Hew 2

0 . Discussion 9.9, $9.15,10.7,10.8$
9.9 a) let $M>0$. Since $s_{n} \rightarrow+\infty$, there is N se \mathbb{N} s.t. $n>N$ s implies $S_{n}>M$. Let $N=\max \left\{N_{0}, N s\right\}$. If $n>N$, then $t_{n}=S_{n}>M$. So $t_{n} \rightarrow+\infty$.
b) let $M<0$. Since $S_{n} \rightarrow-\infty$, there is N s $e \mathbb{N}$ s.t. $n>N$ s implies that $S_{n}<M$. Let $N=\max \left\{N_{0}, N s\right\}$. If $n>N_{1}$ then $t_{n}=s_{n}<M$. So $t_{n} \rightarrow+\infty$.
c) Case 1: limen, limen are finite, then $\lim s_{n} \leq \lim t n$.

Case 2: limen not finite.
a) $\lim s_{n}=-\infty$. then $\lim s_{n} \leq \lim t_{n}$ always holds b/c $\lim t_{n}$ takes values in $\mathbb{R} \cup\{+\infty,-\infty\}$, and for any $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. $-\infty \leq a$.
b) $\lim S_{n}=+\infty$. then limen $=+\infty$, lime $S_{n} \leqslant$ limen still holds.
Case 3: lime th not finite.
a) $\lim t_{n}=+\infty$, then $\lim _{m} S_{n} \leq \lim t_{n}$ always holds bile $\lim S_{n}$ takes values in $\mathbb{R} \cup\{+\infty,-\infty\}$, and for any $a \in \mathbb{R} \cup\{+\infty,-\infty\}, a \leq+\infty$.
b) $\lim t_{n}=-\infty$. by b) $\lim s_{n}=-\infty$. So $\lim s_{n} \leq \lim t_{n}$ still holds.
9.15 Show $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0 \quad \forall a \in R$.
let $s_{n}=\frac{a^{n}}{n!}$ and we see that $\frac{s_{n+1}}{s_{n}}=\frac{a}{n+1}$ tends to zero as $n \rightarrow \infty$.
Hence $\lim s_{n}=0 \quad(n!$ grows f
Since S is bounded, $\sup S \in \mathbb{R}$.
\because supS is the least upper bound of S, for any $n \in \mathbb{N}$, sup $S-\frac{1}{n}$ is not an upper bound of S, and so there is an el't in S, denoted by S_{n}. which is greater than $\sup S-\frac{1}{n}$.
We obtain a sequence $\left(S_{n}\right) \in S$ sit. $S_{n}>\sup S-\frac{1}{n}$ for any n.
\because sup S is an upper bound of S and $s_{n} \in S$.
$\therefore \quad \sup S \geqslant S_{n} \forall n$. Applying Squaze lemma to $\sup S \geqslant s_{n}>S_{u p} S-\frac{1}{n}$, $S_{n} \rightarrow \sup S$.
10.8 Let S_{n} be an increasing sequence and define $\sigma_{n}=\frac{s_{1}+s_{2}+\cdots+s_{n}}{n}$.
$\because S_{n}$ is an increasing sequence,

$$
\begin{aligned}
\sigma_{n+1}-\sigma_{n} & =\frac{n\left(s_{1}+s_{2}+\ldots+s_{n}+s_{n+1}\right)-(n+1)\left(s_{1}+\cdots+s_{n}\right)}{n(n+1)} \\
& =\frac{\left(s_{n+1}-s_{1}\right)+\left(s_{n+1}-s_{2}\right)+\ldots+\left(s_{n+1}-s_{n}\right)}{n(n+1)} \geqslant \frac{0+0 \ldots+0}{n(n+1)}=0 \text {, so } \sigma_{n} \text { is } a_{n}
\end{aligned}
$$

increasing sequence.

1. Ross Ex 10.9, 10.10, 10.11
10.9 a) $\quad S_{1}=1, \quad S_{2}=\frac{1}{2}, \quad S_{3}=\frac{1}{6}, \quad S_{4}=\frac{1}{48}$.
b) $\quad S_{n+1}=\frac{n}{n+1} S_{n}^{2}<S_{n}^{2}<1 \cdot S_{n}=S_{n} \quad V_{n} \in \mathbb{N}$.
$S_{n+1} \leq S_{n} \forall n \in \mathbb{N}$, the sequence is monotonically non-incrpasiug.
$\because\left\{s_{n}\right\}$ is a bounded monotone sequence, it wast converge.
c) let $s=\lim _{n \rightarrow \infty} S_{n}$. From the recursion relation,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n+1} s_{n}^{2} \Rightarrow & s=s^{2} \\
& s(s-1)=0, \Rightarrow s=0,1
\end{aligned}
$$

$\because s_{n} \leq \frac{1}{2}$ for $n \geqslant 2$ and non-increasing, $s \leq \frac{1}{2} \Rightarrow s=0$.
$10 \cdot 10$ a) $\quad S_{2}=\frac{1}{3}(1+1)=\frac{2}{3}, \quad S_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9}, \quad S_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27}$.
b) B.S. $S_{1}=1>\frac{1}{2}$.

Suppose $S_{n}>\frac{1}{2}, \quad S_{n+1}=\frac{1}{3}\left(S_{n+1}\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}$.
hence $s_{n}>\frac{1}{2}$ for all n.
c) M.M.I: B.S. $S_{1} \geqslant S_{2}$, since $S_{1}=1, S_{2}=\frac{2}{3}$.

Suppose $S_{n} \geqslant S_{n+1}$. Then $S_{n+1}=\frac{1}{3}\left(S_{n+1}\right) \geqslant \frac{1}{3}\left(S_{n+1}+1\right)=S_{n+2}$.
Hence $s_{n} \geqslant S_{n+1} \forall_{n}$.
d) Since $\left(S_{n}\right)$ is decreasing and bounded below, it cons. to a real number, m.
$S_{n+1}=\frac{1}{3}\left(S_{n+1}\right)$, by limit theorems, S_{n+1} cons. to $\frac{1}{3}(m+1)$.
Since lime $S_{n+1}=\lim S_{n}, \quad \frac{1}{3}(m+1)=m . \quad \Rightarrow m=\frac{1}{2}, \lim S_{n}=\frac{1}{2}$.
10.11 a) $\left(t_{r}\right)$ is a $V_{\text {sequence }}$ since t_{n+1} is obtained by multiplying t_{n} by a fraction blu 0 and 1 .
$\left(t_{n}\right)$ bounded below by $0 . \because$ it's decreasing, it's bounded above by $t_{1}=1$.
In section lo, it's shown that monotonic sap converge, so th must converge.
b) Guess: $\lim =\frac{2}{3}$,
express $t_{n+1}=\frac{(2 n+1)!(2 n-1)!}{2^{4 n-1}(n!)^{3}(n-1)!} \quad$ (might be correct?)
2. current thoughts:

Squeeze test:

$$
\begin{aligned}
& \left|a_{n}-L\right|<\epsilon \Rightarrow-\epsilon<a_{n-L} \leq b_{n}-L \\
& \left|a_{n}-L\right|<\epsilon \Rightarrow b_{n-L} \leq c_{n}-L<\epsilon
\end{aligned} \quad \Rightarrow \quad \begin{array}{r}
\epsilon>0, \exists M, N \text { s.t. } \forall n>N: a_{n}>L-\epsilon \\
\text { and } \forall m>M: c_{m}<L+\epsilon . \\
\text { Then for any } n>\max (M, N): \\
L-\epsilon<a_{n} \leq b_{n} \leq c_{n}<L+e \\
\\
-\epsilon<b_{n}-L<\epsilon \\
\left|b_{n}-L\right|<\epsilon . \\
\Rightarrow \lim b_{n}=L .
\end{array}
$$

