MATH 104 HW #5

James Ni

Problem 1. Ross 13.3. Let B be the set of all bounded sequences € = (x1,2a,- ),
and define d(x,y) = sup{|z; —y,| 7 =1,2,---}.
(a) Show d is a metric for B.
(b) Does d*(x,y) = 372, [xj — y;| define a metric for B?
Proof. We demonstrate that d satisfies the metric properties for B.
d(x,z) =sup{|z; —z;|: j=1,2,---} =sup{0:j=1,2,--- } = 0.
Additionally, if d(z,y) = 0= sup{|z; —y;| : 1 =1,2,--- } =0=|z; —y,| <

0for j =1,2,---. Because |z; —y;| >0, |z; —y;j| =0=>z;,=y; =>x=1y.
This implies that if x # y, then d(x,y) > 0. Because x and y are bounded,
Ja, f such that |z;| < a,ly;| < B for j =1,2,---. Thus, |z; —y;| < a+ 6.

Because d(z,y) = sup{|z; — y;| : j = 1,2,---} is the least upper bound of
|z; — y;|, this implies d(x,y) is finite.
Finally, by the Triangle Inequality for the metric space (R, d(z,y) = |z —y|),
d(w’y) +d(yaz) :sup{|xj _yj| 1j = 1a27"'}+sup{‘yj _Z]" = 172""}
zsup{|z; —y;| +ly; —zl:5=12,--}
= sup{lz; — 2| :j=1,2,--- } = supd(y, z).

Observe that d*(z, y) is not a valid metric because d*(x,y) can be infinite.
To see this simple fact, consider z; = 1, y; = 0 such that x,y are bounded
from above and below by 1 and 0, respectively. However, d*(x,y) = Z;i1 1=
+00.

Problem 2. Ross 13.5.
(a) Verify one of DeMorgan’s Laws for sets:

(VS\U:U eu} =S\ U : U eu}.
(b) Show that the intersection of any collection of closed sets is a closed set.
Proof.
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Thus, we get the desired result

(VS\U:U e} =S\ U : U eu}.

For some metric space (X, d), we know that YV C X which is closed, there
JU C X which is open such that V' = X\U. Thus, applying our proven result
to some collection of closed subsets V, we have

NV:vevi={X\U:Uecuy=x\| J{U:Ueu}.

Because the union of any collection of open subsets is open, ([{V : V € V} is
closed.

Problem 3. Ross 13.7. Show that every open set in R is the disjoint union of
a finite or infinite sequence of open intervals.

Proof. For S C R and any = € S, define a, = inf{y € R : (y,z) C S}, b, =
sup{y € R: (z,y) € S}. For now, assume that a,,b, are finite.

Define the interval I, := (a,,b,). Becuase a, < yV(y,z) C S and by
definition, y < x, we have a, < z. Similarly, because b, > yV(z,y) C S
and by definition, y > x, we have b, > x. Thus, z € [,. Because I, =
(az,x) U{z} U (x,by) and (asz, ), (z,by) C S, we have I, C S.

Let 7 = {I, : « € S}. We claim that § = UJ; ¢z Iy. We first prove the
forward direction. If x € S, then z € I, C UI?/GI I, = 2 € UIyGI = S C
Ulyer Next, we prove the reverse direction. If z € Ulyeza then 3, € T,z €
IyCS=zeS=U; S5

Now that we have proven that S can be written as a union of open intervals,
we show that the union is disjoint. Suppose there exists I, I, € Z, I, # I,, and
z € S such that z € I, N I,. In other words, max(a;,a,) < z < min(b,,by).
Now consider the interval I, € Z. Because (ag,2) C I, C S and (ay,2) C I, C
S,a, < ay and a, < a,. Similarly, because (z,b,) € I, C S and (z,b,) C I, C
S,b, > by and b, > b,. Thus, I, C I, and I, C I,. However, this implies x € I,
and y € I,. Using identical logic above, we find that I, C I, and I, C I,,, which
implies I, = I, = I,. This is a contradiction, so therefore, the union must be
disjoint.

Returning to the assumption that a;, b, is finite, suppose Jz € S such that
az, b, are infinite for some x € S. Then, if a, = —oo, then we can express S as
the disjoint union S = S'U(—00, b,,), where S’ is bounded from below. Likewise,
if b, = 400, then we can express S as the disjoint union S = S’ U (a,, +00),
where S’ is bounded from above. If both a, = —oo and b, = +oo, then
S = (—o00,+00). O

Problem 4. Show that the closure of a closed set S is S.

Proof. We want to show that for a metric space (X,d) and S € X, § = 5,
where S := {z : 3(s,,) € S, (sn) — z}.



We first prove the forward direction. If € S then 3(s,) € S, (sn) — .
Similarly, Vs,3(tx) € S, (tx) — s,. From these, we get that Veg > 03N, > 0
such that Vn > N, d(s,,z) < s and Vs,Ve; > 03N; > 0 such that Vk >
N, d(ty, sn) < & If we let 5 = ¢4 = €/2, and choose any arbitrary s, such
that n > Ng, then by the Triangle Inequality, € > d(sp,x) + d(tk, $n) > d(tx, ).
Observe that because the s, term vanishes, this implies the existence of (¢;) € S
such that (t;) — x. Thus, v € S.

The reverse direction is more straightforward. If z € S, then 3(s,) €
S, (s,,) — 2. However, because S C S, (s,) € S = (s,) €S =2 € S. O

Problem 5. Prove that S is the intersection of all closed subsets in X that
contain S.

Proof. We want to show that for a metric space (X,d) and S € X,
S’:ﬂ{U:SgUgX}.

We first prove the forward direction. If x € S, suppose that = ¢ ({U : S C
U C X}. This implies 3U 2 S such that ¢ U = = € X\U. Thus, S C
X\U = S C X\U. However, because S C U by definition, this is only possible
if S =@. It is easy to see that if S = @ our result trivially holds. Thus, by
contradiction, z € (W{U : S CU C X}. This implies S C (U : S C U C X}.

The reverse direction is more straightforward. If z € ({U : S C U C X},
then z € UYS C U C X. Because S C S, we have z € S. This implies
MU:SCUCX}CS. O



