HW3 $10.6,11.2,11.3,11.5$
10.6 a) $\left|s_{n+1}-s_{n}\right|<2^{-n} \quad \forall n \in N$. Prove $\left(S_{n}\right)$ is a Cauchy seq and hence a conc. Seq.
for $m, n \in \mathbb{N}, m>n$, get only one " n "-index:

$$
\begin{aligned}
\left|S_{m}-S_{n}\right| & =\left|S_{m-} S_{m-1}+S_{m-1}-S_{m-2}+S_{m-2}+\cdots-S_{n}\right| \\
& \leqslant\left|S_{m-} S_{m-1}\right|+\left|S_{m-1}-S_{m-2}\right|+\cdots+\left|S_{n-1}-S_{n}\right| \\
& <\underbrace{\frac{1}{2^{m-1}}+\frac{1}{2^{m-2}}+\cdots+\frac{1}{2^{n}}} \quad \quad \quad \quad \frac{a\left(1+r+r^{2}+\cdots+r^{n}\right)=a\left(\frac{1-r^{n+1}}{1-r}\right)}{2^{n}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{m-1-n}\right)=\frac{1}{2^{n}}\left(\frac{\left.1-\frac{1}{2}\right)^{m-n}}{1-\frac{1}{2}}\right)=\frac{1}{2^{n-1}}-\frac{1}{2^{m-1}}}
\end{aligned}
$$

$$
\left|s_{m-}-s_{n}\right|<\frac{1}{2^{n-1}}-\frac{1}{2^{m-1}}<\frac{1}{2^{n-1}}
$$

Since $\left|S_{m}-S_{n}\right|<\frac{1}{2^{n-1}} \quad \forall m_{1} n>N$, and for $\frac{1}{2^{n-1}}: \lim _{n \rightarrow \infty} \frac{1}{2^{n-1}}=0$ which means $\forall n$, $\exists n>N$ set. $\left|\frac{1}{2^{n-1}}-0\right|<\epsilon$, hence $\left|S_{m-} S_{n}\right|<\frac{1}{z^{n-1}}<\epsilon$.
10.66) $\left|S_{n+1}-S_{n}\right|<\frac{1}{n} \quad \forall n \in \mathbb{N}$.

No, counter example: $\quad S_{n}=\sqrt{n+1} \quad|\sqrt{n+1}-\sqrt{n}|<\frac{1}{n}$, but $\lim _{n \rightarrow \infty} \sqrt{n+1}=\infty$, diverges. by def n of Cauchy, this example fails.
11.2
(1) $a_{n}=(-1)^{n}$
(2) $b_{n}=\frac{1}{n}$
a) $\{1,1,1,1 \ldots 1\}$ is monotone
a) $n=3 k:\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \ldots\right\}$ is monotone
b) $\{-1,1\}$ is the subsequential limit
b) $\{0\}$ is the subsequential limit
c) $\lim \sup a_{n}=1, \quad$ lime inf $a_{n}=-1$
c) limsup bn $=0$, liming $b_{n}=0$
d) a_{n} does not conv. it oscillates b/w ± 1.
d) bn conv. to 0
e) a_{n} is bounded. $a_{n}= \pm 1$.
e) bn is bounded between 0 and 1 .
(3) $c_{n}=n^{2}$
(4) $\quad d_{n}=\frac{6 n+4}{7 n-3}$
a) $\{0,1,4,9, \ldots\}$ is monotone
a) d_{n} itself is decreasing, monotone.
b) $\{\infty\}$ is the subsequential limit
b) $\left\{\frac{b}{7}\right\}$ is the sequential limit
c) $\lim \sup a_{n}=\infty \quad$ liming $a_{n}=\infty$
c) $\limsup a_{n}=\frac{6}{7} \quad \liminf a_{n}=\frac{6}{7}$
d) n^{2} does not conv. it diverges.
d) $\frac{6 n+4}{7 n-3}$ conv. to 0 .
e) n^{2} is not bounded.
e) $d n$ bounded: $\left[\frac{10}{4}, \frac{6}{7}\right)$
11.3 (1) $\quad S_{n}=\cos \left(\frac{n \pi}{3}\right)$
a) when $n_{k}=6 k, \quad \cos \left(\frac{6 k \pi}{3}\right)=\cos (2 k \pi)=1 . \Rightarrow$ is monotone.
b) $\left\{0, \pm \sqrt{\frac{5}{2}}\right\}$ is the subsequential limits.
c) $\lim _{m} \sup _{s_{n}}=\sqrt{\frac{3}{2}}, \quad \lim \inf s_{n}=-\sqrt{\frac{3}{2}}$
d) S_{n} does not converge.
e) S_{n} is bounded by $[-1,1]$
(2) $\quad t_{n}=\frac{3}{4 n+1}$
a) tn itself is decreasing, so we can takeitas its own subseg \Rightarrow is monotone.
b) $\{0\}$ is the subsequential limits
c) $\lim \sup \left\{t_{n}\right\}=0, \lim \inf \left\{t_{n}\right\}=0$
d) t_{n} converges to 0 .
e) t_{n} is bounded $\left(0, \frac{3}{5}\right.$]
(3) $u_{n}=\left(-\frac{1}{2}\right)^{n}$
a) $\left.\left\{-\frac{1}{2},-\frac{1}{8}, \ldots\right\}\right\}$ is decreasing
b) $\{0\}$ is the subsequential limit
c) $\limsup \left\{u_{n}\right\}=0, \lim \inf \left\{u_{n}\right\}=0$
d) un conc. to 0 .
e) un bounded by $\left[-\frac{1}{2}, \frac{1}{4}\right]$.
(4) $v_{n}=(-1)^{n}+\frac{1}{n}$
a) when $n=2 k, V_{n}$ is decreasing \Rightarrow monotone
b) $\{-1,1\}$ is the subsequential limit
c) $\limsup \left\{v_{n}\right\}=1, \quad \lim \inf \left\{v_{n}\right\}=-1$.
d) V_{n} does not cowerge.
e) V_{n} bounded by $\left(-1, \frac{3}{2}\right]$.
$11.5\left(q_{n}\right)$ be enumeration of all the rationals in the interval $(0,1]$.
a) Give the set of subsequential limits for $\left(q_{n}\right)$.

Let S be the set of subsequential limits of $\left(q_{n}\right)$.
$\because x<0, x \notin S$, and $q_{n}>\frac{x}{2} \forall n$,
$\therefore \quad s \in S$ mut also satisfy $(s>x) / 2>x$.
Similarly, any $x>1$ cannot be in S ble for any such $x, q_{n}<\frac{1+x}{2} \forall n$ so $s \leqslant \frac{1+x}{2}$ for any $s \in S \Rightarrow S \subseteq[0,1]$.
Show $S=[0,1]$: let $x \in[0,1]$. Then take $n_{1}=1$ and define n_{k} inductively: take $n_{k+1}>n_{k}$ so that $q_{n_{k+1}} \in(0,1) \cap\left(\frac{x-1}{k}, \frac{x_{+1}}{k}\right)$. This is possible b / c for each k the intersection $(0,1) \cap\left(\frac{x-1}{k}, \frac{x+1}{k}\right)$ is an interval of nonzero length, therefore it contains infinitely many rational numbers
$\Rightarrow q_{n}$ with $n<n_{k}$ cannot have exhausted all rational \#s in the intersection, So we must be able to find some $n_{k+1}>n_{k}$ with $q_{n k+1} \in(0,1) \cap\left(\frac{x-1}{k}, \frac{x+1}{k}\right)$. Then the subseq $\left(q_{n k}\right)$ of $\left(q_{n}\right)$ defined will cons. to x b/c for each k, $\left|q_{n k}-x\right|<\frac{1}{k}$, So given $\epsilon>0$, we can make $\left|q_{n k}-x\right|<\epsilon$ by taking $k>\frac{1}{\epsilon}$.
This shows $[0,1] \subseteq S \Rightarrow S=[0,1]$.
b) Give the values of $\lim s u p q_{n}$ and $l i m i n f ~ q_{n}$.
$\limsup _{q_{n}}=\sup [0,1]=1, \quad \liminf q_{n}=\operatorname{irf}[0,1]=0$.
2. Difference blu limsup and sup? What is most counter-intuitive about limsup?

State some sentences that seems to be correct, but is actually wrong?
Sup: supremum of the actual seq.
limsup: supremum of the limit of the seq.
counter-intuitive about limsup: limsup \neq sup.
statements that seems to be correct, but is actually wrong: limsup $=$ sup.

