104 Set 8

Ishaan Patkar

1. Let (f_n) be a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ with $f_n = \frac{n + \sin x}{2n + \cos(n^2 x)}$. Then f_n uniformly converges to $\frac{1}{2}$. *Proof.* For any $n \ge 1$, consider $d_{\infty}(f_n, \frac{1}{2})$. We have, for all $x \in \mathbb{R}$:

$$d\left(f_{n}(x), \frac{1}{2}\right) = \left|\frac{n + \sin x}{2n + \cos(n^{2}x)} - \frac{1}{2}\right|$$
$$= \left|\frac{2n + \sin x}{4n + 2\cos(n^{2}x)} - \frac{2n + \cos(n^{2}x)}{4n + 2\cos(n^{2}x)}\right|$$
$$= \left|\frac{\sin x - \cos(n^{2}x)}{4n + 2\cos(n^{2}x)}\right|$$
$$= \frac{|\sin x - \cos(n^{2}x)|}{|4n + 2\cos(n^{2}x)|}.$$

Note that $4n + 2\cos(n^2x) \ge 4n - 2$. As $n \ge 1$, $4n + 2\cos(n^2x) \ge 4n - 2 \ge 0$, so $|4n + 2\cos(n^2x)| = 4n + 2\cos(n^2x)$. Also, we have $|\sin x - \cos(n^2x)| \le 3$. Hence:

$$d\left(f_n(x), \frac{1}{2}\right) = \frac{|\sin x - \cos(n^2 x)|}{|4n + 2\cos(n^2 x)|} = \frac{|\sin x - \cos(n^2 x)|}{4n + 2\cos(n^2 x)} \le \frac{3}{4n - 2}$$

Hence, $d_{\infty}(f_n, \frac{1}{2}) \leq \frac{3}{4n-2}$. Observe that:

$$\lim_{n \to \infty} \frac{3}{4n-2} = \lim_{n \to \infty} \frac{\frac{3}{n}}{4-\frac{2}{n}} = \frac{\lim_{n \to \infty} \frac{3}{n}}{\lim_{n \to \infty} (4-\frac{2}{n})} = \frac{0}{4-0} = 0.$$

Hence, for any $\epsilon > 0$, there exists an N > 0 such that $\left|\frac{3}{4n-2}\right| < \epsilon$ whenever $n \ge N$. As $4n-2 \ge 0$, $\frac{3}{4n-2} \ge 0$, meaning that $\frac{3}{4n-2} < \epsilon$. Hence:

$$d_{\infty}\left(f_n, \frac{1}{2}\right) \le \frac{3}{4n-2} <$$

 ϵ

whenever $n \geq N$. Therefore, f_n converges uniformly to $\frac{1}{2}$.

Note we might also have shown uniform convergence using the Weierstrass *M*-test.

2. Let $f(x) = \sum_{n=1}^{\infty} a_n x^n$, where $\sum_{n=1}^{\infty} |a_n|$ is convergent. Then f is continuous on [-1,1].

Proof. Assume that $f: [-1,1] \to \mathbb{R}$. For all $n \ge 1$, let $f_n: [-1,1] \to \mathbb{R}$ such that $f_n(x) = a_n x^n$ for all $x \in [-1,1]$. Then $f(x) = \sum_{n=1}^{\infty} f_n(x)$ for any $x \in \mathbb{R}$. We claim that $\sum f_n$ converges to f uniformly. We will prove this using the Weierstrass M-test.

For any $n \ge 1$, $x \in [-1, 1]$, observe that $|f(x)| = |a_n x^n| = |a_n||x|^n \le |a_n|$ as $|x| \le 1$. Hence, by the Weierstrass *M*-test, the series $\sum f_n$ uniformly converges. Since $\sum f_n$ converges pointwise to f, it also must uniformly converge to f.

As each f_n is continuous, it follows that for all $m \ge 1$, $\sum_{n=1}^m f_n$ is continuous, since the sum of continuous functions is continuous. Therefore, $f = \lim_{m \to \infty} \sum_{n=1}^m f_n$ must be continuous, as the partial sums are continuous and uniformly converge to f.

Since $\sum n^{-2}$ converges absolutely, this gives that the power series $\sum_{n=1}^{\infty} n^{-2} x^n$ converges when $x \in [-1, 1]$.

3. Let $f: (-1,1) \to \mathbb{R}$ such that $f(x) = \sum_{n=0}^{\infty}$. Then f is continuous.

Proof. Take any $a \in [0, 1)$, and let $f_n : [-a, a] \to \mathbb{R}$ be a sequence of functions, $n \ge 0$, such that $f_n(x) = x^n$ for all $x \in [-a, a]$. We claim that $\sum f_n$ converges uniformly to $f \mid_{[-a,a]}$. To see this, we first show pointwise convergence: for any $x \in [-a, a]$, $f(x) = \sum_{n=1}^{\infty} x^n = \sum_{n=0}^{\infty} f_n(x)$. Now we show that the series converges uniformly, implying that it converges uniformly to f.

We will do this by the Weierstrass *M*-test. Observe that $|f_n(x)| = |x^n| = |x|^n \le a^n$ as $x \in [-a, a]$, meaning $|x| \le a$. Since $a \in [0, 1)$, the series $\sum a^n$ converges to $\frac{1}{1-a}$. Hence, the series $\sum f_n$ converges uniformly. It must then converge uniformly to $f|_{[-a,a]}$, as it converges pointwise to this function.

Now, since each of the f_n are continuous, the partial sums of the series $\sum f_n$ are continuous, meaning that as the partial sums converge uniformly to $f \mid_{[-a,a]}$, it must be continuous. Thus, for any $x \in (-1, 1)$, we can pick some $a \in [0, 1]$ such that $x \in (-a, a)$ (for instance, $a \in (|x|, 1)$). So, $f \mid_{[-a,a]}$ is continuous at x and thus f is continuous at x. Hence, f is continuous.

Note we might have shown this in a much simpler manner by noting that $f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, of which we can check continuity through limit properties. We will use this observation to show that $\sum x_n$ does not converge uniformly to f for $x \in (-1, 1)$. First, we show a lemma.

Lemma 1. Let (f_n) be a sequence of functions $f : X \to \mathbb{R}$ that converges uniformly to f. If f_n is bounded for every n, then f is bounded.

Proof. Take any $\epsilon > 0$. Then there exists some N such that whenever $n \ge N$, $d_{\infty}(f_n, f) < \epsilon$. Note $d_{\infty}(0, f_n)$ is defined as f_n is bounded. So, $d_{\infty}(0, f_n) + d_{\infty}(f_n, f) < \epsilon + d_{\infty}(0, f_n)$. Hence, by the Triangle Inequality, $d_{\infty}(0, f) < \epsilon + d_{\infty}(0, f_n)$. Thus, as $\epsilon + d_{\infty}(0, f_n) < \infty$, f is bounded since for all $x \in X$, $|f(x)| \le d_{\infty}(0, f_n) < \epsilon + d_{\infty}(0, f_n)$.

Observe now that x^n is bounded for every n and $x \in (-1, 1)$. Hence, the partial sums $\sum_{n=0}^{N} x^n$ must be bounded: in particular, $\left|\sum_{n=0}^{N} x^n\right| \leq \sum_{n=0}^{N} |x^n| = \sum_{n=0}^{N} |x|^n \leq N+1$. However, f is unbounded: for any integer n > 0, note $f(1 - \frac{1}{n}) = n$. Thus, if $\sum x^n$ converges uniformly to f, it would imply f is bounded, which is impossible. So, the convergence is not uniform.