HUI
34.2

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t
$$

let $F(x)=\int_{0}^{x} e^{t^{2}} d t$.
Then by Fundamental the of call. II,

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t=\lim _{x \rightarrow 0} \frac{F(x)}{x}=F^{\prime}(0)=\left.e^{x^{2}}\right|_{x=0}=1 .
$$

b) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t$
let $F(x)=\int_{3}^{x} e^{t^{2}} d t$ so that $F(3)=0$ and $F^{\prime}(x)=e^{x^{2}}$.
Then $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t=\lim _{h \rightarrow 0} \frac{F(3+h)-F(3)}{h}=F^{\prime}(3)=e^{3^{2}}=e^{9}$.
34.5 let f be a continuous function on \mathbb{R}.
let $g(x)=\int_{1}^{x} f(t) d t$ is differentiable and $g^{\prime}(x)=f(x)$.
Then $F(x)=\int_{x-1}^{x+1} f(t) d t$

$$
\begin{aligned}
& =\int_{x-1}^{1} f(t) d t+\int_{1}^{x+1} f(t) d t \\
& =\int_{1}^{x+1} f(t) d t-\int_{1}^{x-1} f(t) d t \\
& =g(x+1)-g(x-1)
\end{aligned}
$$

differentiable differentiable
$\therefore F$ is a differentiable

$$
F^{\prime}(x)=g^{\prime}(x+1)-g^{\prime}(x-1)=f(x+1)-f(x-1)
$$

34.7 $\int_{0}^{1} x \cdot \sqrt{1-x^{2}} d x=$? use change of variables

$$
\begin{aligned}
& u=1-x^{2} \\
& \frac{d u}{d x}=-2 x d x \Rightarrow x d x=-\frac{1}{2} d u, \quad \int_{u=1}^{u=0} \\
& \begin{aligned}
\int_{0}^{1} x \cdot \sqrt{1-x^{2}} d x & =-\frac{1}{2} \int_{1}^{0} \sqrt{u} d u \\
& =-\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{1} ^{0} \\
& =\frac{1}{3}
\end{aligned}
\end{aligned}
$$

Rudin16 $\quad \xi(S)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$
a) Prove $\xi(s)=s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x$

$$
\begin{aligned}
s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x & =s \sum_{n=1}^{\infty} n \int_{n}^{n+1} \frac{1}{x^{s+1}} d x \\
& =s \sum_{n=1}^{\infty} n \cdot \int_{n}^{n+1} x^{-s-1} d x \\
& =\left.\sum_{n=1}^{\infty} n \cdot x^{-s}\right|_{n} ^{n+1} \\
& =\sum_{n=1}^{\infty} n \cdot\left(\frac{1}{n^{s}}-\frac{1}{\left(n+1 s^{s}\right.}\right) \\
& =1\left(\frac{1}{1^{s}}-\frac{1}{2^{s}}\right)+2\left(\frac{1}{2^{s}}-\frac{1}{3^{s}}\right)+3\left(\frac{1}{3^{s}}-\frac{1}{4^{s}}\right)+\cdots \\
& =\frac{1}{1^{s}}-\frac{1}{2^{s}}+\frac{2}{2^{s}}-\frac{2}{3^{s}}+\frac{3}{3^{s}}-\frac{3}{4^{s}}+\frac{4}{4^{s}}+\cdots \\
& =\frac{1}{s^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
& =\xi(s)
\end{aligned}
$$

b) $\xi(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{x-[x]}{x^{s+1}} d x$

Prove integral in (b) converges for $\forall s>0$

$$
\begin{aligned}
\frac{s}{s-1}-s \int_{1}^{\infty} \frac{x-[x]}{x^{s+1}} d x & =\frac{s}{s-1}-s \int_{1}^{\infty} \frac{x}{x^{s+1}} d x-s \int_{1}^{\infty}-\frac{[x]}{x^{s+1}} d x \quad \quad \text { fum a) } \\
& =\frac{s}{s-1}-s \cdot\left(\int_{1}^{\infty} \frac{1}{x^{s}} d x\right)+s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x \\
& =\frac{s}{s-1}-s \cdot\left(\left.\frac{1}{1-s} \cdot \frac{1}{x^{s-1}}\right|_{1} ^{\infty}\right)+s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x \\
& =\frac{s}{s-1}-s \cdot\left(0-\frac{1}{1-s} \cdot \frac{1}{1 s-1}\right)+s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x \\
& =\frac{s}{s-1}-s \cdot\left(\frac{1}{s-1}\right)+s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x \\
& =s \cdot \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x \\
& =\xi(s)
\end{aligned}
$$

let $f:[0,1] \rightarrow \mathbb{R} . f(x)= \begin{cases}0 & \text { if } x=0 \\ \sin \left(\frac{1}{x}\right) & \text { if } x \in(0,1]\end{cases}$
let $\alpha:[0,1] \rightarrow \mathbb{R} . \quad \alpha(x)= \begin{cases}0 & \text { if } x=0 \\ \sum 2^{-n} & \text { if } x \in(0,1]\end{cases}$
$n \in \mathbb{N}, \frac{1}{n}<x$

QTS f is integrable wot α on $[0,1]$.
Since $f(x)$ is bounded on $[0,1]$. From the given $f(x)$ preceusce function, which has a discontinuity at $x=0$. And because $\lim _{n \rightarrow \infty} \sum_{n>\frac{1}{n}} 2^{-n}=\frac{1}{2^{\infty}} \rightarrow 0$, so α is continuous at every point at which f is discontinuous. Hence, by Thu 6.10, $f \in R(\alpha)$, ie. f is integrable.

