HW5 13.3,13.5, 13.7, 4.5
$13.3 \quad B=\left\{x \mid x=\left(x_{1}, x_{2}, \ldots.\right)\right\} . d(x, y)=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}$.
a) Show d is a metric for B.
(1) $d(x, x)=\sup \left\{\left|x_{j}-x_{j}\right|: j=1,2, \cdots\right\}=0$
(2) $d(y, x)=\sup \left\{\left|y_{j}-x_{j}\right|: j=1,2, \ldots\right\}=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}=d(x, y) \cup$
(3) $d(x, z)=\sup \left\{\left|x_{j}-z_{j}\right|: j=1,2, \ldots\right\}$
$d(x, y)=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\} \quad \because\left|x_{j}-z_{j}\right| \leqslant\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right|$ by triangle inequality,
$d(y, z)=\sup \left\{\left|y_{j}-z_{j}\right|: j=1,2, \ldots\right\} \quad \therefore \sup \left|x_{j}-z_{j}\right| \leq \sup \left(\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right|\right)$.

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

b) $d^{*}(x, y)=\sum_{j=1}^{\infty}\left|x_{j}-y_{j}\right| \quad \xrightarrow{?}$ define a metric for B

The sequences are bounded, series $\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|$ reed not converge.
$\Rightarrow d^{*}$ is not a metric defined on all pairs.
Counterex: $x=(1,1, \ldots, 1), y=(0,0, \ldots, 0), \sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|=\sum_{i=1}^{\infty} 1$ does nt conv.
13.5 $A \backslash B$ relative complement (objects that belong to A but not to B).
a) Verify $\cap\{S \backslash U: U \in u\}=S \backslash U\{U: U \in u\}$

$$
\text { let } x \in \bigcap\{S \backslash U: U \in U\} \text { and } y \in S \backslash U\{U: U \in U\}
$$

(1) Show $x \in S \backslash U\{U: U \in U\}$:
(2) show $y \in \cap\{S \backslash U: U \in u\}$
$\Rightarrow x \in S \backslash U$ for every $U \in\{U\}$,
$\Rightarrow x \notin U$ for all $U \in M$
\Rightarrow we know $y \in S \backslash U\{v: v \in u\}$

$$
\begin{aligned}
& \Rightarrow x \notin U\{U: U \in U\} \\
& \Rightarrow x \in S \backslash\{U: U \in U\}
\end{aligned}
$$

$$
\Rightarrow y \notin U\{U: U \in u\}
$$

\Rightarrow for all $U \in u, y \notin U, y \in S \backslash U$.

$$
\Rightarrow \quad y \in \cap\{S \backslash U: U \in U\}
$$

b) Show that the intersection of any collection of closed sets is a closed set

Pf. Suppose $\varepsilon=E_{1}, E_{2}, \ldots, E_{n} \subseteq S$ are all closed.
then $S \backslash \varepsilon$ is open for every $E \in \varepsilon \quad b l C \quad S \backslash \varepsilon$ is the relative complement.
take $U=\{s \mid E: E \in \mathcal{E}\{$ which is a family of open sets;
and $\varepsilon=\{S \backslash U: U \in U\}$ bic for each $E \in \varepsilon, E=S \backslash(S \backslash E)$
then $\cap\{E \in \varepsilon\}=\bigcap\{S \backslash U: U \in u\}=S \backslash \cup\{U: U \in u\}$ by
De Morgan's law.

$$
\Rightarrow \cap\{E \in \varepsilon\}=S \backslash U\{U: U \in u\}
$$

taking complements of both sides

$$
\Rightarrow \quad \operatorname{S\backslash \cap }\{E \in \varepsilon\}=\underbrace{\cup\{u: U \in u}_{\text {open }}\}
$$

CONTD

$$
\Rightarrow S \backslash \cap\{E \in \varepsilon\}=\underbrace{\cup\{U: U \in u}_{\text {open }}\}
$$

this means that the complement of $\cap\{E \in \mathcal{\cap}\}$ is open. $\Rightarrow \cap\{\in \in \mathcal{Z}\}$ is closed. D.
13.7. Show that every open set in \mathbb{R} is the disjoint union of a finite or infinite seq of open intervals.
\Rightarrow NTS : any open subset $S \subseteq \mathbb{R}$ can be expressed as the union $U=U_{i \in U}\left(a_{i}, b_{i}\right)$ of disjoint open intervals (allowing $\pm \infty$ as end points).

The completeness of the real numbers: on the extended real line $\mathbb{R u}\{+\infty\}$, every subset has a supremum and an infimum.
for each $x \in U$, let $a x=\inf \{z<x \mid(z, x) \subset U\}$ and $b x=\inf \{z>x \mid(x, z) \subset U\}$,
then $I_{x}:=\left(a_{x}, b_{x}\right)$ is a maximal open interval contained in U.
Note: for $x, y \in U$, the intervals I_{x} and I_{y} are either equal or disjoint; taking $I \subset U$ to be a set of representatives for the equivalence relation $x \sim y \Leftrightarrow I_{x}=I_{y} ; \Rightarrow U=U_{x \in I} I_{x}$
4. For a subset S of a metric space, prove that if $s_{1}=\bar{S}$ and $s_{2}=\bar{S}$, then $s_{1}=s_{2}$.
$\bar{S}:$ closure of $S:\left\{p \in X \mid\right.$ there is a subseg $\left(p_{n}\right)$ in S that converges to $\left.p\right\}$
Want to show: $\overline{\bar{s}}=\overline{\mathrm{S}}$.
Since $\bar{S} \subset \overline{\bar{S}}$, we need to show $\overline{\bar{s}} \subset \bar{S}$.
5. Prove that \bar{S} is the intersection of all closed subsets in X that contains S. (may assume \bar{s} is closed).

