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Ross 9.9
(a)
Let M > 0. Let N∗ = max{N0, N} where N ∈ N is the number such that
sn > M ∀n > N . (note the existence of N is guaranteed by definition 9.8).
Then ∀n > N∗ we have M < sn ≤ tn, i.e M < tn. Hence lim tn = ∞ by
definition.
(b) Similar to (a). Let M < 0. Let N∗ = max{N0, N} where N ∈ N is the
number such that tn < M ∀n > N . Then for n > N∗, we have sn ≤ tn < M ,
i.e sn < M . Hence lim sn = −∞ by definition.
(c)
Let Ls = lim sn, Lt = lim tn. Suppose Ls > Lt.
Let L0 = Ls+Lt

2 , and δ = Ls − Lt > 0.

By definition of limit ∃Ns, Nt ∈ N such that |sn − Ls| < δ
2 for n > Ns and

|tn − Lt| < δ
2 for n > Nt.

Let N = max{Ns, Nt}.
Then for n > N , we have tn <

δ
2 + Lt = L0 = Ls − δ

2 < sn.
Hence for n > N , we have tn < sn and sn ≤ tn simultaneously. This is clearly
nonsense, hence the assumption that Ls > Lt is impossible. So Ls ≤ Lt. QED.
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Ross 9.15
Suppse a 6= 0(if a = 0 then (0n/n!) = 0 ∀n).

Define φ(a) = the smallest natural number such that |a|n < 1 ∀n > φ(a). As an
example, φ(3) = 4, φ(2.1) = 3.
Then

|a
n

n!
− 0| = |a|n

1 · 2 · ... · φ(a) · ... · n

=
|a|φ(a)

1 · 2 · ... · φ(a)
× |a|n−φ(a)

(φ(a) + 1) · ... · n

Looking at the second fraction in the previous line , there are a total of n−φ(a)
terms in the numerator, and the same number of terms on the denominator
(you may wonder what if φ(a) > n. This is not an issue because at the end we
can simply require n to be at least bigger than φ(a)) . So it can be written as a

product of fractions of the form |a|
m , where each integer m ≥ φ(a) + 1 > φ(a).

By the definition of φ, such fractions are bounded above by 1. For convenience,

take only the last fraction in this product(i.e |a|n ) and be aware that the whole
product is no greater than this last term. So now going back up to what we had

before, |a
n

n! | ≤
|a|φ(a)

1·2·...·φ(a) ·
|a|
n . Notice the first factor on the right hand side does

not depend on n. So we call it C. If we require C · |a|n < ε where ε > 0, then

n > C|a|
ε . Thus ∀ε > 0, if n > max{C|a|ε , φ(a)} then |a

n

n! − 0| < ε. Therefore

lim an

n! = 0.
(Note that φ is also known as the floor function, but plus 1.)
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Ross 10.7
Let A = supS.
Let ε > 0, and suppose A− ε is an upper bound of S.
Then A ≤ A− ε by definition of sup, which is impossible.
Hence there does not exist ε > 0 such that A− ε is an upper bound of S.
Therefore ∀ε > 0, ∃s ∈ S, call it s∗, such that s∗ > A − ε (because otherwise
A− ε would be an upper bound of S). (∗)
So let ε > 0 and denote the corresponding s∗ as s1. Then let ε = A−s1

2 > 0,
and denote the corresponding s∗ as s2. Similarly, there are s3, s4, ..., and the
sequence they form converges to A. The proof that it converges to A follows
trivially from (∗) (s∗ > A− ε =⇒ |A− s∗| = A− s∗ < ε).
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Ross 10.8
Let n ∈ {1, 2, 3, ...}.

σn+1 − σn =
(s1 + ...+ sn) + sn+1

n+ 1
− s1 + ...+ sn

n

=
n(s1 + ...+ sn) + nsn+1 − (n+ 1)(s1 + ...+ sn)

n(n+ 1)

=
nsn+1 − (s1 + ...+ sn)

n(n+ 1)

=
(sn+1 − s1) + (sn+1 − s2) + ...+ (sn+1 − sn)

n(n+ 1)
≥ 0 (recall sn is increasing)

Since n was arbitrary, by definition (σn) is increasing.
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Ross 10.9
(a)s2 = 1

2 , s3 = 2
3
1
4 = 1

6 , s4 = 3
4

1
36 = 1

48
(b) From looking at part (a) it’s obvious 0 < sn ≤ 1 ∀n ∈ N. So s2n ≤ sn ∀n.
Also 0 ≤ n

n+1 < 1 ∀n ∈ N. Thus sn+1 = n
n+1s

2
n < 1 · s2n < sn. So (sn) is

bounded and decreasing, and by theorem 10.2 it converges.
(c) lim sn = lim sn+1 = lim n

n+1 lim s2n = 1 · lim s2n =⇒ lim sn = 1 or 0. It’s
obviously not 1, because it’s decreasing and s1 is already 1. Therefore lim sn = 0.
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Ross 10.10
(a) s1 = 1, s2 = 2

3 , s3 = 5
9 , s4 = 14

27 .

(b) Suppose that sn >
1
2 , for some n. Then sn+1 = sn+1

3 >
1
2+1

3 = 3
6 = 1

2 . Also
s1 = 1 > 1

2 . Therefore sn >
1
2∀n ∈ {1, 2, 3, ...}.

(c)

sn+1 − sn =
1 + sn

3
− sn

=
1 + sn − 3sn

3
=

1− 2sn
3

Hence

3(sn+1 − sn) = 1− 2sn

3sn+1 = 1 + sn

sn+1

sn
=

1

3
(1 +

1

sn
) (recall sn >

1

2
so

1

sn
< 2 for all n)

<
1

3
(1 + 2) = 1

sn+1 < sn

(d)Since (sn) is a decreasing sequence, it is monotone and sn ≤ s1 ∀n. Also
recall sn >

1
2 ∀n. Therefore it is bounded and monotone, and by theorem 10.2

it converges.
Let L = lim sn. Then lim sn+1 = L as well (note that (sn+1) is a subsequence
of (sn) and theorem 11.3 can be used here). Then lim sn+1 = lim sn+1

3 =
1
3 (lim sn + lim 1) =⇒ L = 1

3 (L+ 1) =⇒ L = 1
2 .
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Ross 10.11
(a) Suppose at some n ∈ N, tn+1 < 0. Then (1− 1

4n2 )tn < 0 =⇒ tn < 0 (since
the term in parenthesis is obviously nonnegative). So if one term is negative, ev-
ery previous term in this sequence is also negative, which is clearly false. There-
fore the aforementioned number n does not exist; i.e tn+1 >= 0 ∀n ∈ {1, 2, 3, ...}.
Now suppose at some n ∈ N, tn+1 > 1. Then (1− 1

4n2 )tn > 1 =⇒ tn >
1

1− 1
4n2

=

4n2

4n2−1 >
4n2

4n2 = 1. So if one term is greater than 1, every previous term is greater
than 1. This is clearly nonsense(s1 = 1, for example), therefore the aforemen-
tioned number n does not exist; i.e tn+1 ≤ 1∀n ∈ {1, 2, 3...}.
So we now see that 0 ≤ tn ≤ 1, meaning the sequence is bounded.
tn+1

tn
= 1− 1

4n2 < 1 ∀n ∈ {1, 2, 3...}. So tn+1 < tn, which means this sequence is
decreasing.
Since this sequence is both bounded and decreasing, by theorem 10.2 it con-
verges.

(b) lim tn = limn−>∞

(
4n2−1
4n2 · 4(n−1)

2−1
4(n−1)2 · ... ·

3
4

)
. I’m unable to figure out an

exact number for this, but I will give a rough approximation.
Define the function f : R+ → R+ such that f(x + 1) = (1 − 1

4x2 )f(x). Then
expanding the left hand side up to first order in 1 we have

f(x+ 1) = f(x) + 1 · f ′(x) +O(f ′′(x)) ≈ f(x) + f ′(x)

So

f(x) + f ′(x) ≈ (1− 1

4x2
)f(x)

f ′(x) ≈ − 1

4x2
f(x)

df

f
≈ − 1

4x2
dx∫

df

f
≈ −

∫
1

4x2
dx

ln f ≈ 1

4x
+ C

f ≈ Ce 1
4x

Plugging in the initial condition that f(1) = 3
4 , we have

3

4
= Ce

1
4 =⇒ C = lim

x−>∞
f(x) =

3/4

e1/4
≈ 0.6

This approximation appears to be within 7% of the true result.
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2. Squeeze theorem
Define µn = bn − an, νn = cn − bn.
bn ≥ an∀n =⇒ µn ≥ 0. Similarly, νn ≥ 0.
µn + νn = bn − an + cn − bn = cn − an
=⇒ lim(µn + νn) = lim(cn − an) = lim cn − lim an = L− L = 0
=⇒ limµn + lim νn = 0
=⇒ limµn = − lim νn (∗)
Also, since µn ≥ 0, νn ≥ 0∀n, it must be that limµn ≥ 0 and lim νn ≥ 0. This,
combined with (∗), implies that limµn = lim νn = 0.
lim(bn − L) = lim(cn − νn − L) = lim(cn − L) − lim νn = 0 − 0 = 0, hence
lim bn = L. QED
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