
MATH 104 HW #3

James Ni

Problem 1. Ross 10.6.
(a) Let (sn) be a sequence such that

|sn+1 − sn| < 2−n for all n ∈ N.

Prove (sn) is a Cauchy sequence and hence a convergent sequence.
(b) Is the result in (a) true if we only assume |sn+1 − sn| < 1

n for all n ∈ N?

We first prove a lemma which will assist us in proving both (a) and (b).

Lemma 1.1. Let (sn) be a sequence and (an) be a strictly positive sequence
such that |sn+1− sn| < an. Define a sequence (An) such that An =

∑n
i=0 an. If

(An) is convergent then (sn) is Cauchy.

Proof. We claim that |sn+k − sn| < An+k−1 − An−1. We can prove this using
induction on k. The base case trivially holds from our assumption. Now assume
that |sn+k − sn| < An+k−1 −An−1. Then, we have

|sn+k+1 − sn| = |(sn+k+1 − sn+k) + (sn+k − sn)|
≤ |sn+k+1 − sn+k|+ |sn+k − sn|
< an+k +An+k−1 −An−1 = An+k −An−1.

Because (An) converges, let A = limAn. Because (an) is strictly positive,
we know that (An) is strictly increasing. This implies that (An) is bounded
from above by A. Without loss of generality, suppose that for two m,n ∈ N, we
have m > n. By extension, we have |sm − sn| < Am−1 −An−1 < A−An−1.

For ∀ε > 0, let N be the smallest integer such that AN−1 ≥ A− ε. Observe
that because A−An is strictly decreasing and limA−An = 0, such an N always
exists for positive ε. Then we have ∀m,n > N , |sm − sn| < ε. Thus, (sn) is
Cauchy.

Proof. Endowed with this lemma, proving (a) and (b) becomes trivial, as in the
case an = 2−n, we have lim

∑n
i=0 2−i = 2 which implies that (sn) is a Cauchy

sequence, and hence, is also convergent. However, in the case an = 1
n , An

diverges which implies that (sn) is not necessarily Cauchy.

Problem 2. Ross 11.2. Consider the sequences defined as follows:

an = (−1)n, bn =
1

n
, cn = n2, dn =

6n+ 4

7n− 3
.

1



(a) For each sequence, give an example of a monotone subsequence.
(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its lim sup and lim inf.
(d) Which of the sequences converges? diverges to +∞? diverges to −∞?
(e) Which of the sequences is bounded?

Proof. Consider the subsequence akn = a2n = (−1)2n = 1. Because akn is
constant, it is monotone, and lim akn

= 1. Also consider the subsequence akn
=

a2n+1 = (−1) · (−1)2n = −1. Because akn
is constant, lim akn

= −1.
We claim the set of subsequential limits S of an is {−1, 1}. Suppose there

exists another subsequential limit a. It is easy to see that −1 ≤ an ≤ 1.
Because an is bounded, it is impossible for a = ±∞. We can then conclude that
there exists a increasing integer sequence (kn) such that ∀ε > 0∃N > 0∀n >
N, |akn

− a| < ε. Becuase {an} = {−1, 1}, we can split akn
into 3 cases.

If akn
strictly consists of 1, then a = 1; if akn

strictly consists of −1, then
a = −1. If akn

consists of ±1, then a+ ε > 1 and a− ε > −1. This implies that
ε > 1, which implies that convergence fails for ε ≤ 1. Thus, such an a cannot
exist, so therefore, S = {−1, 1}.

We can then conclude lim sup an = supS = 1, lim inf an = inf S = −1.
Because lim sup an 6= lim inf an, lim an is divergent.

Proof. Because bn+1 = 1
n+1 < bn = 1

n , bn is monotone decreasing. Hence, any
subsequence of bn is also monotone decreasing. It is easy to see that lim bn =
0. Thus, its set of subsequential limits is simply S = {0} and lim sup bn =
lim inf bn = 0. Because bn is monotone decreasing and converges to 0, it is
bounded from below by 0 and bounded from above by b1 = 1.

Proof. Because cn+1 = (n + 1)2 > cn = n2, cn is monotone increasing. Hence,
any subsequence of cn is also monotone increasing. It is easy to see that lim cn =
+∞. Thus, its set of subsequential limits is simply S = {+∞} and lim sup cn =
lim inf cn = +∞. Because cn diverges to +∞, it is not bounded.

Proof. We first show that dn is monotone decreasing.

dn+1 ≤ dn ⇔
6(n+ 1) + 4

7(n+ 1)− 3
=

6n+ 10

7n+ 4
≤ 6n+ 4

7n− 3

⇔ (6n+ 10)(7n− 3) ≤ (6n+ 4)(7n+ 4) (n ≥ 1)

⇔ 42n2 + 52n− 30 ≤ 42n2 + 52n+ 16

⇔ −30 ≤ 16 ⇔ n ≥ 1.

Because of this, any subsequence of cdn is also monotone decreasing. We now
evaluate lim dn.

lim dn = lim
6n+ 4

7n− 3
= lim

6 + 4/n

7− 3/n
=

lim 6 + 4/n

lim 7− 3/n
=

6

7
.
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Because dn converges, its set of subsequential limits is simply S = { 67} and
lim sup dn = lim inf dn = 6

7 . Because dn is monotone decreasing and converges
to 6

7 , it is bounded from below by 6
7 and bounded from above by d1 = 5

2 .

Problem 3. Ross 11.3. Repeat Problem 2 for the sequences:

sn = cos(
nπ

3
), tn =

3

4n+ 1
, un = (−1

2
)n, vn = (−1)n +

1

n
.

Proof. Observe that we can utilize the periodicity of cos to rewrite sn as

sn =


1 n = 6k

1/2 n = 6k + 1 or n = 6k + 5

−1/2 n = 6k + 2 or n = 6k + 4

−1 n = 6k + 3

,

where k is an integer. Thus, a simple example of a monotone subsequence is
skn = s6n = 0. We claim the set of subsequential limits S = {−1,−1/2, 1/2, 1}.
The proof of this claim is a simple proof of variations of an of Problem 2 via
the additive and multiplicative properties of convergent sequences. We quickly
find that lim sup sn = supS = 1, lim inf sn = inf S = −1. Because lim sup sn 6=
lim inf sn, lim sn is divergent. However, −1 ≤ sn ≤ 1 which implies sn is
bounded.

Proof. Because tn+1 = 3
4(n+1)+1 = 3

4n+5 < tn = 3
4n+5 , tn is monotone decreas-

ing. Hence, any subsequence of tn is also monotone decreasing. Evaluating
lim tn, we find

lim tn = lim
3

4n+ 1
= lim

3/n

4 + 1/n
=

lim 3/n

4 + 1/n
= 0.

Thus, its set of subsequential limits is simply S = {0} and lim sup tn = lim inf tn =
0. Because tn is monotone decreasing and converges to 0, it is bounded from
below by 0 and bounded from above by t0 = 3.

Proof. Consider the subsequence ukn
= u2n = ( 1

4 )n = 4−n. Clearly, 4−(n+1) =
4−n

4 < 4−n, so this subsequence is monotone decreasing. We demonstrate that
limun = 0. First, observe that |un| is monotone decreasing since |un+1| =
( 1
2 )n+1 < |un| = ( 1

2 )n. Thus, for any ε > 0, let N = max(0, log1/2(ε)). Then
we have for any n > N , |un| < |uN | < ε. Thus, un converges to 0, its set of
subsequential limits is simply S = {0}, and lim supun = lim inf un = 0. Because
|un| is monotone decreasing, it is bounded from above by the first positive term
u0 = 1 and bounded from below by the first negative term u1 = −1/2.

Proof. Consider the subsequence vkn = v2n = 1 + 1
n . Clearly, 1 + 1

n+1 < 1 + 1
n ,

so this subsequence is monotone decreasing.
We claim the set of subsequential limits S = {−1, 1}. Suppose there exists

another subsequential limit v. We first check that vn is bounded by observing
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that it is the sum of two bounded sequences. Because vn is bounded, it is
impossible for v = ±∞.

We can then conclude that there exists a increasing integer sequence (kn)
such that ∀ε > 0∃N > 0∀n > N, |vkn

− v| < ε. This implies that v − ε− 1
kn

<

(−1)kn < v + ε− 1
kn

. Because (−1)kn can only take values in {−1, 1}, we have

v − ε − 1
kn

< −1, v + ε − 1
kn

> 1. This implies that ε > 1, which implies
that convergence fails for ε ≤ 1. Thus, such an v cannot exist, so therefore,
S = {−1, 1}.

We can then conclude lim sup vn = supS = 1, lim inf vn = inf S = −1.
Because lim sup vn 6= lim inf vn, lim vn is divergent.

Problem 4. Ross 11.5. Let (qn) be an enumeration of all the rationals in the
interval (0, 1].
(a) Give the set of subsequential limits for (qn).
(b) Give the values of lim sup qn and lim inf qn.

Proof. We claim that the set of subsequential limits for (qn) is [0, 1]. We first
prove that if q ∈ [0, 1], then q ∈ S. In order to prove this, we define an inductive
algorithm which defines a subsequence an = qkn which converges to q.

For our base case, we let p0 be any arbitrary rational in {qn} with finite
index ip such that p0 = qip 6= q and k0 = ip.

Now suppose that we have defined kn up to kj . Let p = qkj
and ip = kj .

Here, it may seem natural to utilize the denseness of Q to construct a new
member of the subsequence. However, this condition alone is not sufficient to
create a subsequence which converges. Instead, we let r = (p+ q)/2 with finite
index ir such that if q < p, we have q < r < p and if p < q, we have p < r < q.
It is easy to show that r is rational as

r =
p+ q

2
=
c1/d1 + c2/d2

2
=
c1d2 + c2d1

2d1d2
.

If ir > ip, then kj+1 = ir, and the inductive step advances forward to kj+1.
If ir < ip, then we set r′ = (r + q)/2 with finite index i′r. We then repeat the
current inductive step for r′ instead of r. Because there are only a finite number
of indicies smaller than ip, we must eventually find an r′ such that i′r > ip, which
completes the inductive algorithm.

If p0 < q, our algorithm gives us a monotone increasing sequence with q >
an > p0, and if p0 > q, our algorithm gives us a monotone decreasing sequence
with q < an < p0. This implies that in both cases, our sequences are convergent.
An essential observation to make is that because our inductive step may repeat,
the next term in the sequence may be a successive average of the previous
term with q. This implies that if p0 < q, we have the additional condition that
an+1 >

an+q
2 , and if p0 > q, we have the additional condition that an+1 <

an+q
2 .

In the first case, our additional condition implies an+1 > q − (an+1 − an).
For any ε > 0, let an − an−1 < ε. Because (an) is monotone increasing and
convergent, we know that (an) is also Cauchy. This implies that it is always
possible to find such an n which satisfies the ε condition. This implies ∀ε >
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0∃n > 0 such that an > q− ε, which implies that q is a least upper bound. This
implies that lim qkn = lim an = q.

The proof for the second case follows similarly, utilizing the additional con-
dition and Cauchy condition to show that q is the greatest lower bound which
implies lim qkn

= lim an = q.
Now, we show that if q /∈ [0, 1], then q /∈ S. Suppose that q ∈ S. This

implies that there exists a positive, increasing sequence of integers (kn) such
that ∀ε > 0∃N > 0∀n > N, |qkn

− q| < ε. We can split the proof into two cases:
1) q < 0 and 2) q > 1.

If q < 0, then using the fact that qkn
− q < ε and qkn

> 0 we have −q < ε
which implies that our condition fails for ε < −q, which is a contradiction. If
q > 1, then using the fact that −ε < qkn − q and qkn ≤ 1 we have −ε < 1 − q
which implies that our condition fails for ε < q − 1, which is a contradiction.
Thus, q /∈ S.

Because S = [0, 1], we have lim sup qn = 1 and lim inf qn = 0.

Discussion 1. What exactly is lim sup?

For some sequence (an), lim sup an is formally defined as limN→∞ sup{an :
n > N}. However, the meaning of lim sup is lost in the formal definition.
Instead, it is easier to think of lim sup and lim inf as the upper and lower bounds
of a sequence for sufficiently large n. In other words, it characterizes the long-
run behavior of a sequence by giving us a range of possible values of an.

One important note is that lim sup an 6= sup{an} and lim inf an 6= inf{an}.
Consider the sequence (an) = 1,−1, 0, 0, .... Clearly, lim sup an = lim inf an = 0
because the only possible value of an for sufficiently large n (in this case, simply
n ≥ 2) is 0. However, sup{an} = 1 and inf{an} = −1.

Instead, it is more appropriate to think of lim sup an as inf sup an, or the
smallest supremum of the successive elements of the sequence, and lim inf an
as sup inf an, or the largest infimum of the sucessive elements of the sequence.
Formally, this is written as lim sup an = inf{sup{an : n > N} : N ≥ 0} and
lim inf an = sup{inf{an : n > N} : N ≥ 0}.
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