HWG

1. WTS [0,1]² ∈ IR² is sequentially compart.
<u>Proof</u> let (an, bn) ∈ X × Y be given where X ⊂M and Y ⊂ N are sequentially compart. There exists a subsequence (An_K) that converges to some point a ∈ X as K ⇒ ∞. The subsequence (bn_K) has a sub-subsequence (bn_{K(d)}) that converges to some b∈ Y as l ⇒ ∞. The sub-subsequence (An_{K(e)}) continues to converge to the privat a. Thus, (An_{K(e)}, bn_{K(d)}) → (a, b) as l → ∞. This implies that X × Y is sequentially Compact. □ Hence, [0,1]² ∈ IR² = ([0,1], [0,1]) ∈ X × Y, is sequentially compact.

In this way, b is different from every element $Xi GE_{-}$ That is, $b \notin E_{-}$ Implies it is not bijective in E_{-} . Hence E_{-} is not countable. \Box

WTS E is compact.

Since
$$E$$
 can only consist of 4 and 7, hence the max will
be 0.777... (upper bound) and the min will be 0.4444...
(lower bound). Hence E is bounded.
Since the complement of E is the union of open intervals,
and so if E^{c} is open, then E is closed.
Hence E is compact by the Heine-Borel thm.

3. With there is some eleminis live in
$$\overline{B}$$
, but not $\bigcup_{i} \overline{Ai}$.
Let Ai be a subset of $R = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ then $\overline{Ai} = \{\frac{1}{n}\} = Ai$.
Assume $B = \bigcup_{i} Ai = \bigcup_{i} = \overline{Ai} = \bigcup_{n=1}^{\infty} \frac{1}{n} \neq 0$ implies $0 \notin B$.
 $\overline{B} = \bigcup_{n=1}^{\infty} \frac{1}{n} = 0$ implies $0 \in \overline{B}$.
Hence $\overline{B} = \bigcup_{i} \overline{Ai}$ is a strict indusim.