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James Ni

Problem 1. Ross 13.3. Let B be the set of all bounded sequences x = (x1, x2, · · · ),
and define d(x,y) = sup{|xj − yj | : j = 1, 2, · · · }.
(a) Show d is a metric for B.
(b) Does d∗(x,y) =

∑∞
j=1 |xj − yj | define a metric for B?

Proof. We demonstrate that d satisfies the metric properties for B.
d(x,x) = sup{|xj − xj | : j = 1, 2, · · · } = sup{0 : j = 1, 2, · · · } = 0.
Additionally, if d(x,y) = 0⇒ sup{|xj−yj | : j = 1, 2, · · · } = 0⇒ |xj−yj | ≤

0 for j = 1, 2, · · · . Because |xj − yj | ≥ 0, |xj − yj | = 0⇒ xj = yj ⇒ x = y.
This implies that if x 6= y, then d(x,y) > 0. Because x and y are bounded,

∃α, β such that |xj | ≤ α, |yj | ≤ β for j = 1, 2, · · · . Thus, |xj − yj | ≤ α + β.
Because d(x,y) = sup{|xj − yj | : j = 1, 2, · · · } is the least upper bound of
|xj − yj |, this implies d(x,y) is finite.

Finally, by the Triangle Inequality for the metric space (R, d(x, y) = |x−y|),

d(x,y) + d(y, z) = sup{|xj − yj | : j = 1, 2, · · · }+ sup{|yj − zj | : j = 1, 2, · · · }
≥ sup{|xj − yj |+ |yj − zj | : j = 1, 2, · · · }
≥ sup{|xj − zj | : j = 1, 2, · · · } = sup d(y, z).

Observe that d∗(x,y) is not a valid metric because d∗(x,y) can be infinite.
To see this simple fact, consider xi = 1, yi = 0 such that x,y are bounded
from above and below by 1 and 0, respectively. However, d∗(x,y) =

∑∞
j=1 1 =

+∞.

Problem 2. Ross 13.5.
(a) Verify one of DeMorgan’s Laws for sets:⋂

{S\U : U ∈ U} = S\
⋃
{U : U ∈ U}.

(b) Show that the intersection of any collection of closed sets is a closed set.

Proof.

x ∈
⋂
{S\U : U ∈ U}

⇔ x ∈ S\U ∀U ∈ U
⇔ x ∈ S, x /∈ U ∀U ∈ U

⇔ x ∈ S, x /∈
⋃
{U : U ∈ U}

⇔ x ∈ S\
⋃
{U : U ∈ U}.
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Thus, we get the desired result⋂
{S\U : U ∈ U} = S\

⋃
{U : U ∈ U}.

For some metric space (X, d), we know that ∀V ⊆ X which is closed, there
∃U ⊆ X which is open such that V = X\U . Thus, applying our proven result
to some collection of closed subsets V, we have⋂

{V : V ∈ V} =
⋂
{X\U : U ∈ U} = X\

⋃
{U : U ∈ U}.

Because the union of any collection of open subsets is open,
⋂
{V : V ∈ V} is

closed.

Problem 3. Ross 13.7. Show that every open set in R is the disjoint union of
a finite or infinite sequence of open intervals.

Proof. For S ⊆ R and any x ∈ S, define ax = inf{y ∈ R : (y, x) ⊆ S}, bx =
sup{y ∈ R : (x, y) ⊆ S}. For now, assume that ax, bx are finite.

Define the interval Ix := (ax, bx). Becuase ax ≤ y∀(y, x) ⊆ S and by
definition, y < x, we have ax < x. Similarly, because bx ≥ y∀(x, y) ⊆ S
and by definition, y > x, we have bx > x. Thus, x ∈ Ix. Because Ix =
(ax, x) ∪ {x} ∪ (x, bx) and (ax, x), (x, bx) ⊆ S, we have Ix ⊆ S.

Let I = {Ix : x ∈ S}. We claim that S =
⋃

Iy∈I Iy. We first prove the

forward direction. If x ∈ S, then x ∈ Ix ⊆
⋃

Iy∈I Iy ⇒ x ∈
⋃

Iy∈I ⇒ S ⊆⋃
Iy∈I . Next, we prove the reverse direction. If x ∈

⋃
Iy∈I , then ∃Iy ∈ I, x ∈

Iy ⊆ S ⇒ x ∈ S ⇒
⋃

Iy∈I ⊆ S.
Now that we have proven that S can be written as a union of open intervals,

we show that the union is disjoint. Suppose there exists Ix, Iy ∈ I, Ix 6= Iy, and
z ∈ S such that z ∈ Ix ∩ Iy. In other words, max(ax, ay) < z < min(bx, by).
Now consider the interval Iz ∈ I. Because (ax, z) ⊆ Ix ⊆ S and (ay, z) ⊆ Iy ⊆
S, az ≤ ax and az ≤ ay. Similarly, because (z, bx) ⊆ Ix ⊆ S and (z, by) ⊆ Iy ⊆
S, bz ≥ bx and bz ≥ by. Thus, Ix ⊆ Iz and Iy ⊆ Iz. However, this implies x ∈ Iz
and y ∈ Iz. Using identical logic above, we find that Iz ⊆ Ix and Iz ⊆ Iy, which
implies Ix = Iy = Iz. This is a contradiction, so therefore, the union must be
disjoint.

Returning to the assumption that ax, bx is finite, suppose ∃x ∈ S such that
ax, bx are infinite for some x ∈ S. Then, if ax = −∞, then we can express S as
the disjoint union S = S′∪(−∞, bx), where S′ is bounded from below. Likewise,
if bx = +∞, then we can express S as the disjoint union S = S′ ∪ (ax,+∞),
where S′ is bounded from above. If both ax = −∞ and bx = +∞, then
S = (−∞,+∞).

Problem 4. Show that the closure of a closed set S̄ is S̄.

Proof. We want to show that for a metric space (X, d) and S̄ ∈ X, ¯̄S = S̄,
where S̄ := {x : ∃(sn) ∈ S, (sn)→ x}.
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We first prove the forward direction. If x ∈ ¯̄S then ∃(sn) ∈ S̄, (sn) → x.
Similarly, ∀sn∃(tk) ∈ S, (tk) → sn. From these, we get that ∀εs > 0∃Ns > 0
such that ∀n > Ns, d(sn, x) < εs and ∀sn∀εt > 0∃Nt > 0 such that ∀k >
Nt, d(tk, sn) < εt. If we let εs = εt = ε/2, and choose any arbitrary sn such
that n > Ns, then by the Triangle Inequality, ε > d(sn, x) +d(tk, sn) ≥ d(tk, x).
Observe that because the sn term vanishes, this implies the existence of (tk) ∈ S
such that (tk)→ x. Thus, x ∈ S̄.

The reverse direction is more straightforward. If x ∈ S̄, then ∃(sn) ∈
S, (sn)→ x. However, because S ⊆ S̄, (sn) ∈ S ⇒ (sn) ∈ S̄ ⇒ x ∈ ¯̄S.

Problem 5. Prove that S̄ is the intersection of all closed subsets in X that
contain S.

Proof. We want to show that for a metric space (X, d) and S̄ ∈ X,

S̄ =
⋂
{Ū : S ⊆ Ū ⊆ X}.

We first prove the forward direction. If x ∈ S̄, suppose that x /∈
⋂
{Ū : S ⊆

Ū ⊆ X}. This implies ∃Ū ⊇ S such that x /∈ Ū ⇒ x ∈ X\Ū . Thus, S̄ ⊆
X\Ū ⇒ S ⊆ X\Ū . However, because S ⊆ Ū by definition, this is only possible
if S = ∅. It is easy to see that if S = ∅ our result trivially holds. Thus, by
contradiction, x ∈

⋂
{Ū : S ⊆ Ū ⊆ X}. This implies S̄ ⊆

⋂
{Ū : S ⊆ Ū ⊆ X}.

The reverse direction is more straightforward. If x ∈
⋂
{Ū : S ⊆ Ū ⊆ X},

then x ∈ Ū∀S ⊆ Ū ⊆ X. Because S ⊆ S̄, we have x ∈ S̄. This implies⋂
{Ū : S ⊆ Ū ⊆ X} ⊆ S̄.
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