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I X and Y are open cwer compack;, prove thet X x Y s open (ever towpact .
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Counderei = X=X s continuous, but it Sends the open
iterval (A1) 4o Tor 1) whidh is ot open.

question: s HUwit) < LU ?

since Umire A, PlUwmiten) € 4(A)

A bounded = FLAY bounded

(o, 1) ‘O_’J’% (1) Whidn is hot kounded .

A compact = A Compack

Brory Say One) € A has o convergent Swbsen

Since £ 1S Comtinuoue, €adh covemgent Subseq il Lonverged in Uigy)

2 4w COMOLCA—
R tonnected > SA) connecked

B‘{ Him 42 n PULQ"\ (f&q—) , Hhe comtinuous 'l\'wagew-@ 6. Cobmecteck

Subpset ¥ connected .



(0:1) > g +ho 0
(—Wuu-e s o sufeskive wmap from

3. Pove: there IS no continuons map f:Con 1> R st ¥ i surieckive
[ 25 Sps £ is contnnous | ondk Hhat L s Surjective .
Since Cot] iS Compact by eXergsp 2, {T011]) =R is compact :

We know R is net Compact- =&  Henw powed. B



