
MATH 104 HW #4

James Ni

Question 1. In Cantor’s diagonalization argument, we construct a subsequence
by selecting elements from a collection of subsequences, using the fact that there
are an infinite number of elements in (an) in the neighborhood of some s ∈ R.
How do we know that the indicies n11 < n22 < · · · ?

Question 2. When evaluating series, it is usually proper to include the n = 0
(constant) term; however, in sequences, this is usually not the case. In general,
should series and sequences be indexed starting at n = 0 or n = 1? (Of course,
this is excluding the cases where a sequence or series is not defined at some n.)

Question 3. How is it valid that we can use the integral test to prove the
convergence or divergence of a series if we have not clearly defined the concept
of continuity or functions?

Question 4. How do we define convergence for complex power series?

Question 5. Suppose we have a sequence which is bounded by two monotone
sequences. Does this sequence satisfy all the properties of monotone sequences
(except monotonicity)?

Problem 1. Ross 12.10. Prove (sn) is bounded if and only if lim sup |sn| < +∞.

Proof. We first prove the forward direction. Suppose (sn) is bounded but
lim sup |sn| = +∞. This implies that α ≤ sn ≤ β. The latter implies that there
exists a subsequence (snk) of (sn) such that limk→∞ |snk | = +∞. This implies
that ∀M > 0∃N > 0 such that ∀k > N, |snk | > M . If we let M = max(|α|, |β|),
then there exists k such that |snk | > β or snk < α. This is a contradiction, so
lim sup |sn| < +∞.

Next we prove the reverse direction. Because lim sup |sn| < +∞, let L =
lim sup |sn|. This implies that ∀ε > 0∃N > 0 such that L + ε > sup{|sn| : n >
N}. Choosing an arbitrary ε, we find an N such that ∀n > N, |sn| < L + ε ⇒
−L− ε < sn < L+ ε. Because the elements {|sn| : n ≤ N} form a finite subset
of R, we know that this set must be bounded. This implies (sn) is bounded.

Problem 2. Ross 12.12. Let (sn) be a sequence of nonnegative numbers, and
for each n define σn = 1

n (s1 + s2 + · · ·+ sn).
(a) Show

lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.

(b) Show that if lim sn exists then limσn exists and limσn = lim sn.
(c) Give an example where limσn exists, but lim sn does not exist.
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Proof. We begin by showing that for M > N ,

sup{σn : n ≥M} ≤ 1

M
(s1 + s2 + · · ·+ sN ) + sup{sn : n > N}.

We know that sup{sn : n > N} ≥ sn∀n > N . Consider the set S = {sn : N <
n ≤ M}. Because S is a finite subset of R, it has a maximum, which we shall
denote sk ∈ S. We then get

sup{sn : n > N}+
1

M
(s1 + s2 + · · ·+ sN ) ≥ 1

M
(s1 + s2 + · · ·+ sN ) + sk

≥ 1

M
(s1 + s2 + · · ·+ sN ) +

M −N
M

sk +
N

M
sk

≥ 1

M
(s1 + s2 + · · ·+ SN ) +

1

M
(sN+1 + · · ·+ sM ) +

N

M
sk

= σM +
N

M
sk ≥ sup{σn : n ≥M.}

Taking the limit N → ∞, this implies lim supσn ≤ lim sup sn. Similarly,
using inf and reversing the direction of the inequality, we find lim inf sn ≤
lim inf σn. Because lim inf σn ≤ lim supσn by definition, this gives us

lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.

If lim sn exists, let lim sn = lim sup sn = lim inf sn = L. Then, we have
L ≤ lim inf σn ≤ L and L ≤ lim supσn ≤ L which implies limσn = lim supσn =
lim inf σn = L.

Notice that the reverse direction does not hold. Namely, if we let sn = 1 if
n is odd and sn = −1 if n is even, then σn = 1

n if n is odd and σn = 0 if n is
even. Although limσn = 0, lim sn does not exist.

Problem 3. Ross 14.2. Determine which of the following series converge.
Justify your answers.

(a)
∑

n−1
n , (b)

∑
(−1)n, (c)

∑
3n
n3 , (d)

∑
n3

3n , (e)
∑

n2

n! , (f)
∑

1
nn , (g)

∑
n
2n .

� lim n−1
n = 1⇒

∑
n−1
n diverges.

� lim(−1)n diverges ⇒
∑

(−1)n diverges.

�

∑
3n
n3 = 3

∑
1
n2 . Since

∑
1
n2 converges,

∑
3n
n3 also converges.

� By the Root Test, lim(|n
3

3n |)
1/n = 1

3 lim(n1/n)3 = 1
3 < 1. Thus,

∑
n3

3n

converges.

� By the Ratio Test, lim |(n+1)2/(n+1)!|
|n2/n!| = lim(n+1

n )2 1
n+1 = 0. Thus,

∑
n2

n!
converges.

� By the Root Test, lim(| 1
nn |)

1/n = lim 1
n = 0. Thus,

∑
1
nn converges.

� By the Ratio Test, lim |(n+1)/2n+1|
|n/2n| = 1

2 lim n+1
n = 1

2 . Thus,
∑

n
2n con-

verges.
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Problem 4. Ross 14.10. Find a series
∑
an which diverges by the Root Test

but for which the Ratio Test gives no information.

Proof. Consider the sequence an = 1 if n is odd and an = 2n if n is even.

Then, lim inf |an+1|
|an| = lim 1

1 = 1 and lim sup |an+1|
|an| lim 2n+1

2n = 2. Because

lim inf |an+1|
|an| ≤ 1 ≤ lim sup |an+1|

|an| , the Ratio Test is inconclusive. However,

lim sup(|an|)1/n = lim(2n)1/n = 2, which implies
∑
an diverges.

Problem 5. Rudin 3.6. Investigate the behavior of
∑
an if

(a) an =
√
n+ 1−

√
n;

(b) an =
√
n+1−

√
n

n ;
(c) an = ( n

√
n− 1)n;

(d) an = 1
1+zn , for complex values of z.

Proof. Consider the sequence of partial sums sn =
∑n
i=0 ai. We get

sn =

n∑
i=0

√
i+ 1−

√
i =

n∑
i=0

√
i+ 1−

n∑
i=0

√
i =

n+1∑
i=1

√
i−

n∑
i=0

√
i

=
√
n+ 1.

This implies
∑
an = lim sn = +∞⇒

∑
an diverges.

Proof. Consider the sequence of partial sums sn =
∑n
i=0 ai. We get

sn =

n∑
i=1

√
i+ 1−

√
i

i
=

n∑
i=1

√
i+ 1

i
−

n∑
i=1

√
i

i
=

n+1∑
i=1

√
i

i− 1
−

n∑
i=1

√
i

i

=

√
n+ 1

n
− 1 +

n∑
i=2

√
i(

1

i− 1
− 1

i
) =

√
n+ 1

n
− 1 +

n∑
i=2

√
i

i(i− 1)
.

Because

lim

√
n+ 1

n
= lim

√
n

n+ 1
= lim

1√
n+ 1/

√
n

= 0,

it suffices to investigate the behavior of
∑ √

n
n(n−1) . Rewriting, we get

√
n

n(n− 1)
=

1

n3/2
· 1

1− 1/n
≤ 2

n3/2
.

Because
∑

1
n3/2 converges, this implies

∑
an converges.

Proof. By the Root Test, lim(|( n
√
n − 1)n|)1/n = lim n

√
n − 1 = 0. Thus,

∑
an

converges.

Proof. Let us express z = reiθ, where r is positive and 0 ≤ θ ≤ 2π. If r ≤ 1, then
lim an = lim 1

1+rneiθn
= 1, which implies

∑
an diverges. If r > 1, then because

1
1+rneiθn

≤ 1
rneiθn

= r−n ¯eiθn and
∑

1
an converges,

∑
an also converges.
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Problem 6. Rudin 3.7. Prove that the convergence of
∑
an implies the con-

vergence of
∑ √

an
n if an ≥ 0.

Proof. Observe that we can apply the simple inequality (a + b)2 ≥ 2ab to get
(an + n−2)2 ≥ 2ann

−2 ⇒ (an + n−2)/
√

2 ≥ √ann−1. Because both
∑
an and∑

n−2 converge,
∑ √

an
n also must converge.

Problem 7. Rudin 3.9. Find the radius of convergence of each of the following
power series:

(a)
∑
n3zn, (b)

∑
2n

n! z
n, (c)

∑
2n

n2 z
n, (d)

∑
n3

3n z
n.

For the following problems, we only evaluate the power series based on the
modulus of z.

Proof. Observe that limn1/n = 1 ⇒ lim(n3)1/n = lim(n1/n)3 = 13 = 1 ⇒
lim sup(n3)1/n = 1. Thus, α = lim sup |an|1/n = lim sup(n3)1/n = 1 ⇒ R = 1.
If z = ±1, then the series is equivalent to

∑
(±1)n which diverges. Thus, our

radius of convergence is −1 < z < 1.

Proof. We first compute the limit lim 1
(n!)1/n

. We know that 1
(n!)1/n

is bounded

from below by 0. Consider that in the product expansion of n!, there are at
least n/2 terms greater than n/2. Thus, n! ≥ (n2 )n/2. This implies

lim
1

(n!)1/n
≤ lim

1

(n/2)1/2
= lim

√
2√
n

= 0.

Thus,

α = lim sup |an|1/n = lim sup(
2n

n!
)1/n = lim

2

(n!)1/n
= 0⇒ R = +∞.

Therefore, our radius of convergence is all real numbers.

Proof. Similar to the first series, α = lim sup |an|1/n = lim sup( 2n

n2 )1/n =
lim sup 2

(n2)1/n
= 2 ⇒ R = 1

2 . If z = ± 1
2 , then the series is equivalent to∑

(±1)n 1
n2 which converges. Thus, our radius of convergence is − 1

2 ≤ z ≤
1
2 .

Proof. Similar to the first series, α = lim sup |an|1/n = lim sup(n
3

3n )1/n =

lim sup (n3)1/n

3 = 1
3 ⇒ R = 3. If z = ±3, then the series is equivalent to∑

(±1)nn3 which diverges. Thus, our radius of convergence is −3 < z < 3.

Problem 8. Rudin 3.12. Suppose an > 0, sn = a1+· · ·+an, and
∑
an diverges.

(a) Prove that
∑ an

1+an
diverges.

(b) Prove that
aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

4



and deduce that
∑ an

sn
diverges.

(c) Prove that
an
s2n
≤ 1

sn−1
− 1

sn

and deduce that
∑ an

s2n
converges.

(d) What can be said about∑ an
1 + nan

and
∑ an

1 + n2an
?

Proof. Suppose that lim an diverges to ±∞. Then lim an
an+1 = 1, which implies∑ an

an+1 also diverges.
If lim an diverges otherwise, then let lim sup an = a and lim inf bn = b, a 6= b.

This implies there exists subsequences of an such that their limits equal a and
b, which further implies that there exists subsequences of an

an+1 such that their

limits equal a
a+1 and b

b+1 . Hence,
∑ an

an+1 also diverges.
If lim an exists and is nonzero, then lim an

an+1 is also nonzero, which implies∑ an
an+1 also diverges.
This leaves us with the case that lim an exists and equals 0. If this is the

case, consider the limit

lim
an
an
an+1

= lim an + 1 = 1.

This implies that the tail end behavior of an
an+1 is equivalent to an, which implies

an
an+1 diverges.

Now consider the series
∑ an

sn
. We demonstrate its divergence by first prov-

ing that
aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k
.

Because an is positive, sn is increasing. This implies that

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ aN+1

sN+k
+ · · ·+ aN+k

sN+k

≥ sN+k − sN
sN+k

= 1− sN
sN+k

.

Using this with the fact that sn is strictly increasing, we can show that

|
p∑

k=n

ak
sk
| =

p∑
k=n

ak
sk
≥ 1− sn−1

sp
> 0

which implies that
∑ an

sn
fails the Cauchy criterion and is hence divergent.

Now consider the series
∑ an

s2n
. We demonstrate its convergence by first

showing that

an
sn
≤ an
sn−1

=
sn
sn−1

− 1⇒ an
s2n
≤ 1

sn−1
− 1

sn
.
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This gives us

|
p∑

k=n

ak
s2k
| =

p∑
k=n

ak
s2k
≤

p∑
k=n

1

sk−1
− 1

sk
=

p∑
k=n

1

sk−1
−

p∑
k=n

1

sk

=

p−1∑
k=n−1

1

sk
−

p∑
k=n

1

sk
=

1

sn−1
− 1

p
≤ 1

sn−1
.

Now suppose that ∃ε > 0 such that ∀n > 0, ε ≤ 1
sn−1

. This would imply

sn−1 ≤ 1
ε is bounded from above. Because we know sn is also bounded from

below by 0, and because sn is monotone, this implies that sn converges. How-
ever, this would mean that

∑
an converges which is a contradiction. Thus,

∀ε > 0∃n > 0 such that ε > 1
sn−1

. This implies that
∑ an

s2n
satisfies the Cauchy

criterion and hence is convergent.
Now consider the series

∑ an
1+nan

. We can reduce an
1+nan

= 1
n+1/an

. For

n ≥ 1/an, an
1+nan

≥ 1
2/an

= an
2 . For n ≤ 1/an, an

1+nan
≥ 1

2n . This implies that∑ an
1+nan

≥
∑ an

2 +
∑

1
2n . Since both subseries diverge,

∑ an
1+nan

also diverges.

Finally consider the series
∑ an

1+n2an
. Because an

1+n2an
≤ an

n2an
= 1

n2 and∑
1
n2 converges,

∑ an
1+n2an

also converges.
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