HW7

1. If X and Y are open cover compact, then X × Y is open cover compact.

Since X and Y are open cover compact.
Then X and Y have finite subcover. that is,
Let
$$X = \{X_k\}_{k=1}^n$$
 be finite, and $\{U_i\}$ be an open cover of X.
 $Y = \{Y_k\}_{k=1}^n$ be finite, and $\{Q_i\}$ be an open cover of Y.
Pick $U_i \in \{U_i\}$ to contain X_1 .
Pick $U_i \in \{U_i\}$ to contain X_2 .
Pick $U_k \in \{U_i\}$ to contain X_2 .
Pick $U_k \in \{U_i\}$ to contain X_k ... etc.
 $Q_t \in \{Q_i\}$... Y_t
Obtain $\{U_k\}_{k=1}^n \subseteq \{U_i\}$
 $(Q_t)_{t=1}^n \subseteq \{Q_i\}$
 $(Q_t)_{t=1}^n \subseteq \{Q_t\}$
 (Q_t)

Hence X X Y is open over compact.

if A is closed, then
$$f(A)$$
 is closed.
False (2) $f(x) = \frac{1}{1+x^2}$, $X = \mathbb{R}$, $A = [0, \infty)$ is closed,
but $(0, 1]$ is not closed.

$$\dot{z}f$$
 A is bounded, then f(A) is bounded.
[False] $f(x) = \frac{1}{x}$, $x = \mathbb{R} \setminus \{0\}$, $A = bounded$ set $(0, 1) \subset X$.
but $f(A) = [1, \infty)$ is not bounded.

If A is compact, then
$$f(A)$$
 is compact.
True WTS: $\exists a seq$. (yn) in $f(A)$ has a subseq. converges to $f(A)$.
It (yn) be a seq, in $f(A)$. Then $\exists (Xn) \in A$ st. $(yf_n) = f(Xn)$.
Since A is compact. Then (xn) has a convergent subseq $(Xn_k) \rightarrow x$.
Since $(Xn_k) \rightarrow x$ and f is continuous, then $(yn_k) = f(Xn_k) \rightarrow f(x)$.
Since $x \in A \subset X$, then $f(x) \in f(A)$, and (y_n) has a convergent subseq $(yn_k) \rightarrow f(x)$.
Hence $f(A)$ is compact.

• if A is connected, then
$$f(A)$$
 is connected.
[True] suppose nut, A is connected, but $f(A)$ is disconnected, $f(A) = B\cup C$.
B, $c \neq \phi$ nonempty, open, $B \cap C = \phi$.
let $B' = f^{-1}(B)$, $C' = f^{-1}(c)$. open, nonempty.
B' $\cap C' = f^{-1}(B) \cap f^{-1}(c)$
 $= f^{-1}(B \cap C) = f^{-1}(\phi) = \phi$
 $\therefore B' \cup C' = f^{-1}(B) \cup f^{-1}(C) = f^{-1}(B \cup C) = f^{-1}(f(A)) = A$.
so $A = B'$ and c' are sepreded contradicts A is connected. \Box

3. Prove there is no continuous map $f:[0,1] \rightarrow \mathbb{R}$ st. f is savejective. (there is a savejective map from $(0,1) \rightarrow \mathbb{R}$ though). Suppose not, such function $f:[0,1] \rightarrow \mathbb{R}$ exists. Since [0,1] is compact and $f:[0,1] \rightarrow \mathbb{R}$ is continuus, image f([0,1]) is compact. SINCE f is surjective, $f([0,1]) = \mathbb{R}$, hence \mathbb{R} is compact, contradiction.