HW3 10.6, 11.2, $11.3,11.5$
10.6
a) $\left|S_{n+1}-S_{n}\right|<2^{-n} \quad \forall n \in \mathbb{N}$

Prove S_{n} is Cauchy seq and hence a convergent seq.
let $a_{n}=\sum_{n}^{\infty} \frac{1}{2^{n}}$.
By Geometric series, $a_{n}=\frac{\frac{1}{2^{n}}}{1-\frac{1}{2}}=\frac{\frac{1}{2^{n}}}{\frac{1}{2}}=\frac{1}{2^{n}} \cdot 2=\frac{2^{1}}{2^{n} \cdot 2^{-1}}=\frac{1}{2^{n-1}}$

$$
\lim _{n \rightarrow \infty} a_{n} \rightarrow 0
$$

By def, Cauchy seq $\Rightarrow \varepsilon>0, \exists N$ st. $\left|S_{n}-S_{m}\right|<\epsilon \quad m, n>N$.
let $m>n, \varepsilon>0$. (w/0 loss of generality)

$$
\begin{aligned}
\left|S_{m}-S_{n}\right| & =\left|S_{m}-S_{m-1}+S_{m-1}-S_{m-2}+\cdots-S_{n+1}+S_{n+1}-S_{n}\right| \\
& \leq\left|S_{m}-S_{m-1}\right|+\left|S_{m-1}-S_{m-2}\right|+\cdots+\left|S_{n+1}-S_{n}\right| \\
& \leq 2^{-m+1}+2^{-m+2}+\cdots+2^{-n} \\
& <a_{n} \\
& <\epsilon
\end{aligned}
$$

$\therefore\left(S_{n}\right)$ is a cauchy seq.
By Lemma 10.10, all cauchy seq are bounded. Hence convergent.
b) Is a) result the if we only assume $\left|S_{n+1}-S_{n}\right|<\frac{1}{n} \quad \forall n \in \mathbb{N}$?
N_{0}

$$
\begin{aligned}
\left|s_{n+1}-s_{n}\right| & =\left|1+\frac{1}{2}+\cdots+\frac{1}{n}+\frac{1}{n+1}-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right| \\
& =\left\lvert\, y+\frac{1}{n}+\cdots+\frac{1}{n}+\frac{1}{n+1}-\left(\left.-\frac{1}{2}-\cdots-\frac{1}{n} \right\rvert\,\right.\right. \\
& =\frac{1}{n+1} \\
& <\frac{1}{n}
\end{aligned}
$$

$S_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ is not convergent $\forall n \in \mathbb{N}$.
$\therefore S_{n}$ is not Cauchy seq.
$11.2 \quad a_{n}=(-1)^{n} \quad b_{n}=\frac{1}{n} \quad c_{n}=n^{2} \quad d_{n}=\frac{6 n+4}{\text { inc. }} \gg \frac{d_{n+1}}{7 n-3} \quad>\frac{6(n+1)+4}{7(n+1)-3}=\frac{\left(\frac{6 n+10}{n+4}\right.}{\text { dec. }}$
a) example of monotone subsey $=$?

$$
\begin{array}{ll}
a_{n_{k}}=(-1)^{2 k}=1 & c_{n_{k}}=n^{2} \\
b_{n_{k}}=\frac{1}{n} & d_{n_{k}}=\frac{6 n+4}{7 n-3}
\end{array}
$$

b) set of subsequential limit $=$?

$$
\begin{array}{ll}
a_{n}: S=\{-1,+1\} & c_{n}: S=\{+\infty\} \\
b_{n}: S=\{0\} & d_{n}: S=\left\{\frac{6}{7}\right\}
\end{array}
$$

c)

$$
\begin{array}{ll}
\limsup =\text { ? } \quad \liminf =\text { ? } & \\
\limsup a_{n}=\sup S=1 & \limsup b_{n}=\lim \text { inf } b_{n}=0
\end{array} \quad \text { b,c,d any contain } 1 \text { elem. } .
$$

d) converges? diverges to $+\infty,-\infty$?

$$
\begin{array}{ll}
b \rightarrow 0 & a \text { do not con. } \\
d \rightarrow \frac{6}{7} & c \text { div. to }+\infty
\end{array}
$$

e) bounded?
a, b, d bounded $\quad c$ unbounded
$11.3 \quad S_{n}=\cos \left(\frac{n \pi}{3}\right) \quad t_{n}=\frac{3}{4 n+1}$

$$
u_{n}=\left(-\frac{1}{2}\right)^{n} \quad u_{n}=(-1)^{n}+\frac{1}{n}
$$

a) example of monotone subsey $=$?

$$
\Omega=\left\{\frac{-1}{2}, \frac{1}{4}-\frac{1}{3}, \frac{1}{2}, \ldots, \ldots\right\}
$$

$$
\begin{aligned}
& \Omega=\left\{1, \frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2}, \frac{1}{2}, 1, \cdots\right\} \\
& a_{n_{k}}=\cos \left(\frac{6 n \pi}{3}\right)=\cos (2 n \pi)=\{1,1,1, \cdots\} \\
& t_{n_{k}}=\frac{3}{4 n+1}
\end{aligned}
$$

$$
u_{n k}=\left(-\frac{1}{2}\right)^{2 n}=\left\{\frac{1}{4}, \frac{1}{16}, \cdots\right\}
$$

$$
V_{n k}=(-1)^{2 n}+\frac{1}{2 n}=\left\{\frac{3}{2}, \frac{5}{4}, \cdots\right\}
$$

b) set of subsequential limit $=$?

$$
S_{n}: S=\left\{-1,-\frac{1}{2}, \frac{1}{2}, 1\right\} \quad t_{n}: S=\{0\} \quad U_{n}: S=\{0\} \quad V_{n}: S=\{-1,1\}
$$

c) $\quad \limsup =? \quad \liminf =?$

$$
\begin{array}{lll}
\limsup S_{n}=1 & \limsup t_{n}=\liminf t_{n}=0 & \limsup V_{n}=1 \\
\liminf S_{n}=-1 & \limsup u_{n}=\liminf u_{n}=0 & \liminf V_{n}=-1
\end{array}
$$

d) converges? diverges to $+\infty,-\infty$?
t_{n}, U_{n} converge.
S_{n}, V_{n} do not converge.
e) bounded?
all bounded.
11.5 let $\left(q_{n}\right)$ be an enumeration of all ratimals in the interval $(0,1]$.
a) set of subsequential limits $=$?

Let $\left(s_{n}\right)$ be a sequence.
(i) If t is in \mathbb{R}, then there is a subsequence of $\left(s_{n}\right)$ converging to t
if and only if the set $\left\{n \in \mathbb{N}:\left|s_{n}-t\right|<\epsilon\right\}$ is infinite for all
$\epsilon>0$.
by ohm 11.2, suppose $t \in[0,1]$. let $\epsilon>0$.
by Denseness of $\mathbb{Q} \in \mathbb{R}$, \# of ratimals in interval $(a-\epsilon, a+\epsilon)=\infty$
\Rightarrow set $\left\{n:\left|q_{n}-t\right|<\epsilon\right\}$ has ∞ terms.
\therefore all lems of set $[0,1]$ are subsequential limits.
0 is also a subsequential limit since interval $(0,0+\epsilon)$ contains ∞ elems of $q_{n} \quad \forall \epsilon>0$.
b) $\quad \limsup q_{n}=? \quad \liminf q_{n}=?$

$$
\text { limsup } q_{n}=1 \quad \text { liming } q_{n}=0
$$

Q: What is limsup?
What is the difference btw limsup and sup?
What is most counter-intuitive abs limsup?
Can you state some sentences that seems to be correct, but is actually wrong?
limsup is the tail of the sup; the largest possible limit after a large number N. Whereas, sup is the least upper bound, sup can also view as the max. The thing abs limoup that's most counter-intuictive is that sup always greater or equal to limsup. Sometimes even though a sequence Sn does not always anverge, limsup always exists or equals ∞.
ex: $\quad S_{n}=\{7,2,8,5,6, \cdots, 1,0,1,0,1,0, \cdots\}$
this seq doesn't converge, but we have sup $=8$ and $\limsup =1$.

