuous, it follows that for all m ≥ 1,

∑m
n=1 fn is continuous, since the sum of continuous

functions is continuous. Therefore, f = limm→∞
∑m

n=1 fn must be continuous, as the partial sums are
continuous and uniformly converge to f .

1



Since
∑

n−2 converges absolutely, this gives that the power series
∑∞

n=1 n
−2xn converges when x ∈

[−1, 1].

3. Let f : (−1, 1) → R such that f(x) =
∑∞

n=0. Then f is continuous.

Proof. Take any a ∈ [0, 1), and let fn : [−a, a] → R be a sequence of functions, n ≥ 0, such that fn(x) = xn

for all x ∈ [−a, a]. We claim that
∑

fn converges uniformly to f |[−a,a]. To see this, we first show pointwise
convergence: for any x ∈ [−a, a], f(x) =

∑∞
n=1 x

n =
∑∞

n=0 fn(x). Now we show that the series converges
uniformly, implying that it converges uniformly to f .

We will do this by the Weierstrass M -test. Observe that |fn(x)| = |xn| = |x|n ≤ an as x ∈ [−a, a],
meaning |x| ≤ a. Since a ∈ [0, 1), the series

∑
an converges to 1

1−a . Hence, the series
∑

fn converges
uniformly. It must then converge uniformly to f |[−a,a], as it converges pointwise to this function.

Now, since each of the fn are continuous, the partial sums of the series
∑

fn are continuous, meaning
that as the partial sums converge uniformly to f |[−a,a], it must be continuous. Thus, for any x ∈ (−1, 1),
we can pick some a ∈ [0, 1] such that x ∈ (−a, a) (for instance, a ∈ (|x|, 1)). So, f |[−a,a] is continuous at x
and thus f is continuous at x. Hence, f is continuous.

Note we might have shown this in a much simpler manner by noting that f(x) =
∑∞

n=0 x
n = 1

1−x , of
which we can check continuity through limit properties. We will use this observation to show that

∑
xn

does not converge uniformly to f for x ∈ (−1, 1). First, we show a lemma.

Lemma 1. Let (fn) be a sequence of functions f : X → R that converges uniformly to f . If fn is bounded
for every n, then f is bounded.

Proof. Take any ϵ > 0. Then there exists some N such that whenever n ≥ N , d∞(fn, f) < ϵ. Note
d∞(0, fn) is defined as fn is bounded. So, d∞(0, fn) + d∞(fn, f) < ϵ + d∞(0, fn). Hence, by the Triangle
Inequality, d∞(0, f) < ϵ + d∞(0, fn). Thus, as ϵ + d∞(0, fn) < ∞, f is bounded since for all x ∈ X,
|f(x)| ≤ d∞(0, fn) < ϵ+ d∞(0, fn).

Observe now that xn is bounded for every n and x ∈ (−1, 1). Hence, the partial sums
∑N

n=0 x
n must be

bounded: in particular,
∣∣∣∑N

n=0 x
n
∣∣∣ ≤ ∑N

n=0 |xn| =
∑N

n=0 |x|n ≤ N + 1. However, f is unbounded: for any

integer n > 0, note f(1 − 1
n ) = n. Thus, if

∑
xn converges uniformly to f , it would imply f is bounded,

which is impossible. So, the convergence is not uniform.
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