HW3 10.6, 11.2, 11.5, 11.5
10.6 a)
$$|\operatorname{Snti-Sn}| < 2^m$$
 VneN. Free (Sn) is a Cachy see and have a conv. see.
for m, n e N, mpn, get only one "n'-indox:
 $|\operatorname{Snt-Sn}| = |\operatorname{Smt-Smt+Smt+Smt+Smt+Smt+Smt+Smt+Smt}} = Sn!
 $\leq |\operatorname{Smt-Smt}| + |\operatorname{Smt}| - Smt+Smt+Smt+Smt} = Sn!$
 $\leq |\operatorname{Smt-Smt}| + |\operatorname{Smt}| - Smt+Smt+Smt+Smt} = Smt}$
 $\langle \frac{1}{2^m} + \frac{1}{2^{m}} + \cdots + \frac{1}{2^m}$ $(a(|+r+r+\cdots+r^n)| = a(\frac{|-r^{n+1}|}{1-r}))$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^n}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{|-r^{n+1}|}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r}))$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r}))$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r}))$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r})$
 $\frac{1}{2^n}(|+\frac{1}{2^m}(\frac{1}{2^m})| = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-r^{n+1}}{1-r}) = a(\frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = a(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}{2^m}(\frac{1-\frac{1}{2^m}}{1-r}) = \frac{1}$$

11.3 ()
$$S_n = cos(\frac{N}{2})$$

a) when $n_k = 6k$, $cos(\frac{N}{2}) = cos(2k\pi) = 1.7$ is monotone.
() $\{0, \pm \sqrt{2}\}$ is the subsequential limits.
() $km supsn = \sqrt{2}$, $lim inf sn = -\sqrt{2}$
() S_n does not converge.
() S_n is bounded by $[-1,1]$
() $tn = \frac{3}{4\pi 1}$
() $tn = \frac{3}{4\pi 1}$
() $tn = 14\pi 1$
() $tm = 14\pi 1$
(

11.5 (qn) be enumeration of all the rationals in the interval (0,1].
a) Give the set of subsequential limits for (gn).
Let S be the set of subsequential limits of (q.n.).
∴ x <o, &="" and="" qin="" s,="" x=""> ? Yn,</o,>
ses must also satisfy (S>X)/2>X
Similarly, any x>1 cannot be in S ble for any such x, $q_n < \frac{1+x}{2}$ yn so
s ≤ HX for any se S.⇒ S ⊆ [0,1].
Show S=[0,1]: let x E[0,1]. Then take n =1 and define nx inductively:
take NEti>NE so that GNEti e (0,1) ∩ (2世, 2世). This is possible b/c
for each k the intersection $(0,1) \cap (\overset{\text{K}}{k}, \overset{\text{M}}{k})$ is an interval of nonzero
length, therefore it contains infinitely many voltional numbers
=> Qn with N <nk #s="" all="" cannot="" exhausted="" have="" in="" intersection,<="" rational="" td="" the=""></nk>
So we must be able to find some NETI > NE with Generi € [0,1]> D ([×] +, [×] +).
Then the subseq (qnk) of (qn) defined will conv. to x blc for each k,
lgnk-x < €, so given €>0, we can make lgnk-x < < 6 by taking K> =.
This shows [0,1] ES => S= [0,1].
b) Give the values of lim sup an and lim infan.

 $\limsup_{n \to \infty} q_n = \sup_{n \to \infty} [o_{i1}] = 1, \quad \lim_{n \to \infty} \inf_{n \to \infty} q_n = \inf_{n \to \infty} [o_{i1}] = 0.$

2. Difference blw limsup and Sup? What is most counter-intuitive about limsup? State some sentences that seems to be correct, but is actually wrong? Sup: Supremum of the actual seq. limsup: supremum of the limit of the seq. counter-intuitive about limsup: limsup = sup. statements that seems to be correct, but is actually wrong: limsup = sup.