1. WTS $[0,1]^{2} \in \mathbb{R}^{2}$ is Sequentially compact.

Proof Let $\left(a_{n}, b_{n}\right) \in X \times Y$ be given where $X \subset M$ and $Y \subset N$ are sequentially compact. There exists a subsequence $\left(a_{n_{k}}\right)$ that converges to some point $a \in X$ as $k \rightarrow \infty$. The subsequence ($b_{n k}$) has a sub-subsequence $\left(b n_{k(l)}\right)$ that converges to some $b \in Y$ as $\ell \rightarrow \infty$.

The sub-subsequence $\left(a_{n_{k(l)}}\right)$ continues to converge to the print a.
Thus, $\left(a_{n_{k}(l)}, b n_{k}(l)\right) \rightarrow(a, b)$ as $l \rightarrow \infty$.
This implies that $X \times Y$ is sequentially Compact.
Hence, $[0,1]^{2} \in \mathbb{R}^{2}=([0,1],[0,1]) \in X \times Y$, is sequentially compact.
2. WTS E is not countable.
let $x=0 . a_{1} a_{2} \cdots a_{n} \cdots$ be the decimal expansion of $x \in E$ where a_{i} can only be 4 or 7 let assume E is com table. Then there exist a bijection in E. let construct a new decimal expansion by using cantor diagonalization argument on the decimal expansion of x, call this new decimal expansion b, whose b_{i} entries is constructed from taking the opposite \# from the one on x 's diagonal.
For example, $\quad X_{1}=0 . d_{1} d_{12} \cdots d_{1 n} \cdots=0.7747 \cdots \quad b=0.4774 \cdots$

$$
\begin{array}{rlrl}
x_{2}=0 . d_{21} d_{x} \ldots d_{21} \ldots & =0.7477 \cdots \\
\vdots & \ddots & & =0.4744 \ldots \\
& =0.4447 \ldots
\end{array}
$$

In this way, b is different from every element $x_{i} \in E$. That is, $b \notin E$. Implies it is not bifective in E. Hence E is not countable.

UTS E is compact.

Since E can only consist of 4 and 7 , hence the max will be $0.777 \ldots$ (upper bound) and the min will be $0.444 \ldots$
(lower bound). Hence E is bounded.
Since the complement of E is the union of open intervals, and so if E^{c} is open, then E is closed. Hence E is compact by the Heine-Borel the .
3. WTS there is some lems live in \bar{B}, but not $\bigcup_{i} \overline{A_{i}}$. let A_{i} be a subset of $\mathbb{R}=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. then $\overline{A_{i}}=\left\{\frac{1}{n}\right\}=A_{i}$. assume $B=\bigcup_{i} A_{i}=\bigcup_{i}=\bar{A}_{i}=\bigcup_{n}^{\infty} \frac{1}{n} \neq 0$ implies $0 \notin B$.

$$
\bar{B}=\bigcup_{n}^{\infty} \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad \text { implies } o \in \bar{B}
$$

Hence $\bar{B} \supset \bigcup_{i} \overline{A_{i}}$ is a strict indusion.
4. The argument is not true b/c a closed subset of \mathbb{R} can also be an uncountable union of closed intervals, recall what we see in problem \#z, set E is closed but uncountable, which can also sense as an counterexample of this dam.

