MATH 104 HW \#3

James Ni

Problem 1. Ross 10.6.
(a) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<2^{-n} \text { for all } n \in \mathbb{N}
$$

Prove $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
(b) Is the result in (a) true if we only assume $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$?

We first prove a lemma which will assist us in proving both (a) and (b).
Lemma 1.1. Let $\left(s_{n}\right)$ be a sequence and $\left(a_{n}\right)$ be a strictly positive sequence such that $\left|s_{n+1}-s_{n}\right|<a_{n}$. Define a sequence $\left(A_{n}\right)$ such that $A_{n}=\sum_{i=0}^{n} a_{n}$. If $\left(A_{n}\right)$ is convergent then $\left(s_{n}\right)$ is Cauchy.

Proof. We claim that $\left|s_{n+k}-s_{n}\right|<A_{n+k-1}-A_{n-1}$. We can prove this using induction on k. The base case trivially holds from our assumption. Now assume that $\left|s_{n+k}-s_{n}\right|<A_{n+k-1}-A_{n-1}$. Then, we have

$$
\begin{aligned}
\left|s_{n+k+1}-s_{n}\right| & =\left|\left(s_{n+k+1}-s_{n+k}\right)+\left(s_{n+k}-s_{n}\right)\right| \\
& \leq\left|s_{n+k+1}-s_{n+k}\right|+\left|s_{n+k}-s_{n}\right| \\
& <a_{n+k}+A_{n+k-1}-A_{n-1}=A_{n+k}-A_{n-1} .
\end{aligned}
$$

Because $\left(A_{n}\right)$ converges, let $A=\lim A_{n}$. Because $\left(a_{n}\right)$ is strictly positive, we know that $\left(A_{n}\right)$ is strictly increasing. This implies that $\left(A_{n}\right)$ is bounded from above by A. Without loss of generality, suppose that for two $m, n \in \mathbb{N}$, we have $m>n$. By extension, we have $\left|s_{m}-s_{n}\right|<A_{m-1}-A_{n-1}<A-A_{n-1}$.

For $\forall \varepsilon>0$, let N be the smallest integer such that $A_{N-1} \geq A-\varepsilon$. Observe that because $A-A_{n}$ is strictly decreasing and $\lim A-A_{n}=0$, such an N always exists for positive ε. Then we have $\forall m, n>N,\left|s_{m}-s_{n}\right|<\varepsilon$. Thus, $\left(s_{n}\right)$ is Cauchy.

Proof. Endowed with this lemma, proving (a) and (b) becomes trivial, as in the case $a_{n}=2^{-n}$, we have $\lim \sum_{i=0}^{n} 2^{-i}=2$ which implies that $\left(s_{n}\right)$ is a Cauchy sequence, and hence, is also convergent. However, in the case $a_{n}=\frac{1}{n}, A_{n}$ diverges which implies that $\left(s_{n}\right)$ is not necessarily Cauchy.

Problem 2. Ross 11.2. Consider the sequences defined as follows:

$$
a_{n}=(-1)^{n}, b_{n}=\frac{1}{n}, c_{n}=n^{2}, d_{n}=\frac{6 n+4}{7 n-3} .
$$

(a) For each sequence, give an example of a monotone subsequence.
(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its limsup and liminf.
(d) Which of the sequences converges? diverges to $+\infty$? diverges to $-\infty$?
(e) Which of the sequences is bounded?

Proof. Consider the subsequence $a_{k_{n}}=a_{2 n}=(-1)^{2 n}=1$. Because $a_{k_{n}}$ is constant, it is monotone, and $\lim a_{k_{n}}=1$. Also consider the subsequence $a_{k_{n}}=$ $a_{2 n+1}=(-1) \cdot(-1)^{2 n}=-1$. Because $a_{k_{n}}$ is constant, $\lim a_{k_{n}}=-1$.

We claim the set of subsequential limits S of a_{n} is $\{-1,1\}$. Suppose there exists another subsequential limit a. It is easy to see that $-1 \leq a_{n} \leq 1$. Because a_{n} is bounded, it is impossible for $a= \pm \infty$. We can then conclude that there exists a increasing integer sequence $\left(k_{n}\right)$ such that $\forall \varepsilon>0 \exists N>0 \forall n>$ $N,\left|a_{k_{n}}-a\right|<\varepsilon$. Becuase $\left\{a_{n}\right\}=\{-1,1\}$, we can split $a_{k_{n}}$ into 3 cases.

If $a_{k_{n}}$ strictly consists of 1 , then $a=1$; if $a_{k_{n}}$ strictly consists of -1 , then $a=-1$. If $a_{k_{n}}$ consists of ± 1, then $a+\varepsilon>1$ and $a-\varepsilon>-1$. This implies that $\varepsilon>1$, which implies that convergence fails for $\varepsilon \leq 1$. Thus, such an a cannot exist, so therefore, $S=\{-1,1\}$.

We can then conclude $\limsup a_{n}=\sup S=1, \liminf a_{n}=\inf S=-1$. Because $\lim \sup a_{n} \neq \lim \inf a_{n}, \lim a_{n}$ is divergent.
Proof. Because $b_{n+1}=\frac{1}{n+1}<b_{n}=\frac{1}{n}$, b_{n} is monotone decreasing. Hence, any subsequence of b_{n} is also monotone decreasing. It is easy to see that $\lim b_{n}=$ 0 . Thus, its set of subsequential limits is simply $S=\{0\}$ and $\limsup b_{n}=$ $\lim \inf b_{n}=0$. Because b_{n} is monotone decreasing and converges to 0 , it is bounded from below by 0 and bounded from above by $b_{1}=1$.

Proof. Because $c_{n+1}=(n+1)^{2}>c_{n}=n^{2}, c_{n}$ is monotone increasing. Hence, any subsequence of c_{n} is also monotone increasing. It is easy to see that $\lim c_{n}=$ $+\infty$. Thus, its set of subsequential limits is simply $S=\{+\infty\}$ and $\lim \sup c_{n}=$ $\lim \inf c_{n}=+\infty$. Because c_{n} diverges to $+\infty$, it is not bounded.

Proof. We first show that d_{n} is monotone decreasing.

$$
\left.\begin{array}{rlr}
d_{n+1} \leq d_{n} & \Leftrightarrow \frac{6(n+1)+4}{7(n+1)-3}=\frac{6 n+10}{7 n+4} \leq \frac{6 n+4}{7 n-3} & \\
& \Leftrightarrow(6 n+10)(7 n-3) \leq(6 n+4)(7 n+4) & \\
& \Leftrightarrow 42 n^{2}+52 n-30 \leq 42 n^{2}+52 n+16 & \\
& \Leftrightarrow-30 \leq 16 &
\end{array} \quad \Leftrightarrow n \geq 1\right) .
$$

Because of this, any subsequence of $c d_{n}$ is also monotone decreasing. We now evaluate $\lim d_{n}$.

$$
\lim d_{n}=\lim \frac{6 n+4}{7 n-3}=\lim \frac{6+4 / n}{7-3 / n}=\frac{\lim 6+4 / n}{\lim 7-3 / n}=\frac{6}{7}
$$

Because d_{n} converges, its set of subsequential limits is simply $S=\left\{\frac{6}{7}\right\}$ and $\limsup d_{n}=\liminf d_{n}=\frac{6}{7}$. Because d_{n} is monotone decreasing and converges to $\frac{6}{7}$, it is bounded from below by $\frac{6}{7}$ and bounded from above by $d_{1}=\frac{5}{2}$.

Problem 3. Ross 11.3. Repeat Problem 2 for the sequences:

$$
s_{n}=\cos \left(\frac{n \pi}{3}\right), t_{n}=\frac{3}{4 n+1}, u_{n}=\left(-\frac{1}{2}\right)^{n}, v_{n}=(-1)^{n}+\frac{1}{n} .
$$

Proof. Observe that we can utilize the periodicity of \cos to rewrite s_{n} as

$$
s_{n}= \begin{cases}1 & n=6 k \\ 1 / 2 & n=6 k+1 \text { or } n=6 k+5 \\ -1 / 2 & n=6 k+2 \text { or } n=6 k+4 \\ -1 & n=6 k+3\end{cases}
$$

where k is an integer. Thus, a simple example of a monotone subsequence is $s_{k_{n}}=s_{6 n}=0$. We claim the set of subsequential limits $S=\{-1,-1 / 2,1 / 2,1\}$. The proof of this claim is a simple proof of variations of a_{n} of Problem 2 via the additive and multiplicative properties of convergent sequences. We quickly find that $\limsup s_{n}=\sup S=1, \lim \inf s_{n}=\inf S=-1$. Because $\limsup s_{n} \neq$ $\lim \inf s_{n}, \lim s_{n}$ is divergent. However, $-1 \leq s_{n} \leq 1$ which implies s_{n} is bounded.

Proof. Because $t_{n+1}=\frac{3}{4(n+1)+1}=\frac{3}{4 n+5}<t_{n}=\frac{3}{4 n+5}, t_{n}$ is monotone decreasing. Hence, any subsequence of t_{n} is also monotone decreasing. Evaluating $\lim t_{n}$, we find

$$
\lim t_{n}=\lim \frac{3}{4 n+1}=\lim \frac{3 / n}{4+1 / n}=\frac{\lim 3 / n}{4+1 / n}=0
$$

Thus, its set of subsequential limits is simply $S=\{0\}$ and $\limsup t_{n}=\lim \inf t_{n}=$ 0 . Because t_{n} is monotone decreasing and converges to 0 , it is bounded from below by 0 and bounded from above by $t_{0}=3$.

Proof. Consider the subsequence $u_{k_{n}}=u_{2 n}=\left(\frac{1}{4}\right)^{n}=4^{-n}$. Clearly, $4^{-(n+1)}=$ $\frac{4^{-n}}{4}<4^{-n}$, so this subsequence is monotone decreasing. We demonstrate that $\lim u_{n}=0$. First, observe that $\left|u_{n}\right|$ is monotone decreasing since $\left|u_{n+1}\right|=$ $\left(\frac{1}{2}\right)^{n+1}<\left|u_{n}\right|=\left(\frac{1}{2}\right)^{n}$. Thus, for any $\varepsilon>0$, let $N=\max \left(0, \log _{1 / 2}(\varepsilon)\right)$. Then we have for any $n>N,\left|u_{n}\right|<\left|u_{N}\right|<\varepsilon$. Thus, u_{n} converges to 0 , its set of subsequential limits is simply $S=\{0\}$, and $\lim \sup u_{n}=\lim \inf u_{n}=0$. Because $\left|u_{n}\right|$ is monotone decreasing, it is bounded from above by the first positive term $u_{0}=1$ and bounded from below by the first negative term $u_{1}=-1 / 2$.

Proof. Consider the subsequence $v_{k_{n}}=v_{2 n}=1+\frac{1}{n}$. Clearly, $1+\frac{1}{n+1}<1+\frac{1}{n}$, so this subsequence is monotone decreasing.

We claim the set of subsequential limits $S=\{-1,1\}$. Suppose there exists another subsequential limit v. We first check that v_{n} is bounded by observing
that it is the sum of two bounded sequences. Because v_{n} is bounded, it is impossible for $v= \pm \infty$.

We can then conclude that there exists a increasing integer sequence $\left(k_{n}\right)$ such that $\forall \varepsilon>0 \exists N>0 \forall n>N,\left|v_{k_{n}}-v\right|<\varepsilon$. This implies that $v-\varepsilon-\frac{1}{k_{n}}<$ $(-1)^{k_{n}}<v+\varepsilon-\frac{1}{k_{n}}$. Because $(-1)^{k_{n}}$ can only take values in $\{-1,1\}$, we have $v-\varepsilon-\frac{1}{k_{n}}<-1, v+\varepsilon-\frac{1}{k_{n}}>1$. This implies that $\varepsilon>1$, which implies that convergence fails for $\varepsilon \leq 1$. Thus, such an v cannot exist, so therefore, $S=\{-1,1\}$.

We can then conclude $\lim \sup v_{n}=\sup S=1, \liminf v_{n}=\inf S=-1$. Because $\lim \sup v_{n} \neq \lim \inf v_{n}, \lim v_{n}$ is divergent.

Problem 4. Ross 11.5. Let $\left(q_{n}\right)$ be an enumeration of all the rationals in the interval $(0,1]$.
(a) Give the set of subsequential limits for $\left(q_{n}\right)$.
(b) Give the values of $\lim \sup q_{n}$ and $\lim \inf q_{n}$.

Proof. We claim that the set of subsequential limits for $\left(q_{n}\right)$ is $[0,1]$. We first prove that if $q \in[0,1]$, then $q \in S$. In order to prove this, we define an inductive algorithm which defines a subsequence $a_{n}=q_{k_{n}}$ which converges to q.

For our base case, we let p_{0} be any arbitrary rational in $\left\{q_{n}\right\}$ with finite index i_{p} such that $p_{0}=q_{i_{p}} \neq q$ and $k_{0}=i_{p}$.

Now suppose that we have defined k_{n} up to k_{j}. Let $p=q_{k_{j}}$ and $i_{p}=k_{j}$. Here, it may seem natural to utilize the denseness of \mathbb{Q} to construct a new member of the subsequence. However, this condition alone is not sufficient to create a subsequence which converges. Instead, we let $r=(p+q) / 2$ with finite index i_{r} such that if $q<p$, we have $q<r<p$ and if $p<q$, we have $p<r<q$. It is easy to show that r is rational as

$$
r=\frac{p+q}{2}=\frac{c_{1} / d_{1}+c_{2} / d_{2}}{2}=\frac{c_{1} d_{2}+c_{2} d_{1}}{2 d_{1} d_{2}} .
$$

If $i_{r}>i_{p}$, then $k_{j+1}=i_{r}$, and the inductive step advances forward to k_{j+1}. If $i_{r}<i_{p}$, then we set $r^{\prime}=(r+q) / 2$ with finite index i_{r}^{\prime}. We then repeat the current inductive step for r^{\prime} instead of r. Because there are only a finite number of indicies smaller than i_{p}, we must eventually find an r^{\prime} such that $i_{r}^{\prime}>i_{p}$, which completes the inductive algorithm.

If $p_{0}<q$, our algorithm gives us a monotone increasing sequence with $q>$ $a_{n}>p_{0}$, and if $p_{0}>q$, our algorithm gives us a monotone decreasing sequence with $q<a_{n}<p_{0}$. This implies that in both cases, our sequences are convergent. An essential observation to make is that because our inductive step may repeat, the next term in the sequence may be a successive average of the previous term with q. This implies that if $p_{0}<q$, we have the additional condition that $a_{n+1}>\frac{a_{n}+q}{2}$, and if $p_{0}>q$, we have the additional condition that $a_{n+1}<\frac{a_{n}+q}{2}$.

In the first case, our additional condition implies $a_{n+1}>q-\left(a_{n+1}-a_{n}\right)$. For any $\varepsilon>0$, let $a_{n}-a_{n-1}<\varepsilon$. Because $\left(a_{n}\right)$ is monotone increasing and convergent, we know that $\left(a_{n}\right)$ is also Cauchy. This implies that it is always possible to find such an n which satisfies the ε condition. This implies $\forall \varepsilon>$
$0 \exists n>0$ such that $a_{n}>q-\varepsilon$, which implies that q is a least upper bound. This implies that $\lim q_{k_{n}}=\lim a_{n}=q$.

The proof for the second case follows similarly, utilizing the additional condition and Cauchy condition to show that q is the greatest lower bound which implies $\lim q_{k_{n}}=\lim a_{n}=q$.

Now, we show that if $q \notin[0,1]$, then $q \notin S$. Suppose that $q \in S$. This implies that there exists a positive, increasing sequence of integers $\left(k_{n}\right)$ such that $\forall \varepsilon>0 \exists N>0 \forall n>N,\left|q_{k_{n}}-q\right|<\varepsilon$. We can split the proof into two cases: 1) $q<0$ and 2) $q>1$.

If $q<0$, then using the fact that $q_{k_{n}}-q<\varepsilon$ and $q_{k_{n}}>0$ we have $-q<\varepsilon$ which implies that our condition fails for $\varepsilon<-q$, which is a contradiction. If $q>1$, then using the fact that $-\varepsilon<q_{k_{n}}-q$ and $q_{k_{n}} \leq 1$ we have $-\varepsilon<1-q$ which implies that our condition fails for $\varepsilon<q-1$, which is a contradiction. Thus, $q \notin S$.

Because $S=[0,1]$, we have $\limsup q_{n}=1$ and $\lim \inf q_{n}=0$.
Discussion 1. What exactly is limsup?
For some sequence $\left(a_{n}\right), \lim \sup a_{n}$ is formally defined as $\lim _{N \rightarrow \infty} \sup \left\{a_{n}\right.$: $n>N\}$. However, the meaning of limsup is lost in the formal definition. Instead, it is easier to think of lim sup and liminf as the upper and lower bounds of a sequence for sufficiently large n. In other words, it characterizes the longrun behavior of a sequence by giving us a range of possible values of a_{n}.

One important note is that $\lim \sup a_{n} \neq \sup \left\{a_{n}\right\}$ and $\liminf a_{n} \neq \inf \left\{a_{n}\right\}$. Consider the sequence $\left(a_{n}\right)=1,-1,0,0, \ldots$. Clearly, $\limsup a_{n}=\lim \inf a_{n}=0$ because the only possible value of a_{n} for sufficiently large n (in this case, simply $n \geq 2)$ is 0 . However, $\sup \left\{a_{n}\right\}=1$ and $\inf \left\{a_{n}\right\}=-1$.

Instead, it is more appropriate to think of $\lim \sup a_{n}$ as $\inf \sup a_{n}$, or the smallest supremum of the successive elements of the sequence, and $\lim \inf a_{n}$ as sup inf a_{n}, or the largest infimum of the sucessive elements of the sequence. Formally, this is written as $\lim \sup a_{n}=\inf \left\{\sup \left\{a_{n}: n>N\right\}: N \geq 0\right\}$ and $\liminf a_{n}=\sup \left\{\inf \left\{a_{n}: n>N\right\}: N \geq 0\right\}$.

