MATH 104 HW \#5

James Ni

Problem 1. Ross 13.3. Let B be the set of all bounded sequences $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots\right)$, and define $d(\boldsymbol{x}, \boldsymbol{y})=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \cdots\right\}$.
(a) Show d is a metric for B.
(b) Does $d^{*}(\boldsymbol{x}, \boldsymbol{y})=\sum_{j=1}^{\infty}\left|x_{j}-y_{j}\right|$ define a metric for B ?

Proof. We demonstrate that d satisfies the metric properties for B.
$d(\boldsymbol{x}, \boldsymbol{x})=\sup \left\{\left|x_{j}-x_{j}\right|: j=1,2, \cdots\right\}=\sup \{0: j=1,2, \cdots\}=0$.
Additionally, if $d(\boldsymbol{x}, \boldsymbol{y})=0 \Rightarrow \sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \cdots\right\}=0 \Rightarrow\left|x_{j}-y_{j}\right| \leq$ 0 for $j=1,2, \cdots$. Because $\left|x_{j}-y_{j}\right| \geq 0,\left|x_{j}-y_{j}\right|=0 \Rightarrow x_{j}=y_{j} \Rightarrow \boldsymbol{x}=\boldsymbol{y}$.

This implies that if $\boldsymbol{x} \neq \boldsymbol{y}$, then $d(\boldsymbol{x}, \boldsymbol{y})>0$. Because \boldsymbol{x} and \boldsymbol{y} are bounded, $\exists \alpha, \beta$ such that $\left|x_{j}\right| \leq \alpha,\left|y_{j}\right| \leq \beta$ for $j=1,2, \cdots$. Thus, $\left|x_{j}-y_{j}\right| \leq \alpha+\beta$. Because $d(\boldsymbol{x}, \boldsymbol{y})=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \cdots\right\}$ is the least upper bound of $\left|x_{j}-y_{j}\right|$, this implies $d(\boldsymbol{x}, \boldsymbol{y})$ is finite.

Finally, by the Triangle Inequality for the metric space $(\mathbb{R}, d(x, y)=|x-y|)$,

$$
\begin{aligned}
d(\boldsymbol{x}, \boldsymbol{y})+d(\boldsymbol{y}, \boldsymbol{z}) & =\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \cdots\right\}+\sup \left\{\left|y_{j}-z_{j}\right|: j=1,2, \cdots\right\} \\
& \geq \sup \left\{\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right|: j=1,2, \cdots\right\} \\
& \geq \sup \left\{\left|x_{j}-z_{j}\right|: j=1,2, \cdots\right\}=\sup d(\boldsymbol{y}, \boldsymbol{z})
\end{aligned}
$$

Observe that $d^{*}(\boldsymbol{x}, \boldsymbol{y})$ is not a valid metric because $d^{*}(\boldsymbol{x}, \boldsymbol{y})$ can be infinite. To see this simple fact, consider $x_{i}=1, y_{i}=0$ such that $\boldsymbol{x}, \boldsymbol{y}$ are bounded from above and below by 1 and 0 , respectively. However, $d^{*}(\boldsymbol{x}, \boldsymbol{y})=\sum_{j=1}^{\infty} 1=$ $+\infty$.

Problem 2. Ross 13.5.
(a) Verify one of DeMorgan's Laws for sets:

$$
\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcup\{U: U \in \mathcal{U}\}
$$

(b) Show that the intersection of any collection of closed sets is a closed set.

Proof.

$$
\begin{aligned}
& x \in \bigcap\{S \backslash U: U \in \mathcal{U}\} \\
\Leftrightarrow & x \in S \backslash U \forall U \in \mathcal{U} \\
\Leftrightarrow & x \in S, x \notin U \forall U \in \mathcal{U} \\
\Leftrightarrow & x \in S, x \notin \bigcup\{U: U \in \mathcal{U}\} \\
\Leftrightarrow & x \in S \backslash \bigcup\{U: U \in \mathcal{U}\}
\end{aligned}
$$

Thus, we get the desired result

$$
\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcup\{U: U \in \mathcal{U}\}
$$

For some metric space (X, d), we know that $\forall V \subseteq X$ which is closed, there $\exists U \subseteq X$ which is open such that $V=X \backslash U$. Thus, applying our proven result to some collection of closed subsets \mathcal{V}, we have

$$
\bigcap\{V: V \in \mathcal{V}\}=\bigcap\{X \backslash U: U \in \mathcal{U}\}=X \backslash \bigcup\{U: U \in \mathcal{U}\}
$$

Because the union of any collection of open subsets is open, $\bigcap\{V: V \in \mathcal{V}\}$ is closed.

Problem 3. Ross 13.7. Show that every open set in \mathbb{R} is the disjoint union of a finite or infinite sequence of open intervals.

Proof. For $S \subseteq \mathbb{R}$ and any $x \in S$, define $a_{x}=\inf \{y \in \mathbb{R}:(y, x) \subseteq S\}, b_{x}=$ $\sup \{y \in \mathbb{R}:(x, y) \subseteq S\}$. For now, assume that a_{x}, b_{x} are finite.

Define the interval $I_{x}:=\left(a_{x}, b_{x}\right)$. Becuase $a_{x} \leq y \forall(y, x) \subseteq S$ and by definition, $y<x$, we have $a_{x}<x$. Similarly, because $b_{x} \geq y \forall(x, y) \subseteq S$ and by definition, $y>x$, we have $b_{x}>x$. Thus, $x \in I_{x}$. Because $I_{x}=$ $\left(a_{x}, x\right) \cup\{x\} \cup\left(x, b_{x}\right)$ and $\left(a_{x}, x\right),\left(x, b_{x}\right) \subseteq S$, we have $I_{x} \subseteq S$.

Let $\mathcal{I}=\left\{I_{x}: x \in S\right\}$. We claim that $S=\bigcup_{I_{y} \in \mathcal{I}} I_{y}$. We first prove the forward direction. If $x \in S$, then $x \in I_{x} \subseteq \bigcup_{I_{y} \in \mathcal{I}} I_{y} \Rightarrow x \in \bigcup_{I_{y} \in \mathcal{I}} \Rightarrow S \subseteq$ $\bigcup_{I_{y} \in \mathcal{I}}$. Next, we prove the reverse direction. If $x \in \bigcup_{I_{y} \in \mathcal{I}}$, then $\exists I_{y} \in \mathcal{I}, x \in$ $I_{y} \subseteq S \Rightarrow x \in S \Rightarrow \bigcup_{I_{y} \in \mathcal{I}} \subseteq S$.

Now that we have proven that S can be written as a union of open intervals, we show that the union is disjoint. Suppose there exists $I_{x}, I_{y} \in \mathcal{I}, I_{x} \neq I_{y}$, and $z \in S$ such that $z \in I_{x} \cap I_{y}$. In other words, $\max \left(a_{x}, a_{y}\right)<z<\min \left(b_{x}, b_{y}\right)$. Now consider the interval $I_{z} \in \mathcal{I}$. Because $\left(a_{x}, z\right) \subseteq I_{x} \subseteq S$ and $\left(a_{y}, z\right) \subseteq I_{y} \subseteq$ $S, a_{z} \leq a_{x}$ and $a_{z} \leq a_{y}$. Similarly, because $\left(z, b_{x}\right) \subseteq I_{x} \subseteq S$ and $\left(z, b_{y}\right) \subseteq I_{y} \subseteq$ $S, b_{z} \geq b_{x}$ and $b_{z} \geq b_{y}$. Thus, $I_{x} \subseteq I_{z}$ and $I_{y} \subseteq I_{z}$. However, this implies $x \in I_{z}$ and $y \in I_{z}$. Using identical logic above, we find that $I_{z} \subseteq I_{x}$ and $I_{z} \subseteq I_{y}$, which implies $I_{x}=I_{y}=I_{z}$. This is a contradiction, so therefore, the union must be disjoint.

Returning to the assumption that a_{x}, b_{x} is finite, suppose $\exists x \in S$ such that a_{x}, b_{x} are infinite for some $x \in S$. Then, if $a_{x}=-\infty$, then we can express S as the disjoint union $S=S^{\prime} \cup\left(-\infty, b_{x}\right)$, where S^{\prime} is bounded from below. Likewise, if $b_{x}=+\infty$, then we can express S as the disjoint union $S=S^{\prime} \cup\left(a_{x},+\infty\right)$, where S^{\prime} is bounded from above. If both $a_{x}=-\infty$ and $b_{x}=+\infty$, then $S=(-\infty,+\infty)$.

Problem 4. Show that the closure of a closed set \bar{S} is \bar{S}.
Proof. We want to show that for a metric space (X, d) and $\bar{S} \in X, \overline{\bar{S}}=\bar{S}$, where $\bar{S}:=\left\{x: \exists\left(s_{n}\right) \in S,\left(s_{n}\right) \rightarrow x\right\}$.

We first prove the forward direction. If $x \in \overline{\bar{S}}$ then $\exists\left(s_{n}\right) \in \bar{S},\left(s_{n}\right) \rightarrow x$. Similarly, $\forall s_{n} \exists\left(t_{k}\right) \in S,\left(t_{k}\right) \rightarrow s_{n}$. From these, we get that $\forall \varepsilon_{s}>0 \exists N_{s}>0$ such that $\forall n>N_{s}, d\left(s_{n}, x\right)<\varepsilon_{s}$ and $\forall s_{n} \forall \varepsilon_{t}>0 \exists N_{t}>0$ such that $\forall k>$ $N_{t}, d\left(t_{k}, s_{n}\right)<\varepsilon_{t}$. If we let $\varepsilon_{s}=\varepsilon_{t}=\varepsilon / 2$, and choose any arbitrary s_{n} such that $n>N_{s}$, then by the Triangle Inequality, $\varepsilon>d\left(s_{n}, x\right)+d\left(t_{k}, s_{n}\right) \geq d\left(t_{k}, x\right)$. Observe that because the s_{n} term vanishes, this implies the existence of $\left(t_{k}\right) \in S$ such that $\left(t_{k}\right) \rightarrow x$. Thus, $x \in \bar{S}$.

The reverse direction is more straightforward. If $x \in \bar{S}$, then $\exists\left(s_{n}\right) \in$ $S,\left(s_{n}\right) \rightarrow x$. However, because $S \subseteq \bar{S},\left(s_{n}\right) \in S \Rightarrow\left(s_{n}\right) \in \bar{S} \Rightarrow x \in \overline{\bar{S}}$.

Problem 5. Prove that \bar{S} is the intersection of all closed subsets in X that contain S.

Proof. We want to show that for a metric space (X, d) and $\bar{S} \in X$,

$$
\bar{S}=\bigcap\{\bar{U}: S \subseteq \bar{U} \subseteq X\}
$$

We first prove the forward direction. If $x \in \bar{S}$, suppose that $x \notin \bigcap\{\bar{U}: S \subseteq$ $\bar{U} \subseteq X\}$. This implies $\exists \bar{U} \supseteq S$ such that $x \notin \bar{U} \Rightarrow x \in X \backslash \bar{U}$. Thus, $\bar{S} \subseteq$ $X \backslash \bar{U} \Rightarrow S \subseteq X \backslash \bar{U}$. However, because $S \subseteq \bar{U}$ by definition, this is only possible if $S=\varnothing$. It is easy to see that if $S=\varnothing$ our result trivially holds. Thus, by contradiction, $x \in \bigcap\{\bar{U}: S \subseteq \bar{U} \subseteq X\}$. This implies $\bar{S} \subseteq \bigcap\{\bar{U}: S \subseteq \bar{U} \subseteq X\}$.

The reverse direction is more straightforward. If $x \in \bigcap\{\bar{U}: S \subseteq \bar{U} \subseteq X\}$, then $x \in \bar{U} \forall S \subseteq \bar{U} \subseteq X$. Because $S \subseteq \bar{S}$, we have $x \in \bar{S}$. This implies $\bigcap\{\bar{U}: S \subseteq \bar{U} \subseteq X\} \subseteq \bar{S}$.

