Our Nth Proposition is	
(2n+1)+(2n+3)+···+(4n-1)=3N ²	
We proceed by mothematical induction.	
for $n=1$, $2(1)+1=3=3(1)^2$	
Now assume the proposition holds.	
for n=h+l	
(2(KtV)+1)+(2(Kt1)+3)+····+(4(KtV)-1	
= (2k+3) + (2k+5) + ··· + (4k-1) + (4k+1) + 4k+3	
$= 3k^{2} - 2k - 1 + 4k + 1 + 4k + 3$	
$= 3k^{2} + 6k + 3$	
$= 3(k^{2}+2k+1)$	
$= 3(K+1)^{2}$	
by the principle of Mathematical induction,	
Pnis true for all n.	

(c) For n=1, $(a+b) = \binom{1}{2} a + \binom{1}{2} b$ Now Suppose this is true for some nell For n+l, $(\alpha+b)^{n+1} = (\alpha+b)(\alpha+b)^{n}$ $= (a+b) \left[\binom{n}{b} a^n + \binom{n}{b} a^{n-b} + \cdots + \binom{n}{n} b \right]$ $= \sigma[\binom{n}{2}a^{n} + \cdots + \binom{n}{2}b^{n}] + b[\binom{n}{2}a^{n} + \cdots + \binom{n}{2}b^{n}]$ $= \binom{n}{s} \alpha^{n+1} + \binom{n}{s} \alpha^{n} b + \cdots + \binom{n}{s} \alpha b^{n} + \binom{n}{s} \alpha^{n} b^{n+1}$ $= \binom{n}{2}a^{n+1} + \left[\binom{n}{1} + \binom{n}{2}\right]a^{n}b + \left[\binom{n}{2}\right] + \binom{n}{1}a^{n-1}b^{2} + \cdots + \binom{n}{n}b^{n+1}b^$ $= \binom{n}{6} a^{n+1} + \binom{n+1}{1} a^{n} b + \dots + \binom{n+1}{n} a b^{n} + \binom{n}{n} b^{n+1}$ $= \begin{pmatrix} n+1 \\ 0 \end{pmatrix} a^{n+1} + \begin{pmatrix} n+1 \\ 1 \end{pmatrix} a^{n}b + \dots + \begin{pmatrix} n+1 \\ 0 \end{pmatrix} a^{n}b^{n} + \begin{pmatrix} n+1 \\ n+1 \end{pmatrix} b^{n+1} \square$

2.1 x²-3=0, Possible rational solutions are ±1,±3 none of this satisfies, $\sqrt{3}$ is not rational. x2-5=0, +1, ±5 are the only possible rational solutions √5 is not rational >c2-n=0, ±1, ±n are the only possible rational solutions $\sqrt{\eta}$ is not rotional. x2-24=0. ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24 ave the only Possible rational Salutions, but none of these satisfy .: 1/24 is not rational. $2c^2-3l=0$. $\pm l$, $\pm 3l$ are the only possible rational Solutions, none of these Satisfy. : 1/31 is not rational,

2.2

$$7c^{3}-2=0$$
, ± 1 , ± 2 ove the only possible
Solutions. But none of these Satisfy
 $\therefore \sqrt[3]{2}$ is not rational
 $7c^{1}-5=0$, ± 1 , ± 5 are the only possible
rational solutions. But none of these
satisfy. $\therefore \sqrt{5}$ is not rational.
 $7c^{4}-13=0,\pm 1,\pm 13$ are the only possible
rational solutions. But none of these satisfy.
 $\therefore \sqrt[3]{13}$ is not rational.

2.9

$$7C = \sqrt{4+2\sqrt{3}} - \sqrt{3}$$

 $= \sqrt{1+2\sqrt{3}+3} - \sqrt{3}$
 $= \sqrt{(1+\sqrt{3})^2} - \sqrt{3}$
 $= 1$
(b) $x = \sqrt{6+4\sqrt{2}} - \sqrt{2}$
 $= \sqrt{4+4\sqrt{2}+2} - \sqrt{2}$
 $= \sqrt{4+4\sqrt{2}+2} - \sqrt{2}$
 $= \sqrt{(2+\sqrt{2})^2} - \sqrt{2}$
 $= 2+\sqrt{2} - \sqrt{2}$
 $= 2$

2		
5	•	0

-
[a) a+b+c ミ a+b + c
Since $ a+b \leq a + b $
$ a+b+c \leq a + b + c $
(6) 011 5 011
We assume $ a_1 + a_{2+} \cdots + a_n \leq a_1 + \cdots + a_n $
$ o_1 + o_2 + \dots + o_{n+1} \leq o_1 + o_2 + \dots + o_n + o_{n+1} $
by triangle inequality,
by the assumption, $ \alpha_1 + \dots + \alpha_{n+1} \leq \alpha_1 + \dots + \alpha_{n+1} $
Thus by the principle of mothe motical induction,
$ a_1 + a_2 + \dots + a_{n+1} \leq a_1 + a_2 + \dots + a_{n+1} $

By the denseness of Q, $\exists r_i \in Q$ s.t. $a < r_i < b$. Since r_i , $b \in \mathbb{R}$, $\exists r_2 \in Q$ s.t. $a < r_i < r_2 < b$ by the denseness of Q. We can recursively define rational numbers between r_{n-1} and b in the same manner by the denseness of Q, then one can show there exist infinitely many rationals between a and b.

4.14
(a) Prove Sup(A+B)= Sup(A) + Sup(B)
For a GA and b GB, (atb) EAtB.
atb Supcatb).
an least upper bound of A. This gives us,
Sup(A) ≤ Sup(A+B) -b and b ≤ Sup(A+B) - Sup(A)
this shows b is bounded above by supcato)-sup(A)
: Sup(B) < Sup(A+B) - Sup(A)
SUP(A) + SUP(B) & SUP(A+B)
=) $Sup(A+B) = Sup(A) + Sup(B)$

(b) Prove inf(A+B)= inf(A)t int(B).
We have $inf(s) = -Sup(-s)$
For (a+b) GA+B, we have
$\alpha + \beta \ge inf(A+B).$
$\alpha \ge inf(A+B)-b$
\Rightarrow int(A) \ge int(A+B)-b.
$=$ $b \ge inf(A+B) - int(A)$.
$inf(B) \geq inf(A+B) - inf(A)$
$inf(A) + inf(B) \ge inf(A+B)$
inf(A+B) = inf(B) + inf(B).

$$\begin{aligned} & (a) \leq_{n} = \sqrt{n^{2} + 1} - n \cdot \frac{\sqrt{n^{2} + 1} + n}{\sqrt{n^{2} + 1} + n} = \frac{n^{2} + 1 - n^{2}}{\sqrt{n^{2} + 1} + n} = \frac{1}{\sqrt{n^{2} + 1} + n} \\ & \lim \frac{1}{\sqrt{n^{2} + 1} + n} = 0 \\ & (b) (\sqrt{n^{2} + n} - n) \cdot (\sqrt{n^{2} + n} + n) = n^{2} + n - n^{2} \\ & =) \sqrt{n^{2} + n} - n = \frac{n}{\sqrt{n^{2} + n} + n} = \frac{1}{\sqrt{n^{2} + n} + 1} = \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \\ & \lim \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{2} \\ & (c) (\sqrt{4n^{2} + n} - 2n) \cdot (\sqrt{4n^{2} + n} + 2n) = 4n^{2} + n - 4n^{2} = n \\ & \sqrt{4n^{2} + n} - 2n = \frac{n}{\sqrt{4n^{2} + n} + 2n} = \frac{1}{\sqrt{4 + \frac{1}{n} + 2}} \\ & \lim \frac{1}{\sqrt{4 + \frac{1}{n} + 2}} = \frac{1}{4} \end{aligned}$$