MATH 104 HW \#2

James Ni

Problem 1. Ross 9.9
Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.
(a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
(b) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.
(c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Proof. If $\lim s_{n}=+\infty$ then for $\forall M>0, \exists N_{s}>0$ such that for $\forall n>N_{s}, s_{n}>$ M. If for M we let $N_{t}=\max \left(N_{s}, N_{0}\right)$, then $\forall n>N_{t}, t_{n} \geq s_{n}>M$ implies that $\lim t_{n}=+\infty$.

Likewise, if $\lim t_{n}=-\infty$ then for $\forall M<0, \exists N_{t}>0$ such that for $\forall n>$ $N_{t}, t_{n}<M$. If for M we let $N_{s}=\max \left(N_{t}, N_{0}\right)$, then $\forall n>N_{s}, s_{n} \leq t_{n}<M$ implies that $\lim s_{n}=-\infty$.

Finally, let us consider the limit of the sequence $\lim t_{n}-s_{n}=L$. Because we know that $\lim s_{n}$ and $\lim t_{n}$ exist, L also must exist. Suppose that $L<0$. Then, $\forall \varepsilon>0 \exists N>0$ such that $\forall n>N,\left|t_{n}-s_{n}-L\right|<\varepsilon$. Because this must hold $\forall \varepsilon>0$, it must hold for $\varepsilon=-L$. If we take $N=\max \left(N, N_{0}\right)$, then this implies $L<t_{n}-s_{n}-L<-L \Rightarrow t_{n}-s_{n}<0 \Rightarrow t_{n}<s_{n}$. This is a contradiction, so $L \geq 0$. Because $L=\lim t_{n}-\lim s_{n}, \lim t_{n} \geq \lim s_{n}$.

Theorem 1. Ratio Test
For a sequence $\left(s_{n}\right)$, suppose $s_{n} \neq 0$ and the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ exists. If $L<1$, then $\lim s_{n}=0$. If $L>1$, then $\lim s_{n}=+\infty$.

Proof. First, observe that $L>0$ in a vein similar to the proof of Problem 1.c. Because L exists, we have $\forall \varepsilon>0 \exists N>0$ such that $\forall n>N,-\varepsilon<\left|\frac{s_{n+1}}{s_{n}}\right|-L<\varepsilon$. In the case that $L<1$, consider $\varepsilon=\frac{1-L}{2}$ such that $\left|\frac{s_{n+1}}{s_{n}}\right|<\frac{L+1}{2}$. Let $a=\frac{L+1}{2}$ such that $L<a<1$. We have that $\forall n>N,\left|s_{n+1}\right|<a\left|s_{n}\right|$. A trivial proof by induction on n gives us $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$. Let us denote $b=N$. Now we have sufficient information to show that $\left(s_{n}\right)$ converges to 0 .

For a given $\varepsilon>0$, let $c=b+\log _{a}\left(\varepsilon /\left|s_{b}\right|\right)$ such that $\varepsilon=a^{c-b}\left|s_{b}\right|$. We can now define $N=\max (b, c)$ such that $\forall n>N$ we have $\left|s_{n}\right|<a^{n-b}\left|s_{b}\right|<a^{c-b}\left|s_{b}\right|<\varepsilon$. This implies that $\lim s_{n}=0$.

In the case that $L>1$, consider the sequence $\left(t_{n}\right)$ where $t_{n}=\frac{1}{\left|s_{n}\right|}$. Then $\lim \left|\frac{t_{n+1}}{t_{n}}\right|=1 / L<1$. By the above case, we have $\lim t_{n}=0$. Thus, by Theorem 9.10, $\lim s_{n}=+\infty$.

Problem 2. Ross 9.15
Show $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a \in \mathbb{R}$.

Proof. Let $s_{n}=\frac{a^{n}}{n!}$. Then, we have

$$
\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\frac{a^{n+1} /(n+1)!}{a^{n} / n!}\right|=\frac{|a|}{n+1}
$$

By Theorem 9.2 and $9.7, \lim \left|\frac{s_{n+1}}{s_{n}}\right|=0<1$ so by the Ratio Test, $\lim s_{n}=0$.
Problem 3. Ross 10.7
Let S be a bounded nonempty subset of \mathbb{R} such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$.

Proof. By definition of supremum, we have $\forall s \in S$, $\sup S>S$ and $\forall \varepsilon>0 \exists s \in$ S, $\sup S-\varepsilon<s$. Because the second condition must hold $\forall \varepsilon>0$, consider a sequence $\left(s_{n}\right)$ defined such that $s_{n}>\sup S-1 / n$. We can show that this sequence $\left(s_{n}\right)$ converges to $\sup S$.

For a given $\varepsilon>0$, we let $N=1 / \varepsilon$ such that $\forall n>N$, we have $s_{n}-\sup S>$ $-1 / n>-1 / N=-\varepsilon$. Because $s_{n} \in S$, we also have $\sup S>s_{n} \Longrightarrow s_{n}<$ $\sup S+\varepsilon$. Thus, by definition, we have constructed a sequence (s_{n}) such that $\lim s_{n}=\sup S$.

Problem 4. Ross 10.8
Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=$ $\frac{1}{n}\left(s_{1}+s_{2}+\cdots+s_{n}\right)$. Prove $\left(\sigma_{n}\right)$ is an increasing sequence.

Proof. Because $\left(s_{n}\right)$ is increasing, we know that $s_{a}>s_{b}$ for any $a>b$. We first show that $s_{n}>\sigma_{n-1}$.

$$
\sigma_{n-1}=\frac{1}{n-1} \sum_{i=1}^{n-1} s_{i}<\frac{1}{n-1} \sum_{i=1}^{n-1} s_{n-1}=s_{n-1}<s_{n}
$$

We then have

$$
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i}>\frac{1}{n}\left(\sum_{i=1}^{n-1} s_{i}+\sigma_{n-1}\right)=\frac{1}{n}\left(1+\frac{1}{n-1}\right) \sum_{i=1}^{n-1} s_{i}=\sigma_{n-1}
$$

Thus, $\left(\sigma_{n}\right)$ is an increasing sequence.
Problem 5. Ross 10.9
Let $s_{1}=1$ and $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2}$ for $n \geq 1$.
(a) Find s_{2}, s_{3} and s_{4}.
(b) Show $\lim s_{n}$ exists.
(c) Prove $\lim s_{n}=0$.

- $s_{2}=\left(\frac{1}{2}\right) s_{1}^{2}=\frac{1}{2}$
- $s_{3}=\left(\frac{2}{3}\right) s_{2}^{2}=\frac{1}{6}$
- $s_{4}=\left(\frac{3}{4}\right) s_{3}^{2}=\frac{1}{48}$

Proof. First, we demonstrate that $\left(s_{n}\right)$ is a positive decreasing sequence. We can prove this using simultaneous strong induction. Clearly, the base case $s_{2}<s_{1}$ and $s_{1}>0$ holds. Now suppose that for $1 \leq k<n$, we have $s_{k+1}<s_{k}$ and $s_{k+1}>0$, which implies $0<s_{n}<s_{n-1}<\cdots<s_{1}=1$. Then, $s_{n+1}=$ $\left(\frac{n}{n+1}\right) s_{n}^{2}=\left(\frac{n}{n+1}\right)\left(s_{n}\right) s_{n}<s_{n}$ and $s_{n+1}=(+)(+)^{2}=(+)$. Thus, by induction, $\left(s_{n}\right)$ is a positive decreasing sequence.

Because $s_{1}=1$, this means that $\left(s_{n}\right)$ is bounded from below by 0 and bounded from above by 1. Because $\left(s_{n}\right)$ is bounded and decreasing, it must be convergent. Because the limit exists, this allows us to compute the limit $\lim s_{n+1}=\lim \left(\frac{n}{n+1}\right) s_{n}^{2} \Rightarrow \lim s_{n}=\lim \frac{n}{n+1} \cdot \lim s_{n} \cdot \lim s_{n}=0$.

Problem 6. Ross 10.10
Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3} and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n.
(c) Show $\left(s_{n}\right)$ is a decreasing sequence.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$.

- $s_{2}=\frac{1}{3}\left(s_{1}+1\right)=\frac{2}{3}$
- $s_{3}=\frac{1}{3}\left(s_{2}+1\right)=\frac{5}{9}$
- $s_{4}=\frac{1}{3}\left(s_{3}+1\right)=\frac{14}{27}$

Proof. First, we show that $s_{n}>\frac{1}{2}$ for all n. Clearly, the base case $s_{1}=1>\frac{1}{2}$ holds. Now suppose that $s_{n}>\frac{1}{2}$. Then, $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1^{2}}{2}$. Thus, by induction, $s_{n}>\frac{1}{2}$ for all n.

Now, suppose that $\left(s_{n}\right)$ is not a decreasing sequence. This implies that $\exists n$ such that $s_{n+1} \geq s_{n}$. We then have $\frac{1}{3}\left(s_{n}+1\right) \geq s_{n} \Rightarrow \frac{2}{3} s_{n} \leq \frac{1}{3} \Rightarrow s_{n} \leq \frac{1}{2}$. By contradiction, $\left(s_{n}\right)$ must be a decreasing sequence.

Because $s_{1}=1$, this means that $\left(s_{n}\right)$ is bounded from below by $\frac{1}{2}$ and bounded from above by 1. Because $\left(s_{n}\right)$ is bounded and decreasing, it must be convergent. Because the limit exists, this allows us to compute the limit $\lim s_{n+1}=\lim \frac{1}{3}\left(s_{n}+1\right) \Rightarrow \lim s_{n}=\frac{1}{3} \lim s_{n}+\frac{1}{3} \Rightarrow \lim s_{n}=\frac{1}{2}$.

Problem 7. Ross 10.11
Let $t_{1}=1$ and $t_{n+1}=\left[1-\frac{1}{4 n^{2}}\right] \dot{t}_{n}$ for $n \geq 1$.
(a) Show $\lim t_{n}$ exists.
(b) What do you think $\lim t_{n}$ is?

Proof. The proof that $\lim t_{n}$ exists is similar to Problem 5. We first show that $\left(t_{n}\right)$ is a positive decreasing sequence using simultaneous strong induction. Clearly, the base case $t_{2}<t_{1}$ and $t_{1}>0$ holds. Now suppose that for $1 \leq k<n$, we have $t_{k+1}<t_{k}$ and $t_{k+1}>0$, which implies $0<t_{n}<t_{n-1}<\cdots<t_{1}=1$. Then, $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}<1$ and $t_{n+1}=(+)(+)=(+)$. Thus, by induction, $\left(t_{n}\right)$ is a positive decreasing sequence.

Because $t_{n}=1$, this means that $\left(t_{n}\right)$ is bounded from below by 0 and bounded from above by 1 . Because $\left(t_{n}\right)$ is bounded and decreasing, it must be
convergent. The limit itself is equal to an infinite product

$$
\prod_{n=1}^{\infty}\left(1-\frac{1}{4 n^{2}}\right)=\prod_{n=1}^{\infty}\left(1-\frac{(\pi / 2)^{2}}{n^{2} \pi^{2}}\right)=\frac{\sin (\pi / 2)}{\pi / 2}=\frac{2}{\pi}
$$

Problem 8. Squeeze Theorem
Let $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$ and $L=$ $\lim a_{n}=\lim c_{n}$. Show that $\lim b_{n}=L$.

Proof. By definition, $\forall \varepsilon>0 \exists N_{a}, N_{c}>0$ such that $\forall n>N_{a},\left|a_{n}-L\right|<\varepsilon$ and $\forall n>N_{c},\left|c_{n}-L\right|<\varepsilon$. Let us take $N_{b}=\max \left(N_{a}, N_{c}\right)$ such that both statements hold true simultaneously $\forall n>N_{b}$. This implies $-\varepsilon<a_{n}-L<\varepsilon \Rightarrow-\varepsilon<b_{n}-L$ and $-\varepsilon<c_{n}-L<\varepsilon \Rightarrow b_{n}-L<\varepsilon$. Combinding, we get that $\left|b_{n}-L\right|<\varepsilon$ which implies that $\lim b_{n}=L$.

