1.10

Our $n^{\text {th }}$ proposition is

$$
(2 n+1)+(2 n+3)+\cdots+(4 n-1)=3 n^{2}
$$

We proceed by mathematical induction.
for $n=1,2(1)+1=3=3(1)^{2}$
Now assume the proposition holds.
for $n=k+1$

$$
\begin{aligned}
& (2(k+1)+1)+(2(k+1)+3)+\cdots+(4(k+1)-1 \\
= & (2 k+3)+(2 k+5)+\cdots+(4 k-1)+(4 k+1)+4 k+3 \\
= & 3 k^{2}-2 k-1+4 k+1+4 k+3 \\
= & 3 k^{2}+6 k+3 \\
= & 3\left(k^{2}+2 k+1\right) \\
= & 3(k+1)^{2}
\end{aligned}
$$

by the principle of mathematical induction, P_{n} is true for all n.
1.12
(a)

$$
\begin{aligned}
n=1,(a+b)^{\prime} & =\binom{1}{0} a^{1}+\binom{1}{1} a^{0} b \\
& =\frac{1}{0!(1-0)!} a^{1}+\frac{1!}{1!(1-1)!} b \\
& =a+b
\end{aligned}
$$

for $n=2,(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\begin{aligned}
(a+b)^{2} & =\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2} \\
& =\frac{2!}{6!(2)!} a^{2}+\frac{2!}{1!(1)!} a b+\frac{2!}{2!(0)!} b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

for $n=3,(a+b)^{3}=\left(a^{2}+2 a b+b^{2}\right)(a+b)$

$$
\begin{aligned}
& =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{3} & =\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3} \\
& =\frac{3!}{0!3!} a^{3}+\frac{3!}{1!2!} a^{2} b+\frac{3!}{2!1!} a b^{2}+\frac{3!}{3!0!} b^{3} \\
& =a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1))!} \\
& =n!\left(\frac{n-k+1}{k!(n-k+1)!}+\frac{k}{k!(n-k+1)!}\right)=n!\left(\frac{n+1}{k!(n+1-k)!}\right) \\
& =\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k}
\end{aligned}
$$

(c) For $n=1,(a+b)=\binom{1}{0} a+\binom{1}{1} b$

Now Suppose this is true for some $n \in \mathbb{N}$
For $n+1$,

$$
\begin{aligned}
& (a+b)^{n+1}=(a+b)(a+b)^{n} \\
= & (a+b)\left[\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n} b^{n}\right] \\
= & a\left[\binom{n}{0} a^{n}+\cdots+\binom{n}{n} b^{n}\right]+b\left[\binom{n}{0} a^{n}+\cdots+\binom{n}{n} b^{n}\right] \\
= & \binom{n}{0} a^{n+1}+\binom{n}{1} a^{n} b+\cdots+\binom{n}{n} a b^{n}+\binom{n}{0} a^{n} b^{n}+\cdots+\binom{n}{n} b^{n+1} \\
= & \binom{n}{0} a^{n+1}+\left[\binom{n}{1}+\binom{n}{0} a^{n} b+\left[\binom{n}{2}+\binom{n}{1} a^{n-1} b^{2}+\cdots+\binom{n}{n} b^{n+1}\right.\right. \\
= & \binom{n}{0} a^{n+1}+\binom{n+1}{1} a^{n} b+\cdots+\binom{n+1}{n} a b^{n}+\binom{n}{n} b^{n+1} \\
= & \binom{n+1}{0} a^{n+1}+\binom{n+1}{1} a^{n} b+\cdots+\binom{n+1}{n} a b^{n}+\binom{n+1}{n+1} b^{n+1}
\end{aligned}
$$

2.1
$x^{2}-3=0$, Possible rational solutions are $\pm 1, \pm 3$ none of this satisfies, $\sqrt{3}$ is not rational.
$x^{2}-5=0, \pm 1, \pm 5$ are the only possible rational solutions, $\sqrt{5}$ is not rational
$x^{2}-\eta=0, \pm 1, \pm \eta$ are the only possible rational solutions, $\sqrt{\eta}$ is not rational.
$x^{2}-24=0 . \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$ are the only Possible rational solutions, but none of these satisfy $\therefore \sqrt{24}$ is not rational.
$x^{2}-31=0 . \pm 1, \pm 31$ are the only possible rational Solutions, none of these satisfy.
$\therefore \sqrt{31}$ is not rational.
2.2
$x^{3}-2=0, \pm 1, \pm 2$ are the ont possible Solutions. But none of these Satisfy $\therefore \sqrt[3]{2}$ is not rational
$x^{n}-5=0, \pm 1, \pm 5$ are the only possible rational solutions. But none of these satisfy. $\therefore \sqrt[n]{5}$ is not rational. $x^{4}-13=0 . \pm 1, \pm 13$ are the only possible rational solutions. But none of these satisfy. $\therefore \sqrt[4]{13}$ is not rational.
2.7

$$
\begin{aligned}
x & =\sqrt{4+2 \sqrt{3}}-\sqrt{3} \\
& =\sqrt{1+2 \sqrt{3}+3}-\sqrt{3} \\
& =\sqrt{(1+\sqrt{3})^{2}}-\sqrt{3} \\
& =1
\end{aligned}
$$

(b)

$$
\begin{aligned}
x & =\sqrt{6+4 \sqrt{2}}-\sqrt{2} \\
& =\sqrt{4+4 \sqrt{2}+2}-\sqrt{2} \\
& =\sqrt{(2+\sqrt{2})^{2}}-\sqrt{2} \\
& =2+\sqrt{2}-\sqrt{2} \\
& =2
\end{aligned}
$$

3.6
(a) $|a+b+c| \leq|a+b|+|c|$

Since $|a+b| \leq|a|+|b|$

$$
|a+b+c| \leq|a|+|b|+|c|
$$

(b) $|a,|\leq|a|$,

We assume $\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|$

$$
\left|a_{1}+a_{2}+\cdots+a_{n+1}\right| \leq\left|a_{1}+a_{2}+\cdots+a_{n}\right|+\left|a_{n+1}\right|
$$

by triangle inequality,
by the assumption, $\left|a_{1}+\cdots+a_{n+1}\right| \leq\left|a_{1}\right|+\cdots+\left|a_{n+1}\right|$.
Thus by the principle of mathematical induction

$$
\left|a_{1}+a_{2}+\cdots+a_{n+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n+1}\right|
$$

4.11

By the denseness of $\mathbb{Q}, \exists r_{1} \in \mathbb{Q}$ s.t. $a<r_{1}<b$.
Since $r_{1}, b \in \mathbb{R}, \exists r_{2} \in \mathbb{Q}$ s.t. $a<r_{1}<r_{2}<b$ by the denseness of \mathbb{Q}. We can recursively define rational numbers between r_{n-1} and b in the same manner by the denseness of Q, then one can show there exist infinitely many rationals between a and b.
4.14
(a) Prove $\sup (A+B)=\sup (A)+\sup (B)$

For $a \in A$ and $b \in B,(a+b) \in A+B$.

$$
a+b \leq \operatorname{Sup}(A+B)
$$

$a \leq \sup (A+B)-b$, this shows $\sup (A+B)-b$ is an least upper bound of A. This gives us, $\operatorname{Sup}(A) \leq \operatorname{Sup}(A+B)-b$ and $b \leq \operatorname{Sup}(A+B)-\operatorname{Sup}(A)$
this shows b is bounded above by $\sup (A+B)-\sup (A)$

$$
\begin{aligned}
\therefore & \sup (B) \leq \sup (A+B)-\sup (A) \\
& \sup (A)+\sup (B) \leq \sup (A+B) \\
\Rightarrow & \sup (A+B)=\sup (A)+\sup (B)
\end{aligned}
$$

(b) Prove $\inf (A+B)=\inf (A)+\inf (B)$.

We have $\inf (s)=-\sup (-s)$
For $(a+b) \in A+B$, we have

$$
\begin{aligned}
& a+b \geq \inf (A+B) . \\
& a \geq \inf (A+B)-b \\
& \Rightarrow \inf (A) \geq \inf (A+B)-b . \\
& \Rightarrow b \geq \inf (A+B)-\inf (A) . \\
& \quad \inf (B) \geq \inf (A+B)-\inf (A) \\
& \quad \inf (A)+\inf (B) \geq \inf (A+B) \\
& \inf (A+B)=\inf (A)+\inf (B) .
\end{aligned}
$$

7.5

$$
\begin{aligned}
& \text { (a) } S_{n}=\sqrt{n^{2}+1}-n \cdot \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}=\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{n^{2}+1}+n} \\
& \lim \frac{1}{\sqrt{n^{2}+1}+n}=0 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(\sqrt{n^{2}+n}-n\right) \cdot\left(\sqrt{n^{2}+n}+n\right)=n^{2}+n-n^{2} \\
& \Rightarrow \sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{1}{\frac{\sqrt{n^{2}+n}+1}{n}}=\frac{1}{\sqrt{1+\frac{1}{n}}+1} \\
& \lim \frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }\left(\sqrt{4 n^{2}+n}-2 n\right) \cdot\left(\sqrt{4 n^{2}+n}+2 n\right)=4 n^{2}+n-4 n^{2}=n . \\
& \sqrt{4 n^{2}+n-2 n}=\frac{n}{\sqrt{4 n^{2}+n}+2 n}=\frac{1}{\sqrt{4+\frac{1}{n}}+2} \\
& \lim \frac{1}{\sqrt{4+\frac{1}{n}}+2}=\frac{1}{4} .
\end{aligned}
$$

