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Problem 1. Ross 9.9
Suppose there exists N0 such that sn ≤ tn for all n > N0.

(a) Prove that if lim sn = +∞, then lim tn = +∞.
(b) Prove that if lim tn = −∞, then lim sn = −∞.
(c) Prove that if lim sn and lim tn exist, then lim sn ≤ lim tn.

Proof. If lim sn = +∞ then for ∀M > 0,∃Ns > 0 such that for ∀n > Ns, sn >
M . If for M we let Nt = max(Ns, N0), then ∀n > Nt, tn ≥ sn > M implies
that lim tn = +∞.

Likewise, if lim tn = −∞ then for ∀M < 0,∃Nt > 0 such that for ∀n >
Nt, tn < M . If for M we let Ns = max(Nt, N0), then ∀n > Ns, sn ≤ tn < M
implies that lim sn = −∞.

Finally, let us consider the limit of the sequence lim tn − sn = L. Because
we know that lim sn and lim tn exist, L also must exist. Suppose that L < 0.
Then, ∀ε > 0∃N > 0 such that ∀n > N, |tn − sn − L| < ε. Because this must
hold ∀ε > 0, it must hold for ε = −L. If we take N = max(N,N0), then this
implies L < tn−sn−L < −L⇒ tn−sn < 0⇒ tn < sn. This is a contradiction,
so L ≥ 0. Because L = lim tn − lim sn, lim tn ≥ lim sn.

Theorem 1. Ratio Test
For a sequence (sn), suppose sn 6= 0 and the limit L = lim | sn+1

sn
| exists. If

L < 1, then lim sn = 0. If L > 1, then lim sn = +∞.

Proof. First, observe that L > 0 in a vein similar to the proof of Problem 1.c.
Because L exists, we have ∀ε > 0∃N > 0 such that ∀n > N,−ε < | sn+1

sn
|−L < ε.

In the case that L < 1, consider ε = 1−L
2 such that | sn+1

sn
| < L+1

2 . Let a = L+1
2

such that L < a < 1. We have that ∀n > N , |sn+1| < a|sn|. A trivial proof by
induction on n gives us |sn| < an−N |sN |. Let us denote b = N . Now we have
sufficient information to show that (sn) converges to 0.

For a given ε > 0, let c = b+loga(ε/|sb|) such that ε = ac−b|sb|. We can now
define N = max(b, c) such that ∀n > N we have |sn| < an−b|sb| < ac−b|sb| < ε.
This implies that lim sn = 0.

In the case that L > 1, consider the sequence (tn) where tn = 1
|sn| . Then

lim | tn+1

tn
| = 1/L < 1. By the above case, we have lim tn = 0. Thus, by Theorem

9.10, lim sn = +∞.

Problem 2. Ross 9.15
Show limn→∞

an

n! = 0 for all a ∈ R.
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Proof. Let sn = an

n! . Then, we have

|sn+1

sn
| = |a

n+1/(n+ 1)!

an/n!
| = |a|

n+ 1
.

By Theorem 9.2 and 9.7, lim | sn+1

sn
| = 0 < 1 so by the Ratio Test, lim sn = 0.

Problem 3. Ross 10.7
Let S be a bounded nonempty subset of R such that supS is not in S. Prove

there is a sequence (sn) of points in S such that lim sn = supS.

Proof. By definition of supremum, we have ∀s ∈ S, supS > S and ∀ε > 0∃s ∈
S, supS − ε < s. Because the second condition must hold ∀ε > 0, consider
a sequence (sn) defined such that sn > supS − 1/n. We can show that this
sequence (sn) converges to supS.

For a given ε > 0, we let N = 1/ε such that ∀n > N , we have sn − supS >
−1/n > −1/N = −ε. Because sn ∈ S, we also have supS > sn =⇒ sn <
supS + ε. Thus, by definition, we have constructed a sequence (sn) such that
lim sn = supS.

Problem 4. Ross 10.8
Let (sn) be an increasing sequence of positive numbers and define σn =

1
n (s1 + s2 + · · ·+ sn). Prove (σn) is an increasing sequence.

Proof. Because (sn) is increasing, we know that sa > sb for any a > b. We first
show that sn > σn−1.

σn−1 =
1

n− 1

n−1∑
i=1

si <
1

n− 1

n−1∑
i=1

sn−1 = sn−1 < sn.

We then have

σn =
1

n

n∑
i=1

si >
1

n
(

n−1∑
i=1

si + σn−1) =
1

n
(1 +

1

n− 1
)

n−1∑
i=1

si = σn−1.

Thus, (σn) is an increasing sequence.

Problem 5. Ross 10.9
Let s1 = 1 and sn+1 = ( n

n+1 )s2n for n ≥ 1.
(a) Find s2, s3 and s4.
(b) Show lim sn exists.
(c) Prove lim sn = 0.

� s2 = ( 1
2 )s21 = 1

2

� s3 = ( 2
3 )s22 = 1

6

� s4 = ( 3
4 )s23 = 1

48
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Proof. First, we demonstrate that (sn) is a positive decreasing sequence. We can
prove this using simultaneous strong induction. Clearly, the base case s2 < s1
and s1 > 0 holds. Now suppose that for 1 ≤ k < n, we have sk+1 < sk
and sk+1 > 0, which implies 0 < sn < sn−1 < · · · < s1 = 1. Then, sn+1 =
( n
n+1 )s2n = ( n

n+1 )(sn)sn < sn and sn+1 = (+)(+)2 = (+). Thus, by induction,
(sn) is a positive decreasing sequence.

Because s1 = 1, this means that (sn) is bounded from below by 0 and
bounded from above by 1. Because (sn) is bounded and decreasing, it must
be convergent. Because the limit exists, this allows us to compute the limit
lim sn+1 = lim( n

n+1 )s2n ⇒ lim sn = lim n
n+1 · lim sn · lim sn = 0.

Problem 6. Ross 10.10
Let s1 = 1 and sn+1 = 1

3 (sn + 1) for n ≥ 1.
(a) Find s2, s3 and s4.
(b) Use induction to show sn >

1
2 for all n.

(c) Show (sn) is a decreasing sequence.
(d) Show lim sn exists and find lim sn.

� s2 = 1
3 (s1 + 1) = 2

3

� s3 = 1
3 (s2 + 1) = 5

9

� s4 = 1
3 (s3 + 1) = 14

27

Proof. First, we show that sn >
1
2 for all n. Clearly, the base case s1 = 1 > 1

2
holds. Now suppose that sn > 1

2 . Then, sn+1 = 1
3 (sn + 1) > 1

3 ( 1
2 + 1) = 1

2 .
Thus, by induction, sn >

1
2 for all n.

Now, suppose that (sn) is not a decreasing sequence. This implies that ∃n
such that sn+1 ≥ sn. We then have 1

3 (sn + 1) ≥ sn ⇒ 2
3sn ≤

1
3 ⇒ sn ≤ 1

2 . By
contradiction, (sn) must be a decreasing sequence.

Because s1 = 1, this means that (sn) is bounded from below by 1
2 and

bounded from above by 1. Because (sn) is bounded and decreasing, it must
be convergent. Because the limit exists, this allows us to compute the limit
lim sn+1 = lim 1

3 (sn + 1)⇒ lim sn = 1
3 lim sn + 1

3 ⇒ lim sn = 1
2 .

Problem 7. Ross 10.11
Let t1 = 1 and tn+1 = [1− 1

4n2 ]ṫn for n ≥ 1.
(a) Show lim tn exists.
(b) What do you think lim tn is?

Proof. The proof that lim tn exists is similar to Problem 5. We first show
that (tn) is a positive decreasing sequence using simultaneous strong induction.
Clearly, the base case t2 < t1 and t1 > 0 holds. Now suppose that for 1 ≤ k < n,
we have tk+1 < tk and tk+1 > 0, which implies 0 < tn < tn−1 < · · · < t1 = 1.
Then, tn+1 = (1 − 1

4n2 )tn < 1 and tn+1 = (+)(+) = (+). Thus, by induction,
(tn) is a positive decreasing sequence.

Because tn = 1, this means that (tn) is bounded from below by 0 and
bounded from above by 1. Because (tn) is bounded and decreasing, it must be
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convergent. The limit itself is equal to an infinite product

∞∏
n=1

(1− 1

4n2
) =

∞∏
n=1

(1− (π/2)2

n2π2
) =

sin(π/2)

π/2
=

2

π
.

Problem 8. Squeeze Theorem
Let (an), (bn), (cn) be three sequences such that an ≤ bn ≤ cn and L =

lim an = lim cn. Show that lim bn = L.

Proof. By definition, ∀ε > 0∃Na, Nc > 0 such that ∀n > Na, |an − L| < ε and
∀n > Nc, |cn−L| < ε. Let us take Nb = max(Na, Nc) such that both statements
hold true simultaneously ∀n > Nb. This implies −ε < an−L < ε⇒ −ε < bn−L
and −ε < cn − L < ε ⇒ bn − L < ε. Combinding, we get that |bn − L| < ε
which implies that lim bn = L.
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