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1.10

Define P, to be the proposition that (2n + 1) + (2n 4 3) + ... + (4n — 1) = 3n?,
where n € N.

Suppose P, is true, for some n.

Ch+1)+1)+2n+1)+3)+...+4n+1)-1)
=2n+3)+2n+5)+ ...+ (4n+3)
=—2n+1)+2n+1)+2n+3)+2n+5)+...+An—1)+ (An+1) + (4n+3)
=—(2n+1)+3n* + (4n+ 1) + (4n + 3)

=3n—2n—1+4n+1+4n+3

=3n+6n+3

=3(n?+2n+1)

=3(n+1)?

So we proved that P, 41 is true, assuming P, is true. Now we prove P, is true

for n = 1, then all other n’s will follow.
Whenn=1,2n+1=3=3-12. QED.

1.12.

(a) en=1:(a+b)t=)al+( )t =a+b
= b =20 = (s (s + ()

(a+0)® = a® + 3a®b + 3ab® + b*

02+ Qs @+ (0



(Z) * (k; . 1) - k!(nni DI 1)!(:!— k1 1)

n! n!
- +
Rlin+1—=k)!/(n+1-k)  Emn41—k)
~nl(n+1-k) nlk

T K1k K1k
nl(n+1) —nlk + nlk
Ki(n+1— k)l
(n+1)!
T R(n+1-k)!

_(n+1
N k
(c) Let n € N, and define P, to be the following proposition:

(a+b)"=(Ha™+ (Na o+ ...+ (" )ab" 1+ (M)o"
Suppose P, is true. Then

(a + b)”+1 (a+b)(a+D)"

=(a+b)-[(g>a"+<1) "o+ +< )b"])

- [( ) ntl g ( ) "b+( ) "_1b2+...+<2)ab"]
( > ”b+( > a" 4+ (Z)b”“]

(@) ()« (o e o

(n—l—l) ntl (

1
nt ) ) a"b+ ..+ (n + )b"+1 (note that nCO equals (n+1)CO0)
So we see that P,y; follows from P,. Since we proved in part a that P;

n+1
is true, we conclude P, (a.k.a the binomial theorem) is true for all non-zero
natural number n. QED.

2.1

e /3 satisfies the equation 22 —3 =0
Divisors of -3: +1,£3
Divisors of 1: +1

Possible rational solutions according to Rational Zeros Theorem: %, %

None of these equals \/?;, therefore v/3 is not a rational number.



2.2

2.7

\/5 satisfies the equation 22-5=0
Divisors of -5: £1, 45
Divisors of 1: +1

Possible rational solutions according to Rational Zeros Theorem: %, %
None of these equals \/5, therefore /5 is not a rational number.

/7 satisfies the equation z2 —7=0

Divisors of -7: 1,47

Divisors of 1: +1

Possible rational solutions according to Rational Zeros Theorem: %, %

None of these equals N , therefore \/7 is not a rational number.

/24 satisfies the equation 22 — 24 = 0

Divisors of -24: +1, +2, £3, +4, +6, £8, +12, +24

Divisors of 1: £1

Possible rational solutions according to Rational Zeros Theorem: +1, +2, +3, +4, +6, +8, +12, +24
None of these equals v/24, therefore v/24 is not a rational number.

V/31 satisfies the equation 22 — 31 = 0

Divisors of -31: +1, 431

Divisors of 1: £1

Possible rational solutions according to Rational Zeros Theorem: +1,+31
None of these equals \/3>1, therefore /31 is not a rational number.

/2 satisfies the equation 22 —2 =0

Divisors of -2: +1, £2

Divisors of 1: =£1

Possible rational solutions according to Rational Zeros Theorem: 41, £+2
None of these equals \3/5, therefore </2 is not a rational number.

/5 satisfies the equation 27 — 5 =0

Divisors of -5: £1, 45

Divisors of 1: =£1

Possible rational solutions according to Rational Zeros Theorem: +1,+5
None of these equals \7/5, therefore v/5 is not a rational number.

v/13 satisfies the equation z* — 13 = 0

Divisors of -13: +1,+13

Divisors of 1: +1

Possible rational solutions according to Rational Zeros Theorem: £1,+13
None of these equals \‘Vﬁ7 therefore v/13 is not a rational number.



(a)

3.6

(a)

(b)

Define z = /4 +2vV3 — /3

(z+V3)?2 =22 +3+2V3x=4+2V3
2? +2v3r =1+2V3
2?2 —1=2V3-2V3z
(z+1)(z—1)=—2V3(x—1)
Before we divide out the (z — 1) term, we need to make sure x # 1. So let’s

try x = 1 and see where that leads us.
Suppose z = 1, then

1=y4+2vV3-V3
1+V3=1/4+2V3
14 34 2V3 = 4 + 2V/3 (after squaring both sides)
4=4

As shown above, x = 1 works. Therefore, recalling the definition of x,

z=vV4+2V/3-v3=1€Q.
Define x = /6 + 4v/2 — \/5, then we have = + v2 = V6 + 4/2. Similarly

to part (a), it is easy to find that z = 2.

la 4+ b+ c| =|(a+b)+ | (by associativity of addition)
<la+b| + |c| (by triangle inequality)
<la| + |b| + |¢| (by triangle inequality)

Let P, be the proposition that |a1 + ag + ... + an| < |a1| + |az] + ... + |an],
where a; € R for : = 1,2, ..., n.
Suppose P, is true, then

lar + a2+ ... + an + any1| = [(a1 + a2 + ... + ap) + ant1] (by associativity of addition)
<|ay +az + ... + an| + |ans1| (by triangle equality)
<la1| + |az| + ... + |an| + |an+1| (by the assumption)

i.e we have shown that if P, holds, then P, also holds. Now we show the

case for when n=1, then the rest will follow.
Suppose n = 1. |a1| < |ay|. (proof by duh)



4.11

Suppose there are N rationals between a and b, where N € {1,2,3,...}.

R can be ordered(Ross Chapter 3, property O1), so we can write the N rational
numbers as {ry,rs,...,’n}, where a <1y <rg < ..<ry <b.

Since ry € Q and Q C R, ry € R.

Since ry € R and ry < b, by Denseness of Q theorem there must exist another
rational number, call it 7y 41, such that ry < ry4+1 < b. This is in contradiction
with the assumption we started with, which is that there are only N rationals
between a and b. So the assumption is nonsense, which means there are infinitely
many rationals between a and b.



4.14

(b)

(=)

Va €A, b €B:a < sup(4), b < sup(B) by definition of sup

Soa + b < sup(Ad) + sup(B) for any a from A and b from B

So sup(A) + sup(B) is an upper bound of A + B, by definition of upper bound

So sup(A + B) < sup(A) + sup (B) by definition of sup 1)

(2)

Va €A, b €B:a+ b < sup (A + B) by definition of A+B and definition of sup
Therefore a < sup(A + B) — b for any a from A and b from B

Therefore sup(A + B) — b is an upper bound of A, by definition

Therefore sup(A) < sup(4 + B) — b by definition of sup

Therefore b < sup(4 + B) — sup(4)

Since b € B was arbitrary, sup(A + B) — sup(4) is an upper bound of B.
Therefore sup (B) < sup(4 + B) — sup(4) by definition of sup.

Therefore sup(A + B) > sup(4) + sup(B) (2)

(1)and(2) jointly implies sup(A + B) = sup(4) + sup(B).

QED [hb]
part b is very similar to part a.
(=)
a>infAb>inf B)Va€ A,be B

= a+b>infA+infB

= (inf A +inf B) is a lower bound of A+ B

= inf(A+ B) > inf A+inf B
(<)

a+b>inf(A+ B) Vae A,be B
a>inf(A+B)—-b

inf(A + B) — b is a lower bound of A,¥b € B
inf A>inf(A+ B) -0

b>inf(A+ B) —inf A

inf(A 4+ B) —inf A is a lower bound of B
inf B> inf(A+ B) —inf A

inf A+ inf B > inf(A + B)

Lreliel



Since inf A +inf B > inf(A+ B) and inf A+ inf B < inf(A+ B), it must be
that inf A 4+ inf B = inf(A + B). QED

7.5
(a)

vni+1l+n
vni+l—-n=HWn?+1-—n)————
( )\/n2—|—1+n

_ n?+1-—n?

 VnZ+l4n
1

C VnZ+l4n
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1+4/1+ %

n2
In the limit of big n, the above expression obviously tends to 0.

(b)

Vn?+n+n
vnl+n—n=(Hn?>+n—n)————
( )VM+n+n

n?+n—n?

VnZ+n+n
n
B vVn24+n+n

_ 1
1+4/14+ 2

In the limit of big n, the above expression obviously tends to %
(c)

VAn? +n +2n
N2 4+n—-2n=(V4an?2+n—-2n)—m———
( )\/4n2+n+2n

_4An? +n—4n?

C VAnZ +n+2n
n
C VAnZ +n+2n
1

244/4+ 2

. . . . . 1 1
In the limit of big n, the above expression obviously tends to TV 4




