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1.10
Define Pn to be the proposition that (2n + 1) + (2n + 3) + ... + (4n− 1) = 3n2,
where n ∈ N.
Suppose Pn is true, for some n.

(2(n + 1) + 1) + (2(n + 1) + 3) + ... + (4(n + 1)− 1)

= (2n + 3) + (2n + 5) + ... + (4n + 3)

= −(2n + 1) + (2n + 1) + (2n + 3) + (2n + 5) + ... + (4n− 1) + (4n + 1) + (4n + 3)

= −(2n + 1) + 3n2 + (4n + 1) + (4n + 3)

= 3n2 − 2n− 1 + 4n + 1 + 4n + 3

= 3n2 + 6n + 3

= 3(n2 + 2n + 1)

= 3(n + 1)2

So we proved that Pn+1 is true, assuming Pn is true. Now we prove Pn is true
for n = 1, then all other n’s will follow.
When n = 1, 2n + 1 = 3 = 3 · 12 . QED.

1.12.

(a) � n = 1 : (a + b)1 =
(
1
0

)
a1 +

(
1
n

)
b1 = a + b

� n = 2: (a + b)2 = a2 + 2ab + b2 =
(
2
0

)
a2 +

(
2
1

)
a1b1 +

(
2
2

)
b2

� n =3 :

(a + b)3 = a3 + 3a2b + 3ab2 + b3

=

(
3

0

)
a3 +

(
3

1

)
a2b +

(
3

2

)
ab2 +

(
3

3

)
b3
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(b) (
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

k!(n + 1− k)!/(n + 1− k)
+

n!
k!
k (n + 1− k)!

=
n!(n + 1− k)

k!(n + 1− k)!
+

n!k

k!(n + 1− k)!

=
n!(n + 1)− n!k + n!k

k!(n + 1− k)!

=
(n + 1)!

k!(n + 1− k)!

=

(
n + 1

k

)
(c) Let n ∈ N, and define Pn to be the following proposition:

(a + b)n =
(
n
0

)
an +

(
n
1

)
an−1b + ... +

(
n

n−1
)
abn−1 +

(
n
n

)
bn

Suppose Pn is true. Then

(a + b)n+1 = (a + b)(a + b)n

= (a + b) ·
[(n

0

)
an +

(
n

1

)
an−1b + ... +

(
n

n

)
bn
]
)

=
[(n

0

)
an+1 +

(
n

1

)
anb +

(
n

2

)
an−1b2 + ... +

(
n

n

)
abn
]

+
[(n

0

)
anb +

(
n

1

)
an−1b2 + ... +

(
n

n

)
bn+1

]
=

(
n

0

)
an+1 +

[(
n

0

)
+

(
n

1

)]
anb + ... +

(
n

n

)
bn+1

=

(
n + 1

0

)
an+1 +

(
n + 1

1

)
anb + ... +

(
n + 1

n + 1

)
bn+1 (note that nC0 equals (n+1)C0)

So we see that Pn+1 follows from Pn. Since we proved in part a that P1

is true, we conclude Pn(a.k.a the binomial theorem) is true for all non-zero
natural number n. QED.

2.1

�

√
3 satisfies the equation x2 − 3 = 0

Divisors of -3: ±1,±3
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1±1 ,

±3
±1

None of these equals
√

3, therefore
√

3 is not a rational number.
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�

√
5 satisfies the equation x2 − 5 = 0

Divisors of -5: ±1,±5
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1±1 ,

±5
±1

None of these equals
√

5, therefore
√

5 is not a rational number.

�

√
7 satisfies the equation x2 − 7 = 0

Divisors of -7: ±1,±7
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1±1 ,

±7
±1

None of these equals
√

7, therefore
√

7 is not a rational number.

�

√
24 satisfies the equation x2 − 24 = 0

Divisors of -24: ±1,±2,±3,±4,±6,±8,±12,±24
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1,±2,±3,±4,±6,±8,±12,±24
None of these equals

√
24, therefore

√
24 is not a rational number.

�

√
31 satisfies the equation x2 − 31 = 0

Divisors of -31: ±1,±31
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1,±31
None of these equals

√
31, therefore

√
31 is not a rational number.

2.2

�
3
√

2 satisfies the equation x3 − 2 = 0
Divisors of -2: ±1,±2
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1,±2
None of these equals 3

√
2, therefore 3

√
2 is not a rational number.

�
7
√

5 satisfies the equation x7 − 5 = 0
Divisors of -5: ±1,±5
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1,±5
None of these equals 7

√
5, therefore 7

√
5 is not a rational number.

�
4
√

13 satisfies the equation x4 − 13 = 0
Divisors of -13: ±1,±13
Divisors of 1: ±1
Possible rational solutions according to Rational Zeros Theorem: ±1,±13
None of these equals 4

√
13, therefore 4

√
13 is not a rational number.

2.7
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(a) Define x =
√

4 + 2
√

3−
√

3

(x +
√

3)2 = x2 + 3 + 2
√

3x = 4 + 2
√

3

x2 + 2
√

3x = 1 + 2
√

3

x2 − 1 = 2
√

3− 2
√

3x

(x + 1)(x− 1) = −2
√

3(x− 1)

Before we divide out the (x− 1) term, we need to make sure x 6= 1. So let’s
try x = 1 and see where that leads us.
Suppose x = 1, then

1 =

√
4 + 2

√
3−
√

3

1 +
√

3 =

√
4 + 2

√
3

1 + 3 + 2
√

3 = 4 + 2
√

3 (after squaring both sides)

4 = 4

As shown above, x = 1 works. Therefore, recalling the definition of x,

x =
√

4 + 2
√

3−
√

3 = 1 ∈ Q.

(b) Define x =
√

6 + 4
√

2−
√

2, then we have x +
√

2 =
√

6 + 4
√

2. Similarly
to part (a), it is easy to find that x = 2.

3.6

(a)

|a + b + c| = |(a + b) + c| (by associativity of addition)

≤ |a + b|+ |c| (by triangle inequality)

≤ |a|+ |b|+ |c| (by triangle inequality)

(b) Let Pn be the proposition that |a1 + a2 + ... + an| ≤ |a1|+ |a2|+ ... + |an|,
where ai ∈ R for i = 1, 2, ..., n.
Suppose Pn is true, then

|a1 + a2 + ... + an + an+1| = |(a1 + a2 + ... + an) + an+1| (by associativity of addition)

≤ |a1 + a2 + ... + an|+ |an+1| (by triangle equality)

≤ |a1|+ |a2|+ ... + |an|+ |an+1| (by the assumption)

i.e we have shown that if Pn holds, then Pn+1 also holds. Now we show the
case for when n=1, then the rest will follow.
Suppose n = 1. |a1| ≤ |a1|. (proof by duh)
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4.11
Suppose there are N rationals between a and b, where N ∈ {1, 2, 3, ...}.
R can be ordered(Ross Chapter 3, property O1), so we can write the N rational
numbers as {r1, r2, ..., rN}, where a < r1 < r2 < ... < rN < b.
Since rN ∈ Q and Q ⊂ R, rN ∈ R.
Since rN ∈ R and rN < b, by Denseness of Q theorem there must exist another
rational number, call it rN+1, such that rN < rN+1 < b. This is in contradiction
with the assumption we started with, which is that there are only N rationals
between a and b. So the assumption is nonsense, which means there are infinitely
many rationals between a and b.
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4.14

(a)

(b) [hb]
part b is very similar to part a.
(≥)

a ≥ inf A, b ≥ inf B, ∀a ∈ A, b ∈ B

=⇒ a + b ≥ inf A + inf B

=⇒ (inf A + inf B) is a lower bound of A + B

=⇒ inf(A + B) ≥ inf A + inf B

(≤)

a + b ≥ inf(A + B) ∀a ∈ A, b ∈ B

=⇒ a ≥ inf(A + B)− b

=⇒ inf(A + B)− b is a lower bound of A,∀b ∈ B

=⇒ inf A ≥ inf(A + B)− b

=⇒ b ≥ inf(A + B)− inf A

=⇒ inf(A + B)− inf A is a lower bound of B

=⇒ inf B ≥ inf(A + B)− inf A

=⇒ inf A + inf B ≥ inf(A + B)
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Since inf A+ inf B ≥ inf(A+B) and inf A+ inf B ≤ inf(A+B), it must be
that inf A + inf B = inf(A + B). QED

7.5

(a)

√
n2 + 1− n = (

√
n2 + 1− n)

√
n2 + 1 + n√
n2 + 1 + n

=
n2 + 1− n2

√
n2 + 1 + n

=
1√

n2 + 1 + n

=
1/n

1 +
√

1 + 1
n2

In the limit of big n, the above expression obviously tends to 0.

(b)

√
n2 + n− n = (

√
n2 + n− n)

√
n2 + n + n√
n2 + n + n

=
n2 + n− n2

√
n2 + n + n

=
n√

n2 + n + n

=
1

1 +
√

1 + 1
n

In the limit of big n, the above expression obviously tends to 1
2

(c)

√
4n2 + n− 2n = (

√
4n2 + n− 2n)

√
4n2 + n + 2n√
4n2 + n + 2n

=
4n2 + n− 4n2

√
4n2 + n + 2n

=
n√

4n2 + n + 2n

=
1

2 +
√

4 + 1
n

In the limit of big n, the above expression obviously tends to 1
2+
√
4

= 1
4

7


