104

Jack Hou hw1
1.10

Define P_{n} to be the proposition that $(2 n+1)+(2 n+3)+\ldots+(4 n-1)=3 n^{2}$, where $n \in \mathbb{N}$.
Suppose P_{n} is true, for some n.

$$
\begin{aligned}
& (2(n+1)+1)+(2(n+1)+3)+\ldots+(4(n+1)-1) \\
& =(2 n+3)+(2 n+5)+\ldots+(4 n+3) \\
& =-(2 n+1)+(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(4 n-1)+(4 n+1)+(4 n+3) \\
& =-(2 n+1)+3 n^{2}+(4 n+1)+(4 n+3) \\
& =3 n^{2}-2 n-1+4 n+1+4 n+3 \\
& =3 n^{2}+6 n+3 \\
& =3\left(n^{2}+2 n+1\right) \\
& =3(n+1)^{2}
\end{aligned}
$$

So we proved that P_{n+1} is true, assuming P_{n} is true. Now we prove P_{n} is true for $n=1$, then all other n's will follow.
When $n=1,2 n+1=3=3 \cdot 1^{2}$. QED.
1.12.
(a) $\quad \mathrm{n}=1:(a+b)^{1}=\binom{1}{0} a^{1}+\binom{1}{n} b^{1}=a+b$

- $\mathrm{n}=2:(a+b)^{2}=a^{2}+2 a b+b^{2}=\binom{2}{0} a^{2}+\binom{2}{1} a^{1} b^{1}+\binom{2}{2} b^{2}$
- $\mathrm{n}=3$:

$$
\begin{aligned}
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& =\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{n!}{k!(n+1-k)!/(n+1-k)}+\frac{n!}{\frac{k!}{k}(n+1-k)!} \\
& =\frac{n!(n+1-k)}{k!(n+1-k)!}+\frac{n!k}{k!(n+1-k)!} \\
& =\frac{n!(n+1)-n!k+n!k}{k!(n+1-k)!} \\
& =\frac{(n+1)!}{k!(n+1-k)!} \\
& =\binom{n+1}{k}
\end{aligned}
$$

(c) Let $n \in \mathbb{N}$, and define P_{n} to be the following proposition:
$(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}$
Suppose P_{n} is true. Then

$$
\begin{aligned}
(a+b)^{n+1}= & (a+b)(a+b)^{n} \\
= & \left.(a+b) \cdot\left[\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\ldots+\binom{n}{n} b^{n}\right]\right) \\
= & {\left[\binom{n}{0} a^{n+1}+\binom{n}{1} a^{n} b+\binom{n}{2} a^{n-1} b^{2}+\ldots+\binom{n}{n} a b^{n}\right] } \\
& \quad+\left[\binom{n}{0} a^{n} b+\binom{n}{1} a^{n-1} b^{2}+\ldots+\binom{n}{n} b^{n+1}\right] \\
= & \binom{n}{0} a^{n+1}+\left[\binom{n}{0}+\binom{n}{1}\right] a^{n} b+\ldots+\binom{n}{n} b^{n+1} \\
= & \binom{n+1}{0} a^{n+1}+\binom{n+1}{1} a^{n} b+\ldots+\binom{n+1}{n+1} b^{n+1}(\text { note that } \mathrm{nC} 0 \text { equals }(\mathrm{n}+1) \mathrm{C} 0)
\end{aligned}
$$

So we see that P_{n+1} follows from P_{n}. Since we proved in part a that P_{1} is true, we conclude P_{n} (a.k.a the binomial theorem) is true for all non-zero natural number n. QED.
2.1

- $\sqrt{3}$ satisfies the equation $x^{2}-3=0$

Divisors of $-3: \pm 1, \pm 3$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\frac{ \pm 1}{ \pm 1}, \frac{ \pm 3}{ \pm 1}$
None of these equals $\sqrt{3}$, therefore $\sqrt{3}$ is not a rational number.

- $\sqrt{5}$ satisfies the equation $x^{2}-5=0$

Divisors of $-5: \pm 1, \pm 5$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\frac{ \pm 1}{ \pm 1}, \frac{ \pm 5}{ \pm 1}$
None of these equals $\sqrt{5}$, therefore $\sqrt{5}$ is not a rational number.

- $\sqrt{7}$ satisfies the equation $x^{2}-7=0$

Divisors of $-7: \pm 1, \pm 7$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\frac{ \pm 1}{ \pm 1}, \frac{ \pm 7}{ \pm 1}$
None of these equals $\sqrt{7}$, therefore $\sqrt{7}$ is not a rational number.

- $\sqrt{24}$ satisfies the equation $x^{2}-24=0$

Divisors of -24: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
None of these equals $\sqrt{24}$, therefore $\sqrt{24}$ is not a rational number.

- $\sqrt{31}$ satisfies the equation $x^{2}-31=0$

Divisors of -31 : $\pm 1, \pm 31$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\pm 1, \pm 31$
None of these equals $\sqrt{31}$, therefore $\sqrt{31}$ is not a rational number.
2.2

- $\sqrt[3]{2}$ satisfies the equation $x^{3}-2=0$

Divisors of $-2: \pm 1, \pm 2$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\pm 1, \pm 2$
None of these equals $\sqrt[3]{2}$, therefore $\sqrt[3]{2}$ is not a rational number.

- $\sqrt[7]{5}$ satisfies the equation $x^{7}-5=0$

Divisors of $-5: \pm 1, \pm 5$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\pm 1, \pm 5$
None of these equals $\sqrt[7]{5}$, therefore $\sqrt[7]{5}$ is not a rational number.

- $\sqrt[4]{13}$ satisfies the equation $x^{4}-13=0$

Divisors of $-13: \pm 1, \pm 13$
Divisors of 1: ± 1
Possible rational solutions according to Rational Zeros Theorem: $\pm 1, \pm 13$
None of these equals $\sqrt[4]{13}$, therefore $\sqrt[4]{13}$ is not a rational number.
(a) Define $x=\sqrt{4+2 \sqrt{3}}-\sqrt{3}$

$$
\begin{aligned}
(x+\sqrt{3})^{2}=x^{2}+3+2 \sqrt{3} x & =4+2 \sqrt{3} \\
x^{2}+2 \sqrt{3} x & =1+2 \sqrt{3} \\
x^{2}-1 & =2 \sqrt{3}-2 \sqrt{3} x \\
(x+1)(x-1) & =-2 \sqrt{3}(x-1)
\end{aligned}
$$

Before we divide out the $(x-1)$ term, we need to make sure $x \neq 1$. So let's $\operatorname{try} x=1$ and see where that leads us.
Suppose $x=1$, then

$$
\begin{aligned}
1 & =\sqrt{4+2 \sqrt{3}}-\sqrt{3} \\
1+\sqrt{3} & =\sqrt{4+2 \sqrt{3}} \\
1+3+2 \sqrt{3} & =4+2 \sqrt{3} \text { (after squaring both sides) } \\
4 & =4
\end{aligned}
$$

As shown above, $x=1$ works. Therefore, recalling the definition of x , $x=\sqrt{4+2 \sqrt{3}}-\sqrt{3}=1 \in \mathbb{Q}$.
(b) Define $x=\sqrt{6+4 \sqrt{2}}-\sqrt{2}$, then we have $x+\sqrt{2}=\sqrt{6+4 \sqrt{2}}$. Similarly to part (a), it is easy to find that $x=2$.
3.6
(a)

$$
\begin{aligned}
|a+b+c| & =|(a+b)+c| \text { (by associativity of addition) } \\
& \leq|a+b|+|c| \text { (by triangle inequality) } \\
& \leq|a|+|b|+|c| \text { (by triangle inequality) }
\end{aligned}
$$

(b) Let P_{n} be the proposition that $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$, where $a_{i} \in \mathbb{R}$ for $i=1,2, \ldots, n$.
Suppose P_{n} is true, then

$$
\begin{aligned}
\left|a_{1}+a_{2}+\ldots+a_{n}+a_{n+1}\right| & =\left|\left(a_{1}+a_{2}+\ldots+a_{n}\right)+a_{n+1}\right| \text { (by associativity of addition) } \\
& \leq\left|a_{1}+a_{2}+\ldots+a_{n}\right|+\left|a_{n+1}\right| \text { (by triangle equality) } \\
& \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|+\left|a_{n+1}\right| \text { (by the assumption) }
\end{aligned}
$$

i.e we have shown that if P_{n} holds, then P_{n+1} also holds. Now we show the case for when $\mathrm{n}=1$, then the rest will follow.
Suppose $\mathrm{n}=1 .\left|a_{1}\right| \leq\left|a_{1}\right|$. (proof by duh)
4.11

Suppose there are N rationals between a and b, where $N \in\{1,2,3, \ldots\}$.
\mathbb{R} can be ordered(Ross Chapter 3, property O1), so we can write the N rational numbers as $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$, where $a<r_{1}<r_{2}<\ldots<r_{N}<b$.
Since $r_{N} \in \mathbb{Q}$ and $\mathbb{Q} \subset \mathbb{R}, r_{N} \in \mathbb{R}$.
Since $r_{N} \in \mathbb{R}$ and $r_{N}<b$, by Denseness of \mathbb{Q} theorem there must exist another rational number, call it r_{N+1}, such that $r_{N}<r_{N+1}<b$. This is in contradiction with the assumption we started with, which is that there are only N rationals between a and b. So the assumption is nonsense, which means there are infinitely many rationals between a and b .
(a)
(\leq)
$\forall a \in A, b \in B: a \leq \sup (A), b \leq \sup (B)$ by definition of sup
So $a+b \leq \sup (A)+\sup (B)$ for any a from A and b from B
So $\sup (A)+\sup (B)$ is an upper bound of $A+B$, by definition of upper bound
So $\sup (A+B) \leq \sup (A)+\sup (B)$ by definition of sup
(\geq)
$\forall a \in A, b \in B: a+b \leq \sup (A+B)$ by definition of $\mathrm{A}+\mathrm{B}$ and definition of sup
Therefore $a \leq \sup (A+B)-b$ for any a from A and b from B
Therefore $\sup (A+B)-b$ is an upper bound of A , by definition
Therefore $\sup (A) \leq \sup (A+B)-b$ by definition of sup
Therefore $b \leq \sup (A+B)-\sup (A)$
Since $b \in B$ was arbitrary, $\sup (A+B)-\sup (A)$ is an upper bound of B.
Therefore $\sup (B) \leq \sup (A+B)-\sup (A)$ by definition of sup.
Therefore $\sup (A+B) \geq \sup (A)+\sup (B)$
(1) and(2) jointly implies $\sup (A+B)=\sup (A)+\sup (B)$.
(b)
part b is very similar to part a.
(\geq)

$$
\begin{aligned}
a & \geq \inf A, b \geq \inf B, \forall a \in A, b \in B \\
& \Longrightarrow a+b \geq \inf A+\inf B \\
& \Longrightarrow(\inf A+\inf B) \text { is a lower bound of } A+B \\
& \Longrightarrow \inf (A+B) \geq \inf A+\inf B
\end{aligned}
$$

(\leq)

$$
\begin{aligned}
& a+b \geq \inf (A+B) \forall a \in A, b \in B \\
& \Longrightarrow a \geq \inf (A+B)-b \\
& \Longrightarrow \inf (A+B)-b \text { is a lower bound of } A, \forall b \in B \\
& \Longrightarrow \inf A \geq \inf (A+B)-b \\
& \Longrightarrow b \geq \inf (A+B)-\inf A \\
& \Longrightarrow \inf (A+B)-\inf A \text { is a lower bound of } B \\
& \Longrightarrow \inf B \geq \inf (A+B)-\inf A \\
& \Longrightarrow \inf A+\inf B \geq \inf (A+B)
\end{aligned}
$$

Since $\inf A+\inf B \geq \inf (A+B)$ and $\inf A+\inf B \leq \inf (A+B)$, it must be that $\inf A+\inf B=\inf (A+B)$ QED
7.5
(a)

$$
\begin{aligned}
\sqrt{n^{2}+1}-n & =\left(\sqrt{n^{2}+1}-n\right) \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n} \\
& =\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n} \\
& =\frac{1}{\sqrt{n^{2}+1}+n} \\
& =\frac{1 / n}{1+\sqrt{1+\frac{1}{n^{2}}}}
\end{aligned}
$$

In the limit of big n, the above expression obviously tends to 0 .
(b)

$$
\begin{aligned}
\sqrt{n^{2}+n}-n & =\left(\sqrt{n^{2}+n}-n\right) \frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n} \\
& =\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n} \\
& =\frac{n}{\sqrt{n^{2}+n}+n} \\
& =\frac{1}{1+\sqrt{1+\frac{1}{n}}}
\end{aligned}
$$

In the limit of big n, the above expression obviously tends to $\frac{1}{2}$
(c)

$$
\begin{aligned}
\sqrt{4 n^{2}+n}-2 n & =\left(\sqrt{4 n^{2}+n}-2 n\right) \frac{\sqrt{4 n^{2}+n}+2 n}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{4 n^{2}+n-4 n^{2}}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{n}{\sqrt{4 n^{2}+n}+2 n} \\
& =\frac{1}{2+\sqrt{4+\frac{1}{n}}}
\end{aligned}
$$

In the limit of big n, the above expression obviously tends to $\frac{1}{2+\sqrt{4}}=\frac{1}{4}$

