104
Jack Hou
hw?2

Ross 9.9

(a)

Let M > 0. Let N, = max{Ny, N} where N € N is the number such that
sn > M V¥n > N. (note the existence of N is guaranteed by definition 9.8).
Then Vn > N, we have M < s, < t,, i.e M < t,. Hence limt, = oo by
definition.

(b) Similar to (a). Let M < 0. Let N, = max{Ny, N} where N € N is the
number such that ¢, < M VYn > N. Then for n > N,, we have s,, < t, < M,
i.e s, < M. Hence lim s,, = —oo by definition.

(c)

Let Ly =lims,, Ly = limt,. Suppose Ly > L;.

Let Lo = Lotbt and § = Ly — L, > 0.

By definition of limit 3Ny, Ny € N such that |s, — Ls| < g for n > N, and
[t, — L] < % for n > N;.

Let N = max{Ng, N;}.
Thenforn>N,wehavetn<g—&—Lt:LO:LS—g<sn.

Hence for n > N, we have t,, < s, and s,, < t,, simultaneously. This is clearly
nonsense, hence the assumption that Ly > L; is impossible. So Ly < L;. QED.




Ross 9.15
Suppse a # 0(if @ = 0 then (0™ /n!) =0 Vn).
Define ¢(a) = the smallest natural number such that % <1VYn> ¢(a). As an
example, ¢(3) =4, $(2.1) = 3.
Then

a™ o |a|n
1-2-..-¢(a) ...-n
|a¢(@) || ¢(@)

12 da)  @@+1) .n

Looking at the second fraction in the previous line , there are a total of n — ¢(a)
terms in the numerator, and the same number of terms on the denominator
(you may wonder what if ¢(a) > n. This is not an issue because at the end we
can simply require n to be at least bigger than ¢(a)) . So it can be written as a
product of fractions of the form %, where each integer m > ¢(a) + 1 > ¢(a).
By the definition of ¢, such fractions are bounded above by 1. For convenience,
take only the last fraction in this product(i.e %) and be aware that the whole

product is no greater than this last term. So now going back up to what we had

n (a)
before, |47 | < lgaliqs(a) . % Notice the first factor on the right hand side does

not depend on n. So we call it C. If we require C' - ‘%l < € where € > 0, then
n > 9% Thus Ve > 0, if n > max{ 9% ¢(a)} then |‘;—T — 0] < e. Therefore

€ [

lim &~ = 0.

n!

(Note that ¢ is also known as the floor function, but plus 1.)



Ross 10.7
Let A=supSS.
Let € > 0, and suppose A — € is an upper bound of S.
Then A < A — € by definition of sup, which is impossible.
Hence there does not exist € > 0 such that A — € is an upper bound of S.
Therefore Ve > 0, s € S, call it s, such that s, > A — e (because otherwise

A — € would be an upper bound of S). (%)
So let € > 0 and denote the corresponding s, as s;. Then let € = AE‘” > 0,
and denote the corresponding s, as so. Similarly, there are s3, s4, ..., and the

sequence they form converges to A. The proof that it converges to A follows
trivially from (%) (s, > A—€ = |[A—s.| =A—s.<e¢).



Ross 10.8
Let n € {1,2,3,...}.

(814 oo 4+ 8n) + Snt1 St et s

Intl T On = n+1 n
_n(sy .+ 8y) Fnsppr — (n+1)(s14 ... 4 5,)
B n(n+1)
_ nSpg1 — (81 + .+ 8p)
B n(n—+1)
_ (g1 =81) F (Sng1 = 82) o F (Sn1 = ) > 0 (recall s, is increasing)
nin+1)

Since n was arbitrary, by definition (o,) is increasing.



Ross 10.9
11

(a)sz = 5,85 =371 = 5,5 = 335 = 1

(b) From looking at part (a) it’s obvious 0 < s, < 1Vn € N. So s2 < s, Vn.
Also 0 < w1 < 1Vn €N Thus sp41 = nL_HS% <1-52 < s, So (sn)is
bounded and decreasing, and by theorem 10.2 it converges.

(c) lims, = lims,4; = lim 25 lims2 = 1-lims? = lims, = 1or 0. It’s
obviously not 1, because it’s decreasing and s is already 1. Therefore lim s,, = 0.



Ross 10.10
a) s1=1,50= 2,53 = 2,54 = 33.
(b) Suppose that s, > %, for some n. Then s,1 = 9"T'H > %;1 = % = % Also
s1=1> % Therefore s, > %Vn € {1,2,3,...}.

)

1+ s,
Snil — Sp = — Sn
+1 3
_ I+sp—3s,  1-—2s,
3 3

Hence

3(spt1 — Sn) =1 —2s,
3sn41 =14 s,

. 1 1 1 1
887:125(1-1-5) (recall sn>580§<2for all n)
1
<=-(14+42)=1
51+2)
3n+1<sn

(d)Since (s,) is a decreasing sequence, it is monotone and s, < s Vn. Also
recall s,, > % Vn. Therefore it is bounded and monotone, and by theorem 10.2
it converges.

Let L = lims,. Then lims, 1 = L as well (note that (s,+1) is a subsequence
of (s,) and theorem 11.3 can be used here). Then lims,; = lim Szt =
z(lims, +liml) = L=4(L+1) = L=3.



Ross 10.11
(a) Suppose at some n € N, ¢, 11 < 0. Then (1 — ﬁ)tn <0 = t, <0 (since
the term in parenthesis is obviously nonnegative). So if one term is negative, ev-
ery previous term in this sequence is also negative, which is clearly false. There-
fore the aforementioned number n does not exist; i.e t,41 >=0Vn € {1,2,3,...}.
Now suppose at some n € N, ¢,,;11 > 1. Then (1—#)% >1 = t, > 1_L =

4n?

4;‘;;’: > % = 1. So if one term is greater than 1, every previous term is greater
than 1. This is clearly nonsense(s; = 1, for example), therefore the aforemen-
tioned number n does not exist; i.e t,41 < 1¥n € {1,2,3...}.
So we now see that 0 < t,, < 1, meaning the sequence is bounded.
% =1- ﬁ <1¥ne{l,2,3..}. So t,q1 < t,, which means this sequence is
decreasing.
Since this sequence is both bounded and decreasing, by theorem 10.2 it con-
verges.

an?2-1 4(n—1)2-1 3

(b) limt,, = lim, >o | “z - TSy Z)' I’'m unable to figure out an

exact number for this, but I will give a rough approximation.
Define the function f : Ry — Ry such that f(z +1) = (1 — 12z)f(z). Then
expanding the left hand side up to first order in 1 we have

fle+1) = f(2) +1- f'(x) + O(f"(2)) = f(z) + ['(2)

So
Fla) + /(@) = (1= 1) (@)
, 1
F(w) gy F(2)

df 1
df 1
AT
Inf~—+0C

3 1 .
12064 — C—zllgnmf(x)—mw()(i

This approximation appears to be within 7% of the true result.



2. Squeeze theorem
Define p,, = b, — apn, vn = ¢ — by
bn > ap,¥n = pp, > 0. Similarly, v, > 0.
P+ Vn =by —an +cp — by =cp —ay
= lim(u, + vp) = lim(c, — a,) = lime, — lima, =L —-L =0
= lim p, +limy, =0
= lim u, = —limy, (%)
Also, since p, > 0,v, > 0¥n, it must be that lim g, > 0 and limv,, > 0. This,
combined with (x), implies that lim p,, = limv,, = 0.
lim(b, — L) = lim(¢,, — v, — L) = lim(¢,, — L) — limw,, = 0 — 0 = 0, hence
limb, = L. QED



