104 Set 8

Ishaan Patkar

1. Let $\left(f_{n}\right)$ be a sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ with $f_{n}=\frac{n+\sin x}{2 n+\cos \left(n^{2} x\right)}$. Then f_{n} uniformly converges to $\frac{1}{2}$. Proof. For any $n \geq 1$, consider $d_{\infty}\left(f_{n}, \frac{1}{2}\right)$. We have, for all $x \in \mathbb{R}$:

$$
\begin{aligned}
d\left(f_{n}(x), \frac{1}{2}\right) & =\left|\frac{n+\sin x}{2 n+\cos \left(n^{2} x\right)}-\frac{1}{2}\right| \\
& =\left|\frac{2 n+\sin x}{4 n+2 \cos \left(n^{2} x\right)}-\frac{2 n+\cos \left(n^{2} x\right)}{4 n+2 \cos \left(n^{2} x\right)}\right| \\
& =\left|\frac{\sin x-\cos \left(n^{2} x\right)}{4 n+2 \cos \left(n^{2} x\right)}\right| \\
& =\frac{\left|\sin x-\cos \left(n^{2} x\right)\right|}{\left|4 n+2 \cos \left(n^{2} x\right)\right|}
\end{aligned}
$$

Note that $4 n+2 \cos \left(n^{2} x\right) \geq 4 n-2$. As $n \geq 1,4 n+2 \cos \left(n^{2} x\right) \geq 4 n-2 \geq 0$, so $\left|4 n+2 \cos \left(n^{2} x\right)\right|=$ $4 n+2 \cos \left(n^{2} x\right)$. Also, we have $\left|\sin x-\cos \left(n^{2} x\right)\right| \leq 3$. Hence:

$$
d\left(f_{n}(x), \frac{1}{2}\right)=\frac{\left|\sin x-\cos \left(n^{2} x\right)\right|}{\left|4 n+2 \cos \left(n^{2} x\right)\right|}=\frac{\left|\sin x-\cos \left(n^{2} x\right)\right|}{4 n+2 \cos \left(n^{2} x\right)} \leq \frac{3}{4 n-2}
$$

Hence, $d_{\infty}\left(f_{n}, \frac{1}{2}\right) \leq \frac{3}{4 n-2}$. Observe that:

$$
\lim _{n \rightarrow \infty} \frac{3}{4 n-2}=\lim _{n \rightarrow \infty} \frac{\frac{3}{n}}{4-\frac{2}{n}}=\frac{\lim _{n \rightarrow \infty} \frac{3}{n}}{\lim _{n \rightarrow \infty}\left(4-\frac{2}{n}\right)}=\frac{0}{4-0}=0
$$

Hence, for any $\epsilon>0$, there exists an $N>0$ such that $\left|\frac{3}{4 n-2}\right|<\epsilon$ whenever $n \geq N$. As $4 n-2 \geq 0, \frac{3}{4 n-2} \geq 0$, meaning that $\frac{3}{4 n-2}<\epsilon$. Hence:

$$
d_{\infty}\left(f_{n}, \frac{1}{2}\right) \leq \frac{3}{4 n-2}<\epsilon
$$

whenever $n \geq N$. Therefore, f_{n} converges uniformly to $\frac{1}{2}$.
Note we might also have shown uniform convergence using the Weierstrass M-test.
2. Let $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$, where $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent. Then f is continuous on $[-1,1]$.

Proof. Assume that $f:[-1,1] \rightarrow \mathbb{R}$. For all $n \geq 1$, let $f_{n}:[-1,1] \rightarrow \mathbb{R}$ such that $f_{n}(x)=a_{n} x^{n}$ for all $x \in[-1,1]$. Then $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$ for any $x \in \mathbb{R}$. We claim that $\sum f_{n}$ convgerges to f uniformly. We will prove this using the Weierstrass M-test.

For any $n \geq 1, x \in[-1,1]$, observe that $|f(x)|=\left|a_{n} x^{n}\right|=\left|a_{n}\right||x|^{n} \leq\left|a_{n}\right|$ as $|x| \leq 1$. Hence, by the Weierstrass M-test, the series $\sum f_{n}$ uniformly converges. Since $\sum f_{n}$ converges pointwise to f, it also must uniformly converge to f.

As each f_{n} is continuous, it follows that for all $m \geq 1, \sum_{n=1}^{m} f_{n}$ is continuous, since the sum of continuous functions is continuous. Therefore, $f=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} f_{n}$ must be continuous, as the partial sums are continuous and uniformly converge to f.

Since $\sum n^{-2}$ converges absolutely, this gives that the power series $\sum_{n=1}^{\infty} n^{-2} x^{n}$ converges when $x \in$ $[-1,1]$.
3. Let $f:(-1,1) \rightarrow \mathbb{R}$ such that $f(x)=\sum_{n=0}^{\infty}$. Then f is continuous.

Proof. Take any $a \in[0,1)$, and let $f_{n}:[-a, a] \rightarrow \mathbb{R}$ be a sequence of functions, $n \geq 0$, such that $f_{n}(x)=x^{n}$ for all $x \in[-a, a]$. We claim that $\sum f_{n}$ converges uniformly to $\left.f\right|_{[-a, a]}$. To see this, we first show pointwise convergence: for any $x \in[-a, a], f(x)=\sum_{n=1}^{\infty} x^{n}=\sum_{n=0}^{\infty} f_{n}(x)$. Now we show that the series converges uniformly, implying that it converges uniformly to f.

We will do this by the Weierstrass M-test. Observe that $\left|f_{n}(x)\right|=\left|x^{n}\right|=|x|^{n} \leq a^{n}$ as $x \in[-a, a]$, meaning $|x| \leq a$. Since $a \in[0,1)$, the series $\sum a^{n}$ converges to $\frac{1}{1-a}$. Hence, the series $\sum f_{n}$ converges uniformly. It must then converge uniformly to $\left.f\right|_{[-a, a]}$, as it converges pointwise to this function.

Now, since each of the f_{n} are continuous, the partial sums of the series $\sum f_{n}$ are continuous, meaning that as the partial sums converge uniformly to $\left.f\right|_{[-a, a]}$, it must be continuous. Thus, for any $x \in(-1,1)$, we can pick some $a \in[0,1]$ such that $x \in(-a, a)$ (for instance, $a \in(|x|, 1))$. So, $\left.f\right|_{[-a, a]}$ is continuous at x and thus f is continuous at x. Hence, f is continuous.

Note we might have shown this in a much simpler manner by noting that $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, of which we can check continuity through limit properties. We will use this observation to show that $\sum x_{n}$ does not converge uniformly to f for $x \in(-1,1)$. First, we show a lemma.

Lemma 1. Let $\left(f_{n}\right)$ be a sequence of functions $f: X \rightarrow \mathbb{R}$ that converges uniformly to f. If f_{n} is bounded for every n, then f is bounded.

Proof. Take any $\epsilon>0$. Then there exists some N such that whenever $n \geq N, d_{\infty}\left(f_{n}, f\right)<\epsilon$. Note $d_{\infty}\left(0, f_{n}\right)$ is defined as f_{n} is bounded. So, $d_{\infty}\left(0, f_{n}\right)+d_{\infty}\left(f_{n}, f\right)<\epsilon+d_{\infty}\left(0, f_{n}\right)$. Hence, by the Triangle Inequality, $d_{\infty}(0, f)<\epsilon+d_{\infty}\left(0, f_{n}\right)$. Thus, as $\epsilon+d_{\infty}\left(0, f_{n}\right)<\infty, f$ is bounded since for all $x \in X$, $|f(x)| \leq d_{\infty}\left(0, f_{n}\right)<\epsilon+d_{\infty}\left(0, f_{n}\right)$.

Observe now that x^{n} is bounded for every n and $x \in(-1,1)$. Hence, the partial sums $\sum_{n=0}^{N} x^{n}$ must be bounded: in particular, $\left|\sum_{n=0}^{N} x^{n}\right| \leq \sum_{n=0}^{N}\left|x^{n}\right|=\sum_{n=0}^{N}|x|^{n} \leq N+1$. However, f is unbounded: for any integer $n>0$, note $f\left(1-\frac{1}{n}\right)=n$. Thus, if $\sum x^{n}$ converges uniformly to f, it would imply f is bounded, which is impossible. So, the convergence is not uniform.

