Jack Hou
hw2

Ross 9.9
(a)

Let $M>0$. Let $N_{*}=\max \left\{N_{0}, N\right\}$ where $N \in \mathbb{N}$ is the number such that $s_{n}>M \forall n>N$. (note the existence of N is guaranteed by definition 9.8). Then $\forall n>N_{*}$ we have $M<s_{n} \leq t_{n}$, i.e $M<t_{n}$. Hence $\lim t_{n}=\infty$ by definition.
(b) Similar to (a). Let $M<0$. Let $N_{*}=\max \left\{N_{0}, N\right\}$ where $N \in \mathbb{N}$ is the number such that $t_{n}<M \forall n>N$. Then for $n>N_{*}$, we have $s_{n} \leq t_{n}<M$, i.e $s_{n}<M$. Hence $\lim s_{n}=-\infty$ by definition.
(c)

Let $L_{s}=\lim s_{n}, L_{t}=\lim t_{n}$. Suppose $L_{s}>L_{t}$.
Let $L_{0}=\frac{L_{s}+L_{t}}{2}$, and $\delta=L_{s}-L_{t}>0$.
By definition of limit $\exists N_{s}, N_{t} \in \mathbb{N}$ such that $\left|s_{n}-L_{s}\right|<\frac{\delta}{2}$ for $n>N_{s}$ and $\left|t_{n}-L_{t}\right|<\frac{\delta}{2}$ for $n>N_{t}$.
Let $N=\max \left\{N_{s}, N_{t}\right\}$.
Then for $n>N$, we have $t_{n}<\frac{\delta}{2}+L_{t}=L_{0}=L_{s}-\frac{\delta}{2}<s_{n}$.
Hence for $n>N$, we have $t_{n}<s_{n}$ and $s_{n} \leq t_{n}$ simultaneously. This is clearly nonsense, hence the assumption that $L_{s}>L_{t}$ is impossible. So $L_{s} \leq L_{t}$. QED.

Ross 9.15
Suppse $a \neq 0$ (if $a=0$ then $\left.\left(0^{n} / n!\right)=0 \forall n\right)$.
Define $\phi(a)=$ the smallest natural number such that $\frac{|a|}{n}<1 \forall n>\phi(a)$. As an example, $\phi(3)=4, \phi(2.1)=3$.
Then

$$
\begin{aligned}
\left|\frac{a^{n}}{n!}-0\right| & =\frac{|a|^{n}}{1 \cdot 2 \cdot \ldots \cdot \phi(a) \cdot \ldots \cdot n} \\
& =\frac{|a|^{\phi(a)}}{1 \cdot 2 \cdot \ldots \cdot \phi(a)} \times \frac{|a|^{n-\phi(a)}}{(\phi(a)+1) \cdot \ldots \cdot n}
\end{aligned}
$$

Looking at the second fraction in the previous line, there are a total of $n-\phi(a)$ terms in the numerator, and the same number of terms on the denominator (you may wonder what if $\phi(a)>n$. This is not an issue because at the end we can simply require n to be at least bigger than $\phi(a)$). So it can be written as a product of fractions of the form $\frac{|a|}{m}$, where each integer $m \geq \phi(a)+1>\phi(a)$. By the definition of ϕ, such fractions are bounded above by 1. For convenience, take only the last fraction in this product(i.e $\frac{|a|}{n}$) and be aware that the whole product is no greater than this last term. So now going back up to what we had before, $\left|\frac{a^{n}}{n!}\right| \leq \frac{|a|^{\phi(a)}}{1 \cdot 2 \ldots \cdot \phi(a)} \cdot \frac{|a|}{n}$. Notice the first factor on the right hand side does not depend on n . So we call it C. If we require $C \cdot \frac{|a|}{n}<\epsilon$ where $\epsilon>0$, then $n>\frac{C|a|}{\epsilon}$. Thus $\forall \epsilon>0$, if $n>\max \left\{\frac{C|a|}{\epsilon}, \phi(a)\right\}$ then $\left|\frac{a^{n}}{n!}-0\right|<\epsilon$. Therefore $\lim \frac{a^{n}}{n!}=0$.
(Note that ϕ is also known as the floor function, but plus 1.)

Ross 10.7
Let $A=\sup S$.
Let $\epsilon>0$, and suppose $A-\epsilon$ is an upper bound of S .
Then $A \leq A-\epsilon$ by definition of sup, which is impossible.
Hence there does not exist $\epsilon>0$ such that $A-\epsilon$ is an upper bound of S .
Therefore $\forall \epsilon>0, \exists s \in S$, call it s_{*}, such that $s_{*}>A-\epsilon$ (because otherwise $A-\epsilon$ would be an upper bound of S).
(*)
So let $\epsilon>0$ and denote the corresponding s_{*} as s_{1}. Then let $\epsilon=\frac{A-s_{1}}{2}>0$, and denote the corresponding s_{*} as s_{2}. Similarly, there are s_{3}, s_{4}, \ldots, and the sequence they form converges to A. The proof that it converges to A follows trivially from $(*)\left(s_{*}>A-\epsilon \Longrightarrow\left|A-s_{*}\right|=A-s_{*}<\epsilon\right)$.

Ross 10.8
Let $n \in\{1,2,3, \ldots\}$.

$$
\begin{aligned}
\sigma_{n+1}-\sigma_{n} & =\frac{\left(s_{1}+\ldots+s_{n}\right)+s_{n+1}}{n+1}-\frac{s_{1}+\ldots+s_{n}}{n} \\
& =\frac{n\left(s_{1}+\ldots+s_{n}\right)+n s_{n+1}-(n+1)\left(s_{1}+\ldots+s_{n}\right)}{n(n+1)} \\
& =\frac{n s_{n+1}-\left(s_{1}+\ldots+s_{n}\right)}{n(n+1)} \\
& =\frac{\left(s_{n+1}-s_{1}\right)+\left(s_{n+1}-s_{2}\right)+\ldots+\left(s_{n+1}-s_{n}\right)}{n(n+1)} \geq 0 \text { (recall } s_{n} \text { is increasing) }
\end{aligned}
$$

Since n was arbitrary, by definition $\left(\sigma_{n}\right)$ is increasing.

Ross 10.9
(a) $s_{2}=\frac{1}{2}, s_{3}=\frac{2}{3} \frac{1}{4}=\frac{1}{6}, s_{4}=\frac{3}{4} \frac{1}{36}=\frac{1}{48}$
(b) From looking at part (a) it's obvious $0<s_{n} \leq 1 \forall n \in \mathbb{N}$. So $s_{n}^{2} \leq s_{n} \forall n$. Also $0 \leq \frac{n}{n+1}<1 \forall n \in \mathbb{N}$. Thus $s_{n+1}=\frac{n}{n+1} s_{n}^{2}<1 \cdot s_{n}^{2}<s_{n}$. So (s_{n}) is bounded and decreasing, and by theorem 10.2 it converges.
(c) $\lim s_{n}=\lim s_{n+1}=\lim \frac{n}{n+1} \lim s_{n}^{2}=1 \cdot \lim s_{n}^{2} \Longrightarrow \lim s_{n}=1$ or 0 . It's obviously not 1 , because it's decreasing and s_{1} is already 1 . Therefore $\lim s_{n}=0$.

Ross 10.10
(a) $s_{1}=1, s_{2}=\frac{2}{3}, s_{3}=\frac{5}{9}, s_{4}=\frac{14}{27}$.
(b) Suppose that $s_{n}>\frac{1}{2}$, for some n. Then $s_{n+1}=\frac{s_{n}+1}{3}>\frac{\frac{1}{2}+1}{3}=\frac{3}{6}=\frac{1}{2}$. Also $s_{1}=1>\frac{1}{2}$. Therefore $s_{n}>\frac{1}{2} \forall n \in\{1,2,3, \ldots\}$.
(c)

$$
\begin{aligned}
s_{n+1}-s_{n} & =\frac{1+s_{n}}{3}-s_{n} \\
& =\frac{1+s_{n}-3 s_{n}}{3}=\frac{1-2 s_{n}}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
3\left(s_{n+1}-s_{n}\right) & =1-2 s_{n} \\
3 s_{n+1} & =1+s_{n} \\
\frac{s_{n+1}}{s_{n}} & =\frac{1}{3}\left(1+\frac{1}{s_{n}}\right)\left(\text { recall } s_{n}>\frac{1}{2} \text { so } \frac{1}{s_{n}}<2\right. \text { for all n) } \\
& <\frac{1}{3}(1+2)=1 \\
s_{n+1} & <s_{n}
\end{aligned}
$$

(d)Since $\left(s_{n}\right)$ is a decreasing sequence, it is monotone and $s_{n} \leq s_{1} \forall n$. Also recall $s_{n}>\frac{1}{2} \forall n$. Therefore it is bounded and monotone, and by theorem 10.2 it converges.
Let $L=\lim s_{n}$. Then $\lim s_{n+1}=L$ as well (note that $\left(s_{n+1}\right)$ is a subsequence of $\left(s_{n}\right)$ and theorem 11.3 can be used here). Then $\lim s_{n+1}=\lim \frac{s_{n}+1}{3}=$ $\frac{1}{3}\left(\lim s_{n}+\lim 1\right) \Longrightarrow L=\frac{1}{3}(L+1) \Longrightarrow L=\frac{1}{2}$.

Ross 10.11
(a) Suppose at some $n \in \mathbb{N}, t_{n+1}<0$. Then $\left(1-\frac{1}{4 n^{2}}\right) t_{n}<0 \Longrightarrow t_{n}<0$ (since the term in parenthesis is obviously nonnegative). So if one term is negative, every previous term in this sequence is also negative, which is clearly false. Therefore the aforementioned number n does not exist; i.e $t_{n+1}>=0 \forall n \in\{1,2,3, \ldots\}$. Now suppose at some $n \in \mathbb{N}, t_{n+1}>1$. Then $\left(1-\frac{1}{4 n^{2}}\right) t_{n}>1 \Longrightarrow t_{n}>\frac{1}{1-\frac{1}{4 n^{2}}}=$ $\frac{4 n^{2}}{4 n^{2}-1}>\frac{4 n^{2}}{4 n^{2}}=1$. So if one term is greater than 1 , every previous term is greater than 1. This is clearly nonsense ($s_{1}=1$, for example), therefore the aforementioned number n does not exist; i.e $t_{n+1} \leq 1 \forall n \in\{1,2,3 \ldots\}$.
So we now see that $0 \leq t_{n} \leq 1$, meaning the sequence is bounded. $\frac{t_{n+1}}{t_{n}}=1-\frac{1}{4 n^{2}}<1 \forall n \in\{1,2,3 \ldots\}$. So $t_{n+1}<t_{n}$, which means this sequence is decreasing.
Since this sequence is both bounded and decreasing, by theorem 10.2 it converges.
(b) $\lim t_{n}=\lim _{n->\infty}\left(\frac{4 n^{2}-1}{4 n^{2}} \cdot \frac{4(n-1)^{2}-1}{4(n-1)^{2}} \cdot \ldots \cdot \frac{3}{4}\right)$. I'm unable to figure out an exact number for this, but I will give a rough approximation.
Define the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $f(x+1)=\left(1-\frac{1}{4 x^{2}}\right) f(x)$. Then expanding the left hand side up to first order in 1 we have

$$
f(x+1)=f(x)+1 \cdot f^{\prime}(x)+O\left(f^{\prime \prime}(x)\right) \approx f(x)+f^{\prime}(x)
$$

So

$$
\begin{aligned}
f(x)+f^{\prime}(x) & \approx\left(1-\frac{1}{4 x^{2}}\right) f(x) \\
f^{\prime}(x) & \approx-\frac{1}{4 x^{2}} f(x) \\
\frac{d f}{f} & \approx-\frac{1}{4 x^{2}} d x \\
\int \frac{d f}{f} & \approx-\int \frac{1}{4 x^{2}} d x \\
\ln f & \approx \frac{1}{4 x}+C \\
f & \approx C e^{\frac{1}{4 x}}
\end{aligned}
$$

Plugging in the initial condition that $f(1)=\frac{3}{4}$, we have

$$
\frac{3}{4}=C e^{\frac{1}{4}} \Longrightarrow C=\lim _{x \rightarrow>\infty} f(x)=\frac{3 / 4}{e^{1 / 4}} \approx 0.6
$$

This approximation appears to be within 7% of the true result.
2. Squeeze theorem

Define $\mu_{n}=b_{n}-a_{n}, \nu_{n}=c_{n}-b_{n}$.
$b_{n} \geq a_{n} \forall n \Longrightarrow \mu_{n} \geq 0$. Similarly, $\nu_{n} \geq 0$.
$\mu_{n}+\nu_{n}=b_{n}-a_{n}+c_{n}-b_{n}=c_{n}-a_{n}$
$\Longrightarrow \lim \left(\mu_{n}+\nu_{n}\right)=\lim \left(c_{n}-a_{n}\right)=\lim c_{n}-\lim a_{n}=L-L=0$
$\Longrightarrow \lim \mu_{n}+\lim \nu_{n}=0$
$\Longrightarrow \lim \mu_{n}=-\lim \nu_{n}$
(*)
Also, since $\mu_{n} \geq 0, \nu_{n} \geq 0 \forall n$, it must be that $\lim \mu_{n} \geq 0$ and $\lim \nu_{n} \geq 0$. This, combined with $(*)$, implies that $\lim \mu_{n}=\lim \nu_{n}=0$.
$\lim \left(b_{n}-L\right)=\lim \left(c_{n}-\nu_{n}-L\right)=\lim \left(c_{n}-L\right)-\lim \nu_{n}=0-0=0$, hence $\lim b_{n}=L . \mathrm{QED}$

