MATH 104 HW \#4

James Ni

Question 1. In Cantor's diagonalization argument, we construct a subsequence by selecting elements from a collection of subsequences, using the fact that there are an infinite number of elements in $\left(a_{n}\right)$ in the neighborhood of some $s \in R$. How do we know that the indicies $n_{11}<n_{22}<\cdots$?

Question 2. When evaluating series, it is usually proper to include the $n=0$ (constant) term; however, in sequences, this is usually not the case. In general, should series and sequences be indexed starting at $n=0$ or $n=1$? (Of course, this is excluding the cases where a sequence or series is not defined at some n.)

Question 3. How is it valid that we can use the integral test to prove the convergence or divergence of a series if we have not clearly defined the concept of continuity or functions?
Question 4. How do we define convergence for complex power series?
Question 5. Suppose we have a sequence which is bounded by two monotone sequences. Does this sequence satisfy all the properties of monotone sequences (except monotonicity)?

Problem 1. Ross 12.10. Prove $\left(s_{n}\right)$ is bounded if and only if $\lim \sup \left|s_{n}\right|<+\infty$.
Proof. We first prove the forward direction. Suppose $\left(s_{n}\right)$ is bounded but $\lim \sup \left|s_{n}\right|=+\infty$. This implies that $\alpha \leq s_{n} \leq \beta$. The latter implies that there exists a subsequence $\left(s_{n_{k}}\right)$ of $\left(s_{n}\right)$ such that $\lim _{k \rightarrow \infty}\left|s_{n_{k}}\right|=+\infty$. This implies that $\forall M>0 \exists N>0$ such that $\forall k>N,\left|s_{n_{k}}\right|>M$. If we let $M=\max (|\alpha|,|\beta|)$, then there exists k such that $\left|s_{n_{k}}\right|>\beta$ or $s_{n_{k}}<\alpha$. This is a contradiction, so $\lim \sup \left|s_{n}\right|<+\infty$.

Next we prove the reverse direction. Because $\lim \sup \left|s_{n}\right|<+\infty$, let $L=$ $\lim \sup \left|s_{n}\right|$. This implies that $\forall \varepsilon>0 \exists N>0$ such that $L+\varepsilon>\sup \left\{\left|s_{n}\right|: n>\right.$ $N\}$. Choosing an arbitrary ε, we find an N such that $\forall n>N,\left|s_{n}\right|<L+\varepsilon \Rightarrow$ $-L-\varepsilon<s_{n}<L+\varepsilon$. Because the elements $\left\{\left|s_{n}\right|: n \leq N\right\}$ form a finite subset of \mathbb{R}, we know that this set must be bounded. This implies $\left(s_{n}\right)$ is bounded.

Problem 2. Ross 12.12. Let $\left(s_{n}\right)$ be a sequence of nonnegative numbers, and for each n define $\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\cdots+s_{n}\right)$.
(a) Show

$$
\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}
$$

(b) Show that if $\lim s_{n}$ exists then $\lim \sigma_{n}$ exists and $\lim \sigma_{n}=\lim s_{n}$.
(c) Give an example where $\lim \sigma_{n}$ exists, but $\lim s_{n}$ does not exist.

Proof. We begin by showing that for $M>N$,

$$
\sup \left\{\sigma_{n}: n \geq M\right\} \leq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\sup \left\{s_{n}: n>N\right\}
$$

We know that $\sup \left\{s_{n}: n>N\right\} \geq s_{n} \forall n>N$. Consider the set $S=\left\{s_{n}: N<\right.$ $n \leq M\}$. Because S is a finite subset of \mathbb{R}, it has a maximum, which we shall denote $s_{k} \in S$. We then get

$$
\begin{aligned}
\sup \left\{s_{n}: n>N\right\} & +\frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right) \geq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+s_{k} \\
& \geq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\frac{M-N}{M} s_{k}+\frac{N}{M} s_{k} \\
& \geq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+S_{N}\right)+\frac{1}{M}\left(s_{N+1}+\cdots+s_{M}\right)+\frac{N}{M} s_{k} \\
& =\sigma_{M}+\frac{N}{M} s_{k} \geq \sup \left\{\sigma_{n}: n \geq M .\right\}
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$, this implies $\lim \sup \sigma_{n} \leq \lim \sup s_{n}$. Similarly, using inf and reversing the direction of the inequality, we find $\lim \inf s_{n} \leq$ $\lim \inf \sigma_{n}$. Because $\lim \inf \sigma_{n} \leq \limsup \sigma_{n}$ by definition, this gives us

$$
\liminf s_{n} \leq \lim \inf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}
$$

If $\lim s_{n}$ exists, let $\lim s_{n}=\limsup s_{n}=\lim \inf s_{n}=L$. Then, we have $L \leq \liminf \sigma_{n} \leq L$ and $L \leq \limsup \sigma_{n} \leq L$ which implies $\lim \sigma_{n}=\limsup \sigma_{n}=$ $\liminf \sigma_{n}=L$.

Notice that the reverse direction does not hold. Namely, if we let $s_{n}=1$ if n is odd and $s_{n}=-1$ if n is even, then $\sigma_{n}=\frac{1}{n}$ if n is odd and $\sigma_{n}=0$ if n is even. Although $\lim \sigma_{n}=0, \lim s_{n}$ does not exist.

Problem 3. Ross 14.2. Determine which of the following series converge. Justify your answers.
(a) $\sum \frac{n-1}{n}$, (b) $\sum(-1)^{n}$, (c) $\sum \frac{3 n}{n^{3}}$, (d) $\sum \frac{n^{3}}{3^{n}}$, (e) $\sum \frac{n^{2}}{n!}$, (f) $\sum \frac{1}{n^{n}}$, (g) $\sum \frac{n}{2^{n}}$.

- $\lim \frac{n-1}{n}=1 \Rightarrow \sum \frac{n-1}{n}$ diverges.
- $\lim (-1)^{n}$ diverges $\Rightarrow \sum(-1)^{n}$ diverges.
- $\sum \frac{3 n}{n^{3}}=3 \sum \frac{1}{n^{2}}$. Since $\sum \frac{1}{n^{2}}$ converges, $\sum \frac{3 n}{n^{3}}$ also converges.
- By the Root Test, $\lim \left(\left|\frac{n^{3}}{3^{n}}\right|\right)^{1 / n}=\frac{1}{3} \lim \left(n^{1 / n}\right)^{3}=\frac{1}{3}<1$. Thus, $\sum \frac{n^{3}}{3^{n}}$ converges.
- By the Ratio Test, $\lim \frac{\left|(n+1)^{2} /(n+1)!\right|}{\left|n^{2} / n!\right|}=\lim \left(\frac{n+1}{n}\right)^{2} \frac{1}{n+1}=0$. Thus, $\sum \frac{n^{2}}{n!}$ converges.
- By the Root Test, $\lim \left(\left|\frac{1}{n^{n}}\right|\right)^{1 / n}=\lim \frac{1}{n}=0$. Thus, $\sum \frac{1}{n^{n}}$ converges.
- By the Ratio Test, $\lim \frac{\left|(n+1) / 2^{n+1}\right|}{\left|n / 2^{n}\right|}=\frac{1}{2} \lim \frac{n+1}{n}=\frac{1}{2}$. Thus, $\sum \frac{n}{2^{n}}$ converges.

Problem 4. Ross 14.10. Find a series $\sum a_{n}$ which diverges by the Root Test but for which the Ratio Test gives no information.

Proof. Consider the sequence $a_{n}=1$ if n is odd and $a_{n}=2^{n}$ if n is even. Then, $\lim \inf \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim \frac{1}{1}=1$ and $\lim \sup \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \lim \frac{2^{n+1}}{2^{n}}=2$. Because $\lim \inf \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \leq 1 \leq \lim \sup \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$, the Ratio Test is inconclusive. However, $\limsup \left(\left|a_{n}\right|\right)^{1 / n}=\lim \left(2^{n}\right)^{1 / n}=2$, which implies $\sum a_{n}$ diverges.

Problem 5. Rudin 3.6. Investigate the behavior of $\sum a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$;
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$;
(c) $a_{n}=(\sqrt[n]{n}-1)^{n}$;
(d) $a_{n}=\frac{1}{1+z^{n}}$, for complex values of z.

Proof. Consider the sequence of partial sums $s_{n}=\sum_{i=0}^{n} a_{i}$. We get

$$
\begin{aligned}
s_{n} & =\sum_{i=0}^{n} \sqrt{i+1}-\sqrt{i}=\sum_{i=0}^{n} \sqrt{i+1}-\sum_{i=0}^{n} \sqrt{i}=\sum_{i=1}^{n+1} \sqrt{i}-\sum_{i=0}^{n} \sqrt{i} \\
& =\sqrt{n+1}
\end{aligned}
$$

This implies $\sum a_{n}=\lim s_{n}=+\infty \Rightarrow \sum a_{n}$ diverges.
Proof. Consider the sequence of partial sums $s_{n}=\sum_{i=0}^{n} a_{i}$. We get

$$
\begin{aligned}
s_{n} & =\sum_{i=1}^{n} \frac{\sqrt{i+1}-\sqrt{i}}{i}=\sum_{i=1}^{n} \frac{\sqrt{i+1}}{i}-\sum_{i=1}^{n} \frac{\sqrt{i}}{i}=\sum_{i=1}^{n+1} \frac{\sqrt{i}}{i-1}-\sum_{i=1}^{n} \frac{\sqrt{i}}{i} \\
& =\frac{\sqrt{n+1}}{n}-1+\sum_{i=2}^{n} \sqrt{i}\left(\frac{1}{i-1}-\frac{1}{i}\right)=\frac{\sqrt{n+1}}{n}-1+\sum_{i=2}^{n} \frac{\sqrt{i}}{i(i-1)} .
\end{aligned}
$$

Because

$$
\lim \frac{\sqrt{n+1}}{n}=\lim \frac{\sqrt{n}}{n+1}=\lim \frac{1}{\sqrt{n}+1 / \sqrt{n}}=0
$$

it suffices to investigate the behavior of $\sum \frac{\sqrt{n}}{n(n-1)}$. Rewriting, we get

$$
\frac{\sqrt{n}}{n(n-1)}=\frac{1}{n^{3 / 2}} \cdot \frac{1}{1-1 / n} \leq \frac{2}{n^{3 / 2}}
$$

Because $\sum \frac{1}{n^{3 / 2}}$ converges, this implies $\sum a_{n}$ converges.
Proof. By the Root Test, $\lim \left(\left|(\sqrt[n]{n}-1)^{n}\right|\right)^{1 / n}=\lim \sqrt[n]{n}-1=0$. Thus, $\sum a_{n}$ converges.

Proof. Let us express $z=r e^{i \theta}$, where r is positive and $0 \leq \theta \leq 2 \pi$. If $r \leq 1$, then $\lim a_{n}=\lim \frac{1}{1+r^{n} e^{i \theta n}}=1$, which implies $\sum a_{n}$ diverges. If $r>1$, then because $\frac{1}{1+r^{n} e^{i \theta n}} \leq \frac{1}{r^{n} e^{i \theta n}}=r^{-n} e^{i \bar{\theta} n}$ and $\sum \frac{1}{a^{n}}$ converges, $\sum a_{n}$ also converges.

Problem 6. Rudin 3.7. Prove that the convergence of $\sum a_{n}$ implies the convergence of $\sum \frac{\sqrt{a_{n}}}{n}$ if $a_{n} \geq 0$.
Proof. Observe that we can apply the simple inequality $(a+b)^{2} \geq 2 a b$ to get $\left(a_{n}+n^{-2}\right)^{2} \geq 2 a_{n} n^{-2} \Rightarrow\left(a_{n}+n^{-2}\right) / \sqrt{2} \geq \sqrt{a_{n}} n^{-1}$. Because both $\sum a_{n}$ and $\sum n^{-2}$ converge, $\sum \frac{\sqrt{a_{n}}}{n}$ also must converge.

Problem 7. Rudin 3.9. Find the radius of convergence of each of the following power series:
(a) $\sum n^{3} z^{n}$, (b) $\sum \frac{2^{n}}{n!} z^{n}$, (c) $\sum \frac{2^{n}}{n^{2}} z^{n}$, (d) $\sum \frac{n^{3}}{3^{n}} z^{n}$.

For the following problems, we only evaluate the power series based on the modulus of z.

Proof. Observe that $\lim n^{1 / n}=1 \Rightarrow \lim \left(n^{3}\right)^{1 / n}=\lim \left(n^{1 / n}\right)^{3}=1^{3}=1 \Rightarrow$ $\lim \sup \left(n^{3}\right)^{1 / n}=1$. Thus, $\alpha=\limsup \left|a_{n}\right|^{1 / n}=\lim \sup \left(n^{3}\right)^{1 / n}=1 \Rightarrow R=1$. If $z= \pm 1$, then the series is equivalent to $\sum(\pm 1)^{n}$ which diverges. Thus, our radius of convergence is $-1<z<1$.

Proof. We first compute the limit $\lim \frac{1}{(n!)^{1 / n}}$. We know that $\frac{1}{(n!)^{1 / n}}$ is bounded from below by 0 . Consider that in the product expansion of $n!$, there are at least $n / 2$ terms greater than $n / 2$. Thus, $n!\geq\left(\frac{n}{2}\right)^{n / 2}$. This implies

$$
\lim \frac{1}{(n!)^{1 / n}} \leq \lim \frac{1}{(n / 2)^{1 / 2}}=\lim \frac{\sqrt{2}}{\sqrt{n}}=0
$$

Thus,

$$
\alpha=\limsup \left|a_{n}\right|^{1 / n}=\limsup \left(\frac{2^{n}}{n!}\right)^{1 / n}=\lim \frac{2}{(n!)^{1 / n}}=0 \Rightarrow R=+\infty
$$

Therefore, our radius of convergence is all real numbers.
Proof. Similar to the first series, $\alpha=\limsup \left|a_{n}\right|^{1 / n}=\limsup \left(\frac{2^{n}}{n^{2}}\right)^{1 / n}=$ $\limsup \frac{2}{\left(n^{2}\right)^{1 / n}}=2 \Rightarrow R=\frac{1}{2}$. If $z= \pm \frac{1}{2}$, then the series is equivalent to $\sum_{\frac{1}{2}}(\pm 1)^{n} \frac{1}{n^{2}}$ which converges. Thus, our radius of convergence is $-\frac{1}{2} \leq z \leq$

Proof. Similar to the first series, $\alpha=\limsup \left|a_{n}\right|^{1 / n}=\limsup \left(\frac{n^{3}}{3^{n}}\right)^{1 / n}=$ $\limsup \frac{\left(n^{3}\right)^{1 / n}}{3^{3}}=\frac{1}{3} \Rightarrow R=3$. If $z= \pm 3$, then the series is equivalent to $\sum(\pm 1)^{n} n^{3}$ which diverges. Thus, our radius of convergence is $-3<z<3$.

Problem 8. Rudin 3.12. Suppose $a_{n}>0, s_{n}=a_{1}+\cdots+a_{n}$, and $\sum a_{n}$ diverges. (a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges.
(b) Prove that

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}}$ diverges.
(c) Prove that

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}^{2}}$ converges.
(d) What can be said about

$$
\sum \frac{a_{n}}{1+n a_{n}} \text { and } \sum \frac{a_{n}}{1+n^{2} a_{n}} ?
$$

Proof. Suppose that $\lim a_{n}$ diverges to $\pm \infty$. Then $\lim \frac{a_{n}}{a_{n}+1}=1$, which implies $\sum \frac{a_{n}}{a_{n}+1}$ also diverges.

If $\lim a_{n}$ diverges otherwise, then let $\lim \sup a_{n}=a$ and $\liminf b_{n}=b, a \neq b$. This implies there exists subsequences of a_{n} such that their limits equal a and b, which further implies that there exists subsequences of $\frac{a_{n}}{a_{n}+1}$ such that their limits equal $\frac{a}{a+1}$ and $\frac{b}{b+1}$. Hence, $\sum \frac{a_{n}}{a_{n}+1}$ also diverges.

If $\lim a_{n}$ exists and is nonzero, then $\lim \frac{a_{n}}{a_{n}+1}$ is also nonzero, which implies $\sum \frac{a_{n}}{a_{n}+1}$ also diverges.

This leaves us with the case that $\lim a_{n}$ exists and equals 0 . If this is the case, consider the limit

$$
\lim \frac{a_{n}}{\frac{a_{n}}{a_{n}+1}}=\lim a_{n}+1=1
$$

This implies that the tail end behavior of $\frac{a_{n}}{a_{n}+1}$ is equivalent to a_{n}, which implies $\frac{a_{n}}{a_{n}+1}$ diverges.

Now consider the series $\sum \frac{a_{n}}{s_{n}}$. We demonstrate its divergence by first proving that

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}} .
$$

Because a_{n} is positive, s_{n} is increasing. This implies that

$$
\begin{aligned}
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} & \geq \frac{a_{N+1}}{s_{N+k}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \\
& \geq \frac{s_{N+k}-s_{N}}{s_{N+k}}=1-\frac{s_{N}}{s_{N+k}}
\end{aligned}
$$

Using this with the fact that s_{n} is strictly increasing, we can show that

$$
\left|\sum_{k=n}^{p} \frac{a_{k}}{s_{k}}\right|=\sum_{k=n}^{p} \frac{a_{k}}{s_{k}} \geq 1-\frac{s_{n-1}}{s_{p}}>0
$$

which implies that $\sum \frac{a_{n}}{s_{n}}$ fails the Cauchy criterion and is hence divergent.
Now consider the series $\sum \frac{a_{n}}{s_{n}^{2}}$. We demonstrate its convergence by first showing that

$$
\frac{a_{n}}{s_{n}} \leq \frac{a_{n}}{s_{n-1}}=\frac{s_{n}}{s_{n-1}}-1 \Rightarrow \frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

This gives us

$$
\begin{aligned}
\left|\sum_{k=n}^{p} \frac{a_{k}}{s_{k}^{2}}\right| & =\sum_{k=n}^{p} \frac{a_{k}}{s_{k}^{2}} \leq \sum_{k=n}^{p} \frac{1}{s_{k-1}}-\frac{1}{s_{k}}=\sum_{k=n}^{p} \frac{1}{s_{k-1}}-\sum_{k=n}^{p} \frac{1}{s_{k}} \\
& =\sum_{k=n-1}^{p-1} \frac{1}{s_{k}}-\sum_{k=n}^{p} \frac{1}{s_{k}}=\frac{1}{s_{n-1}}-\frac{1}{p} \leq \frac{1}{s_{n-1}}
\end{aligned}
$$

Now suppose that $\exists \varepsilon>0$ such that $\forall n>0, \varepsilon \leq \frac{1}{s_{n-1}}$. This would imply $s_{n-1} \leq \frac{1}{\varepsilon}$ is bounded from above. Because we know s_{n} is also bounded from below by 0 , and because s_{n} is monotone, this implies that s_{n} converges. However, this would mean that $\sum a_{n}$ converges which is a contradiction. Thus, $\forall \varepsilon>0 \exists n>0$ such that $\varepsilon>\frac{1}{s_{n-1}}$. This implies that $\sum \frac{a_{n}}{s_{n}^{2}}$ satisfies the Cauchy criterion and hence is convergent.

Now consider the series $\sum \frac{a_{n}}{1+n a_{n}}$. We can reduce $\frac{a_{n}}{1+n a_{n}}=\frac{1}{n+1 / a_{n}}$. For $n \geq 1 / a_{n}, \frac{a_{n}}{1+n a_{n}} \geq \frac{1}{2 / a_{n}}=\frac{a_{n}}{2}$. For $n \leq 1 / a_{n}, \frac{a_{n}}{1+n a_{n}} \geq \frac{1}{2 n}$. This implies that $\sum \frac{a_{n}}{1+n a_{n}} \geq \sum \frac{a_{n}}{2}+\sum \frac{1}{2 n}$. Since both subseries diverge, $\sum \frac{a_{n}}{1+n a_{n}}$ also diverges.

Finally consider the series $\sum \frac{a_{n}}{1+n^{2} a_{n}}$. Because $\frac{a_{n}}{1+n^{2} a_{n}} \leq \frac{a_{n}}{n^{2} a_{n}}=\frac{1}{n^{2}}$ and $\sum \frac{1}{n^{2}}$ converges, $\sum \frac{a_{n}}{1+n^{2} a_{n}}$ also converges.

