HW4 Ross 12.10, 12.12, 14.2, 14.10; Rudin 3.6, 3.7, 3.9, 3.11
12.10 Prove (Sn) is bounded iff lim suplan < + 00.
(D Suppose (Sn) is bounded above. Then by defn, $\lim \sup s_n = t < +\infty$.
② Suppose lim sup Sn < +∞. Then lim sup Sn = t.
∵lim(Sup{ Sm s.t. m>n}) =t, ∃NEN s.t.
Sup{ISm s.t. m>N}-t <1, ⇒ Sup{ISm s.t. m>N} < t+1,
So for all $m > N$, $ S_m < t_{\pm 1}$,
and for all n, Isn < max { [sil, 1sz],, [sv], ++1}. hence (Sn) hell is bounded.
12.12 (Sn) be a seq of nonnegative numbers, for each n define
$\sigma_n = \frac{1}{n} (S_1 + S_2 + \dots + S_n)$
A) Show lim inf sn ≤ lim inf on ≤ lim sup on ≤ lim sup sn. c) lim on exists, lim sn DNE.
Prove lim sup on < lim supsn: Sn= L-1)n
given M and N s.e. $M > N$, we claim that $\lim \sigma n = 0$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Proof (2): Show $T_n \leq \frac{S_1 + \dots + S_N}{M} + \sup_{\substack{k > N \\ k > N}} for each n > M.$
: n>M>N, we break on into two parts:
$\sigma_{n} = \frac{S_{1} + \dots + S_{n}}{n} = \frac{S_{1} + \dots + S_{N}}{n} + \frac{S_{N} + 1 + \dots + S_{n}}{n}$ (4)
\therefore n >M $\int O \frac{S_1 + \dots + S_N}{N}$ in (4) is less than $\frac{S_1 + \dots + S_N}{M}$ in (3).
(2) $\frac{S_{4+1+\ldots+S_{4}}}{2}$ in (4) is \leq than $\frac{S_{4+1+\ldots+S_{4}}}{2}$ in (3).
\Rightarrow Combine these two statements \mathbb{O} (2), we see that (2) holds.
Then fix N, we take the limt of (2) as $M \rightarrow \infty$, we see that
lim sup on < sup st. (5)
Taking the limit of (5) as N > 20 lim sup on < lim supsk.
The proof of liminf sn = liminf on is similar.
b) Show if limsn exists, then $\lim \sigma_n$ exists and $\lim \sigma_n = \lim s_n$.
if limsn exists, then lim inf sn = lim sup sn,
so liminfon < liminfon < lim supon < lim supon becomes
limint Sn = liminton = lim sup on = lim supsn.
(if a seq in conv., its seq of average is also conv.)
- J -

H-2
a)
$$\sum \frac{n-1}{n^2}$$
, $\frac{n-1}{n} \sim \frac{1}{n}$, since $\sum \frac{1}{n}$ is $div \Rightarrow \sum \frac{n-1}{n^2}$ is div
alternatively: $\frac{n-1}{n^2} > c \cdot \frac{1}{n}$, for $n > 2$: $\frac{n+1}{n^2} > \frac{1}{n^2} = \frac{1}{n^2} = \frac{1}{2} \cdot \frac{1}{n}$,
 $\sin \alpha \sum \frac{1}{n^2} > c \cdot \frac{1}{n}$, for $n > 2$: $\frac{n+1}{n^2} = \frac{1}{n^2} = \frac{1}{n^2} = \frac{1}{2} \cdot \frac{1}{n}$,
 $sin \alpha \sum \frac{1}{n} > c \cdot \frac{1}{n^2}$, $sin \alpha > \sum \frac{n-1}{n^2} = \frac{1}{n^2} = \frac{1}{2} \cdot \frac{1}{n}$,
 $\sum \sum (-1)^n$: $\sum (-1)^n$ is div b/c limit DNE for $(-1)^n$.
 $c) \sum \frac{3n}{n^2} = \sum \frac{3}{n^2}$, $\sum \frac{3}{n^2} = 3 \sum \frac{1}{n^2}$, $\therefore \sum \frac{1}{n^2} conv$, $\therefore 3\sum \frac{1}{n^2} = \sum \frac{3n}{n^3} conv$.
 $d) \sum \frac{n^2}{2^3}$, $kiss_0 \frac{n^3}{3^3} = 0$ b/c 3^n is exponential in n , n^3 is phynomial in n . $(3^n = e^{dist}n)$
 $e) \sum \frac{n^2}{n^2}$, $kiss_0 \frac{n^2}{(n+1)^2}$, $\frac{n}{n^2} = kiss_0 \frac{(nn)^n}{(n+1)^n} = kiss_0 \frac{n+1}{n^2} = 0 < 1$, conv. absolutely.
 $e) \sum \frac{1}{n^n}$, $kins \sup \frac{n+1}{n} = kins sup \frac{1}{n} = 0$, $\Rightarrow conv$. $absolutely.$
 $e) \lim sup \frac{n+1}{cn} = \lim sup \frac{1}{n} = 0$, $\Im \sum \frac{n}{2^n} \lim_{n \to \infty} \frac{n+1}{2^{n+1}} = \frac{1}{2} \lim_{n \to \infty} \frac{1+\frac{1}{n}}{n} = \frac{1}{2} \lim_{n \to \infty} \frac{1+\frac{1}{n}}{n} = \frac{1}{2} c_1$
 $hand conv.$
 $F^{a}(n) = diverges by the Root Test but for which the Ratio Test gives no information.$
 $roth fest$
no info: $\lim_{n \to \infty} \frac{n+1}{an}$, $\lim_{n \to \infty} \frac{1}{an} \le 1 \le \lim_{n \to \infty} \frac{1}{an}$.
 $root + tot$, $\alpha = \lim_{n \to \infty} \sup a_n \frac{1}{n} > 1$.

Rudin 3.6, 3.7, 3.9, 3.11
3.6
a)
$$a_n = \sqrt{n_{11}} \cdot \sqrt{n}$$
, $a_n = \frac{(\sqrt{n_{11}} \cdot \sqrt{n})(\sqrt{n_{11}} + \sqrt{n})}{\sqrt{n_{11}} + \sqrt{n}} = \frac{n_{11} \cdot n}{\sqrt{n_{11}} \sqrt{n}} = \frac{1}{\sqrt{n_{11}} \sqrt{n}} > \frac{1}{\sqrt{n_{11}} \sqrt{n}}$
 $\therefore a_n dw.$
b) $a_n = \frac{(n_{11} - \sqrt{n})}{n}$ $a_n = \frac{(\sqrt{n_{11}} - \sqrt{n})(\sqrt{n_{11}} + \sqrt{n})}{n(\sqrt{n_{11}} + \sqrt{n})} = \frac{n(\sqrt{n_{11}} + \sqrt{n})}{n(\sqrt{n_{11}} + \sqrt{n})} = \frac{1}{n(\sqrt{n_{11}} + \sqrt{n})}$
 $= \frac{1}{2n} \frac{\sqrt{n_{11}}}{n} \frac{n(\sqrt{n_{11}} + \sqrt{n})}{n(\sqrt{n_{11}} + \sqrt{n})} = \frac{n(\sqrt{n_{11}} + \sqrt{n})}{n(\sqrt{n_{11}} + \sqrt{n})} = \frac{1}{n(\sqrt{n_{11}} + \sqrt{n})}$
 $= \frac{1}{2n} \frac{1}{\sqrt{n}} \frac{1}$

$$\begin{split} & \sum (n z^{n}, \alpha = \lim_{k \to \infty} \sup_{q \to 1} \sqrt{||q_{1}|}, R = \frac{1}{k} \begin{cases} \alpha = 0, R + \infty, R = 0, \\ \alpha = +\infty, R = 0, \\ div: ||q| < R \\ d$$