MATH 104 HW \#1

James Ni

Problem 1. Ross 1.10
Prove $(2 n+1)+(2 n+3)+(2 n+5)+\cdots+(4 n-1)=3 n^{2}$ for all positive integers n.

Proof. For simplicity, let us rewrite the summation as $\sum_{k=1}^{n} 2(n+k)-1$. We shall prove this using induction. The base case $(n=1)$ is easy to verify. Assume that the above holds for n. Then,

$$
\begin{aligned}
\sum_{k=1}^{n+1} 2((n+1)+k)-1 & =\sum_{k=1}^{n+1} 2+\sum_{k=1}^{n+1} 2(n+k)-1 \\
& =2(n+1)+2(n+(n+1))-1+\sum_{k=1}^{n} 2(n+k)-1 \\
& =6 n+3+3 n^{2}=3(n+1)^{2}
\end{aligned}
$$

Thus, we have proved that the above must hold for all positive integers n.
Problem 2. Ross 1.12
For $n \in \mathbb{N}$, let n ! denote the product $1 \cdot 2 \cdot 3 \cdots n$. Also let $0!=1$ and define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \text { for } k=0,1, \cdots, n
$$

The binomial theorem asserts that
$(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}$
a) Verify the binomial theorem for $n=1,2$, and 3 .
b) Show $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$ for $k=1,2, \cdots, n$.
c) Prove the binomial theorem using mathematical induction and part b).

Proof. First, we verify the binomial theorem for $n=1,2$, and 3 .

- $(a+b)^{1}=a+b=\binom{1}{0} a+\binom{1}{1} b$
- $(a+b)^{2}=a^{2}+2 a b+b^{2}=\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2}$
- $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}$

Next, we demonstrate a few short properties which can help us prove the binomial theorem.

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n+1-k)!} \\
& =(n+1-k) \frac{n!}{k!(n+1-k)!}+k \frac{n!}{k!(n+1-k)!} \\
& =(n+1) \frac{n!}{k!(n+1-k)!}=\frac{(n+1)!}{k!(n+1-k)!} \\
& =\binom{n+1}{k} \text { for } k=1,2, \cdots, n \\
\binom{n}{0}=\binom{n}{n} & =1 \text { for } n \in \mathbb{N}
\end{aligned}
$$

For simplicity, we will rewrite the binomial theorem in summation form:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

We will prove the binomial theorem using induction. We have already shown above the base case $(n=1)$ is true. Assume that the binomial theorem holds for n. Then,

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)(a+b)^{n}=(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n+1-k} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1} \\
& =\binom{n}{0} a^{n+1}+\binom{n}{n} b^{n+1}+\sum_{k=1}^{n}\binom{n}{k} a^{n+1-k} b^{k}+\sum_{k=0}^{n-1}\binom{n}{k} a^{n-k} b^{k+1} \\
& =\binom{n}{0} a^{n+1}+\binom{n}{n} b^{n+1}+\sum_{k=1}^{n}\binom{n}{k} a^{n+1-k} b^{k}+\sum_{k=1}^{n}\binom{n}{k-1} a^{n+1-k} b^{k} \\
& =\binom{n+1}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n+1-k} b^{k}+\binom{n+1}{n+1} b^{n+1} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} a^{n+1-k} b^{k} .
\end{aligned}
$$

Thus, by induction, the binomial theorem must be true for all $n \in \mathbb{N}$.
Theorem 1. For $r, n \in \mathbb{N}, \sqrt[r]{n}$ is rational if and only if there exists $q \in N$ among the divisors of n such that $q^{r}=n$.

Proof. Let us first prove the forward direction. Regardless if $\sqrt[r]{n}$ is rational, $\sqrt[r]{n}$ is a solution to the polynomial equation $x^{r}-n=0$. By the Rational Root Theorem, if a rational solution to the equation exists, it must be a divisor of n. Letting this divisor be q, we have $q^{r}-n=0 \Rightarrow q^{r}=n$.

The reverse direction is more straightforward. If there exists a q such that $q^{r}=n$, then $\sqrt[r]{n}=\sqrt[r]{q^{r}}=q$ which is rational.

Problem 3. Ross 2.1
Show $\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{24}$, and $\sqrt{31}$ are not rational numbers.
Proof. The square of the divisors of $3,5,7,24$, and 31 do not equal $3,5,7,24$, and 31, respectively. Thus, by Theorem 1 , they cannot be rational numbers.

Problem 4. Ross 2.2
Show $\sqrt[3]{2}, \sqrt[7]{5}$, and $\sqrt[4]{13}$ are not rational numbers.
Proof. 2, 5, and 13 are prime numbers. Becuase their only divisors are 1 and themselves, the nth power of their divisors cannot equal themselves for $n \neq 1$. Thus, by Theorem 1, they cannot be rational numbers.

Problem 5. Ross 2.7
Show the following irrational-looking expressions are actually rational numbers: (a) $\sqrt{4+2 \sqrt{3}}-\sqrt{3}$, and (b) $\sqrt{6+4 \sqrt{2}}-\sqrt{2}$.

- $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=\sqrt{(1+\sqrt{3})^{2}}-\sqrt{3}=1$
- $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=\sqrt{(2+\sqrt{2})^{2}}-\sqrt{2}=2$

Problem 6. Ross 3.6
(a) Prove $|a+b+c| \leq|a|+|b|+|c|$ for all $a, b, c \in \mathbb{R}$.
(b) Use induction to prove

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

for n numbers $a_{1}, a_{2}, \cdots, a_{n}$.
Proof. We first prove the Triangle Inequality for 3 numbers.

$$
|a+b+c|=|(a+b)+c| \leq|a+b|+|c| \leq|a+b+c|
$$

Now, let us prove the Triangle Inequality generally for any amount of numbers using induction. The trivial case $(n=1)$ and the base case $(n=2)$ is true. Suppose that the Triangle Inequality holds for n numbers. Then, we have

$$
\begin{aligned}
\left|a_{1}+a_{2}+\cdots+a_{n}+a_{n+1}\right| & =\left|\left(a_{1}+a_{2}+\cdots+a_{n}\right)+a_{n+1}\right| \\
& =\left|a_{1}+a_{2}+\cdots+a_{n}\right|+\left|a_{n+1}\right| \\
& =\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|+\left|a_{n+1}\right| .
\end{aligned}
$$

Thus, the Triangle Inequality holds for all $n \in \mathbb{N}$.

Problem 7. Ross 4.11
Consider $a, b \in \mathbb{R}$ where $a<b$. Use Denseness of \mathbb{Q} to show that there are infinitely many rationals between a and b.

Proof. Suppose that the number of rationals between a and b is finite. Call this set of rationals S. Because $S \subset \mathbb{R}$ and is finite, $m=\max (S)$ must exist. Because $m, b \in \mathbb{R}$, by the Denseness of \mathbb{Q} there must exist a rational number $a<m<r<b$. Because r is rational, we must have $r \in S$. However, because $r>m, m \neq \max (S)$ so thus, we have a contradiction and the number of rationals between a and b must be infinite.

Problem 8. Ross 4.14
Let A and B be nonempty bounded subsets of \mathbb{R}, and let $A+B$ be the set of all sums $a+b$ where $a \in A$ and $b \in B$.
(a) Prove $\sup (A+B)=\sup (A)+\sup (B)$.
(b) Prove $\inf (A+B)=\inf (A)+\inf (B)$.

Proof.

$$
\begin{gathered}
a \leq \sup (A) \forall a \in A \\
a+b \leq \sup (A)+b \forall a \in A \forall b \in B \\
a+b \leq \sup (A)+\sup (B) \forall a \in A \forall b \in B \\
\sup (A+B) \leq \sup (A)+\sup (B) \\
a+b \leq \sup (A+B) \forall a \in A \forall b \in B \\
a \leq \sup (A+B)-b \forall a \in A \forall b \in B \\
\sup (A) \leq \sup (A+B)-b \forall b \in B \\
b \leq \sup (A+B)-\sup (A) \forall b \in B \\
\sup (B) \leq \sup (A+B)-\sup (A) \\
\sup (A)+\sup (B) \leq \sup (A+B) . \\
\sup (A+B)=\sup (A)+\sup (B) .
\end{gathered}
$$

By similar logic, we have

$$
\inf (A+B)=\inf (A)+\inf (B)
$$

Problem 9. Ross 7.5
Determine the following limits.
(a) $\lim \left(\sqrt{n^{2}+1}-n\right)$.
(b) $\lim \left(\sqrt{n^{2}+n}-n\right)$.
(c) $\lim \left(\sqrt{4 n^{2}+n}-2 n\right)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{n^{2}+1}-n & =\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+1}-n\right) \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+1}+n} \\
& \rightarrow 0 \\
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n & =\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right) \frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+n}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1} \rightarrow \frac{1}{2} \\
\lim _{n \rightarrow \infty} \sqrt{4 n^{2}+n}-2 n & =\lim _{n \rightarrow \infty}\left(\sqrt{4 n^{2}+n}-2 n\right) \frac{\sqrt{4 n^{2}+n}+2 n}{\sqrt{4 n^{2}+n}+2 n} \\
& =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{4 n^{2}+n}+2 n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{4+\frac{1}{n}}+2} \rightarrow \frac{1}{4}
\end{aligned}
$$

