MATH 104 HW #4

James Ni

Question 1. In Cantor's diagonalization argument, we construct a subsequence by selecting elements from a collection of subsequences, using the fact that there are an infinite number of elements in (a_n) in the neighborhood of some $s \in R$. How do we know that the indicies $n_{11} < n_{22} < \cdots$?

Question 2. When evaluating series, it is usually proper to include the n = 0 (constant) term; however, in sequences, this is usually not the case. In general, should series and sequences be indexed starting at n = 0 or n = 1? (Of course, this is excluding the cases where a sequence or series is not defined at some n.)

Question 3. How is it valid that we can use the integral test to prove the convergence or divergence of a series if we have not clearly defined the concept of continuity or functions?

Question 4. How do we define convergence for complex power series?

Question 5. Suppose we have a sequence which is bounded by two monotone sequences. Does this sequence satisfy all the properties of monotone sequences (except monotonicity)?

Problem 1. Ross 12.10. Prove (s_n) is bounded if and only if $\limsup |s_n| < +\infty$.

Proof. We first prove the forward direction. Suppose (s_n) is bounded but $\limsup |s_n| = +\infty$. This implies that $\alpha \leq s_n \leq \beta$. The latter implies that there exists a subsequence (s_{n_k}) of (s_n) such that $\lim_{k\to\infty} |s_{n_k}| = +\infty$. This implies that $\forall M > 0 \exists N > 0$ such that $\forall k > N, |s_{n_k}| > M$. If we let $M = max(|\alpha|, |\beta|)$, then there exists k such that $|s_{n_k}| > \beta$ or $s_{n_k} < \alpha$. This is a contradiction, so $\limsup |s_n| < +\infty$.

Next we prove the reverse direction. Because $\limsup |s_n| < +\infty$, let $L = \limsup |s_n|$. This implies that $\forall \varepsilon > 0 \exists N > 0$ such that $L + \varepsilon > \sup\{|s_n| : n > N\}$. Choosing an arbitrary ε , we find an N such that $\forall n > N, |s_n| < L + \varepsilon \Rightarrow -L - \varepsilon < s_n < L + \varepsilon$. Because the elements $\{|s_n| : n \leq N\}$ form a finite subset of \mathbb{R} , we know that this set must be bounded. This implies (s_n) is bounded. \Box

Problem 2. Ross 12.12. Let (s_n) be a sequence of nonnegative numbers, and for each n define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \cdots + s_n)$. (a) Show

 $\liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n.$

(b) Show that if $\lim s_n$ exists then $\lim \sigma_n$ exists and $\lim \sigma_n = \lim s_n$.

(c) Give an example where $\lim \sigma_n$ exists, but $\lim s_n$ does not exist.

Proof. We begin by showing that for M > N,

$$\sup\{\sigma_n : n \ge M\} \le \frac{1}{M}(s_1 + s_2 + \dots + s_N) + \sup\{s_n : n > N\}.$$

We know that $\sup\{s_n : n > N\} \ge s_n \forall n > N$. Consider the set $S = \{s_n : N < n \le M\}$. Because S is a finite subset of \mathbb{R} , it has a maximum, which we shall denote $s_k \in S$. We then get

$$\sup\{s_{n}: n > N\} + \frac{1}{M}(s_{1} + s_{2} + \dots + s_{N}) \ge \frac{1}{M}(s_{1} + s_{2} + \dots + s_{N}) + s_{k}$$
$$\ge \frac{1}{M}(s_{1} + s_{2} + \dots + s_{N}) + \frac{M - N}{M}s_{k} + \frac{N}{M}s_{k}$$
$$\ge \frac{1}{M}(s_{1} + s_{2} + \dots + S_{N}) + \frac{1}{M}(s_{N+1} + \dots + s_{M}) + \frac{N}{M}s_{k}$$
$$= \sigma_{M} + \frac{N}{M}s_{k} \ge \sup\{\sigma_{n}: n \ge M.\}$$

Taking the limit $N \to \infty$, this implies $\limsup \sigma_n \leq \limsup s_n$. Similarly, using inf and reversing the direction of the inequality, we find $\liminf s_n \leq \liminf \sigma_n$. Because $\liminf \sigma_n \leq \limsup \sigma_n$ by definition, this gives us

 $\liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n.$

If $\lim s_n$ exists, let $\lim s_n = \limsup s_n = \liminf \inf s_n = L$. Then, we have $L \leq \liminf \sigma_n \leq L$ and $L \leq \limsup \sigma_n \leq L$ which implies $\lim \sigma_n = \limsup \sigma_n = \liminf \sigma_n = L$.

Notice that the reverse direction does not hold. Namely, if we let $s_n = 1$ if n is odd and $s_n = -1$ if n is even, then $\sigma_n = \frac{1}{n}$ if n is odd and $\sigma_n = 0$ if n is even. Although $\lim \sigma_n = 0$, $\lim s_n$ does not exist.

Problem 3. Ross 14.2. Determine which of the following series converge. Justify your answers.

(a) $\sum_{n=1}^{\infty} \frac{n-1}{n}$, (b) $\sum_{n=1}^{\infty} (-1)^n$, (c) $\sum_{n=1}^{\infty} \frac{3n}{n^3}$, (d) $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$, (e) $\sum_{n=1}^{\infty} \frac{n^2}{n!}$, (f) $\sum_{n=1}^{\infty} \frac{1}{n^n}$, (g) $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

- $\lim \frac{n-1}{n} = 1 \Rightarrow \sum \frac{n-1}{n}$ diverges.
- $\lim_{n \to \infty} (-1)^n$ diverges $\Rightarrow \sum_{n \to \infty} (-1)^n$ diverges.
- $\sum \frac{3n}{n^3} = 3 \sum \frac{1}{n^2}$. Since $\sum \frac{1}{n^2}$ converges, $\sum \frac{3n}{n^3}$ also converges.
- By the Root Test, $\lim(|\frac{n^3}{3^n}|)^{1/n} = \frac{1}{3}\lim(n^{1/n})^3 = \frac{1}{3} < 1$. Thus, $\sum \frac{n^3}{3^n}$ converges.
- By the Ratio Test, $\lim \frac{|(n+1)^2/(n+1)!|}{|n^2/n!|} = \lim (\frac{n+1}{n})^2 \frac{1}{n+1} = 0$. Thus, $\sum \frac{n^2}{n!}$ converges.
- By the Root Test, $\lim(|\frac{1}{n^n}|)^{1/n} = \lim \frac{1}{n} = 0$. Thus, $\sum \frac{1}{n^n}$ converges.
- By the Ratio Test, $\lim \frac{|(n+1)/2^{n+1}|}{|n/2^n|} = \frac{1}{2} \lim \frac{n+1}{n} = \frac{1}{2}$. Thus, $\sum \frac{n}{2^n}$ converges.

Problem 4. Ross 14.10. Find a series $\sum a_n$ which diverges by the Root Test but for which the Ratio Test gives no information.

Proof. Consider the sequence $a_n = 1$ if n is odd and $a_n = 2^n$ if n is even. Then, $\liminf \frac{|a_{n+1}|}{|a_n|} = \lim \frac{1}{1} = 1$ and $\limsup \frac{|a_{n+1}|}{|a_n|} \lim \frac{2^{n+1}}{2^n} = 2$. Because $\liminf \frac{|a_{n+1}|}{|a_n|} \le 1 \le \limsup \frac{|a_{n+1}|}{|a_n|}$, the Ratio Test is inconclusive. However, $\limsup (|a_n|)^{1/n} = \lim (2^n)^{1/n} = 2$, which implies $\sum a_n$ diverges. \Box

Problem 5. Rudin 3.6. Investigate the behavior of $\sum a_n$ if (a) $a_n = \sqrt{n+1} - \sqrt{n}$; (b) $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$; (c) $a_n = (\sqrt[n]{n} - 1)^n$; (d) $a_n = \frac{1}{1+z^n}$, for complex values of z.

Proof. Consider the sequence of partial sums $s_n = \sum_{i=0}^n a_i$. We get

$$s_n = \sum_{i=0}^n \sqrt{i+1} - \sqrt{i} = \sum_{i=0}^n \sqrt{i+1} - \sum_{i=0}^n \sqrt{i} = \sum_{i=1}^{n+1} \sqrt{i} - \sum_{i=0}^n \sqrt{i}$$
$$= \sqrt{n+1}.$$

This implies $\sum a_n = \lim s_n = +\infty \Rightarrow \sum a_n$ diverges.

Proof. Consider the sequence of partial sums $s_n = \sum_{i=0}^n a_i$. We get

$$s_n = \sum_{i=1}^n \frac{\sqrt{i+1} - \sqrt{i}}{i} = \sum_{i=1}^n \frac{\sqrt{i+1}}{i} - \sum_{i=1}^n \frac{\sqrt{i}}{i} = \sum_{i=1}^{n+1} \frac{\sqrt{i}}{i-1} - \sum_{i=1}^n \frac{\sqrt{i}}{i}$$
$$= \frac{\sqrt{n+1}}{n} - 1 + \sum_{i=2}^n \sqrt{i} \left(\frac{1}{i-1} - \frac{1}{i}\right) = \frac{\sqrt{n+1}}{n} - 1 + \sum_{i=2}^n \frac{\sqrt{i}}{i(i-1)}.$$

Because

$$\lim \frac{\sqrt{n+1}}{n} = \lim \frac{\sqrt{n}}{n+1} = \lim \frac{1}{\sqrt{n} + 1/\sqrt{n}} = 0,$$

it suffices to investigate the behavior of $\sum \frac{\sqrt{n}}{n(n-1)}$. Rewriting, we get

$$\frac{\sqrt{n}}{n(n-1)} = \frac{1}{n^{3/2}} \cdot \frac{1}{1-1/n} \le \frac{2}{n^{3/2}}$$

Because $\sum \frac{1}{n^{3/2}}$ converges, this implies $\sum a_n$ converges.

Proof. By the Root Test, $\lim(|(\sqrt[n]{n}-1)^n|)^{1/n} = \lim \sqrt[n]{n} - 1 = 0$. Thus, $\sum a_n$ converges.

Proof. Let us express $z = re^{i\theta}$, where r is positive and $0 \le \theta \le 2\pi$. If $r \le 1$, then $\lim a_n = \lim \frac{1}{1+r^n e^{i\theta n}} = 1$, which implies $\sum a_n$ diverges. If r > 1, then because $\frac{1}{1+r^n e^{i\theta n}} \le \frac{1}{r^n e^{i\theta n}} = r^{-n} e^{i\overline{\theta}n}$ and $\sum \frac{1}{a^n}$ converges, $\sum a_n$ also converges.

Problem 6. Rudin 3.7. Prove that the convergence of $\sum a_n$ implies the convergence of $\sum \frac{\sqrt{a_n}}{n}$ if $a_n \ge 0$.

Proof. Observe that we can apply the simple inequality $(a + b)^2 \ge 2ab$ to get $(a_n + n^{-2})^2 \ge 2a_n n^{-2} \Rightarrow (a_n + n^{-2})/\sqrt{2} \ge \sqrt{a_n} n^{-1}$. Because both $\sum a_n$ and $\sum n^{-2}$ converge, $\sum \frac{\sqrt{a_n}}{n}$ also must converge.

Problem 7. Rudin 3.9. Find the radius of convergence of each of the following power series:

(a) $\sum n^3 z^n$, (b) $\sum \frac{2^n}{n!} z^n$, (c) $\sum \frac{2^n}{n^2} z^n$, (d) $\sum \frac{n^3}{3^n} z^n$.

For the following problems, we only evaluate the power series based on the modulus of z.

Proof. Observe that $\lim n^{1/n} = 1 \Rightarrow \lim (n^3)^{1/n} = \lim (n^{1/n})^3 = 1^3 = 1 \Rightarrow \lim \sup (n^3)^{1/n} = 1$. Thus, $\alpha = \limsup |a_n|^{1/n} = \limsup (n^3)^{1/n} = 1 \Rightarrow R = 1$. If $z = \pm 1$, then the series is equivalent to $\sum (\pm 1)^n$ which diverges. Thus, our radius of convergence is -1 < z < 1.

Proof. We first compute the limit $\lim \frac{1}{(n!)^{1/n}}$. We know that $\frac{1}{(n!)^{1/n}}$ is bounded from below by 0. Consider that in the product expansion of n!, there are at least n/2 terms greater than n/2. Thus, $n! \ge (\frac{n}{2})^{n/2}$. This implies

$$\lim \frac{1}{(n!)^{1/n}} \le \lim \frac{1}{(n/2)^{1/2}} = \lim \frac{\sqrt{2}}{\sqrt{n}} = 0.$$

Thus,

$$\alpha = \limsup |a_n|^{1/n} = \limsup (\frac{2^n}{n!})^{1/n} = \lim \frac{2}{(n!)^{1/n}} = 0 \Rightarrow R = +\infty.$$

Therefore, our radius of convergence is all real numbers.

Proof. Similar to the first series, $\alpha = \limsup |a_n|^{1/n} = \limsup (\frac{2^n}{n^2})^{1/n} = \limsup \frac{2}{(n^2)^{1/n}} = 2 \Rightarrow R = \frac{1}{2}$. If $z = \pm \frac{1}{2}$, then the series is equivalent to $\sum_{n=1}^{\infty} (\pm 1)^n \frac{1}{n^2}$ which converges. Thus, our radius of convergence is $-\frac{1}{2} \leq z \leq \frac{1}{2}$.

Proof. Similar to the first series, $\alpha = \limsup |a_n|^{1/n} = \limsup (\frac{n^3}{3^n})^{1/n} = \limsup \frac{(n^3)^{1/n}}{3} = \frac{1}{3} \Rightarrow R = 3$. If $z = \pm 3$, then the series is equivalent to $\sum (\pm 1)^n n^3$ which diverges. Thus, our radius of convergence is -3 < z < 3.

Problem 8. Rudin 3.12. Suppose $a_n > 0, s_n = a_1 + \dots + a_n$, and $\sum a_n$ diverges. (a) Prove that $\sum \frac{a_n}{1+a_n}$ diverges.

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}}$$

and deduce that $\sum \frac{a_n}{s_n}$ diverges. (c) Prove that

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

and deduce that $\sum \frac{a_n}{s_n^2}$ converges. (d) What can be said about

$$\sum \frac{a_n}{1+na_n}$$
 and $\sum \frac{a_n}{1+n^2a_n}$?

Proof. Suppose that $\lim a_n$ diverges to $\pm \infty$. Then $\lim \frac{a_n}{a_n+1} = 1$, which implies $\sum \frac{a_n}{a_n+1}$ also diverges.

If $\lim a_n$ diverges otherwise, then let $\limsup a_n = a$ and $\liminf b_n = b, a \neq b$. This implies there exists subsequences of a_n such that their limits equal a and b, which further implies that there exists subsequences of $\frac{a_n}{a_n+1}$ such that their

limits equal $\frac{a}{a+1}$ and $\frac{b}{b+1}$. Hence, $\sum \frac{a_n}{a_n+1}$ also diverges. If $\lim a_n$ exists and is nonzero, then $\lim \frac{a_n}{a_n+1}$ is also nonzero, which implies $\sum \frac{a_n}{a_n+1}$ also diverges.

This leaves us with the case that $\lim a_n$ exists and equals 0. If this is the case, consider the limit

$$\lim \frac{a_n}{\frac{a_n}{a_n+1}} = \lim a_n + 1 = 1.$$

This implies that the tail end behavior of $\frac{a_n}{a_n+1}$ is equivalent to a_n , which implies

 $\frac{a_n}{a_n+1}$ diverges. Now consider the series $\sum \frac{a_n}{s_n}$. We demonstrate its divergence by first proving that

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}}.$$

Because a_n is positive, s_n is increasing. This implies that

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge \frac{a_{N+1}}{s_{N+k}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$
$$\ge \frac{s_{N+k} - s_N}{s_{N+k}} = 1 - \frac{s_N}{s_{N+k}}$$

Using this with the fact that s_n is strictly increasing, we can show that

$$|\sum_{k=n}^{p} \frac{a_k}{s_k}| = \sum_{k=n}^{p} \frac{a_k}{s_k} \ge 1 - \frac{s_{n-1}}{s_p} > 0$$

which implies that $\sum \frac{a_n}{s_n}$ fails the Cauchy criterion and is hence divergent. Now consider the series $\sum \frac{a_n}{s_n^2}$. We demonstrate its convergence by first showing that

$$\frac{a_n}{s_n} \le \frac{a_n}{s_{n-1}} = \frac{s_n}{s_{n-1}} - 1 \Rightarrow \frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}.$$

This gives us

$$\begin{aligned} |\sum_{k=n}^{p} \frac{a_{k}}{s_{k}^{2}}| &= \sum_{k=n}^{p} \frac{a_{k}}{s_{k}^{2}} \le \sum_{k=n}^{p} \frac{1}{s_{k-1}} - \frac{1}{s_{k}} = \sum_{k=n}^{p} \frac{1}{s_{k-1}} - \sum_{k=n}^{p} \frac{1}{s_{k}} \\ &= \sum_{k=n-1}^{p-1} \frac{1}{s_{k}} - \sum_{k=n}^{p} \frac{1}{s_{k}} = \frac{1}{s_{n-1}} - \frac{1}{p} \le \frac{1}{s_{n-1}}. \end{aligned}$$

Now suppose that $\exists \varepsilon > 0$ such that $\forall n > 0, \varepsilon \leq \frac{1}{s_{n-1}}$. This would imply $s_{n-1} \leq \frac{1}{\varepsilon}$ is bounded from above. Because we know s_n is also bounded from below by 0, and because s_n is monotone, this implies that s_n converges. However, this would mean that $\sum_{n=1}^{\infty} a_n$ converges which is a contradiction. Thus, $\forall \varepsilon > 0 \exists n > 0$ such that $\varepsilon > \frac{1}{s_{n-1}}$. This implies that $\sum_{n=1}^{\infty} a_n$ satisfies the Cauchy criterion and hence is convergent.

Now consider the series $\sum \frac{a_n}{1+na_n}$. We can reduce $\frac{a_n}{1+na_n} = \frac{1}{n+1/a_n}$. For $n \ge 1/a_n$, $\frac{a_n}{1+na_n} \ge \frac{1}{2/a_n} = \frac{a_n}{2}$. For $n \le 1/a_n$, $\frac{a_n}{1+na_n} \ge \frac{1}{2n}$. This implies that $\sum \frac{a_n}{1+na_n} \ge \sum \frac{a_n}{2} + \sum \frac{1}{2n}$. Since both subseries diverge, $\sum \frac{a_n}{1+na_n}$ also diverges. Finally consider the series $\sum \frac{a_n}{1+n^2a_n}$. Because $\frac{a_n}{1+n^2a_n} \le \frac{a_n}{n^2a_n} = \frac{1}{n^2}$ and $\sum \frac{1}{n^2}$ converges, $\sum \frac{a_n}{1+n^2a_n}$ also converges.