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Problem 1. Prove that [0, 1]2 in R2 is sequentially compact.

Proof. We first prove a more general result which will directly imply the result.

Lemma 1.1. Suppose U ⊆ X and V ⊆ Y are sequentially compact. Then
U × V ⊂ X × Y is also sequentially compact.

Proof. For any (tn) ∈ U×V , let us write tn = (un, vn). Because U is sequentially
compact, then ∀(un) ∈ U,∃(unk

), u ∈ U such that (unk
) → u. Because V is

also sequentially compact and (vnk
) ∈ V , ∃(vmk

), v ∈ U such that (mk) is a
subindexing of (nk) and (vmk

) → v. Because (umk
) is a subsequence of (unk

),
(umk

) → u. Thus, the subsequence (tmk
) → (u, v). By construction, U × V is

also sequentially compact.

Endowed with this lemma, because we know [0, 1] in R is sequentially com-
pact, this implies that [0, 1]2 in R2 is sequentially compact.

Problem 2. Let E be the set of points x ∈ [0, 1] whose decimal expansion
consists of only 4 and 7. Is E countable? Is E compact?

Proof. Suppose E is countable. This implies that there exists a bijection f :
N → E. Hence, we can define an enumeration (en) of the elements of E. For
each ei, let ei[j] denote the jth element of the decimal expansion of ei. We
use an argument similar to Cantor’s diagonalization to construct an e ∈ E as
follows: if ei[i] = 4 then e[i] = 7 and if ei[i] = 7 then e[i] = 4. We denote this
construction as the complement ei[i]

C of a digit ei[i]. Because each element of e
is either a 4 or a 7, e ∈ E ⇒ e ∈ (en). However, ∀ei∃j such that e[j] 6= ei[j]⇒ e
is not equal to any element in (en). This is a contradiction, so thus, E is not
countable.

Now, for any e ∈ E, consider a sequence (en) such that for i ≤ n, en[i] = e[i]
and i > n, en[i] = e[i]C . Then,

|en − e| = |
∞∑
i=1

10−ien[i]−
∞∑
i=1

10−ie[i]| = |
∞∑
i=1

10−i(en[i]− e[i])|

= |
∞∑

i=n+1

10−i(en[i]− e[i])| ≤
∞∑

i=n+1

10−i|en[i]− e[i]|

≤
∞∑

i=n+1

3 · 10−i = 10−n/3 < 10−n.
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Hence, ∀ε > 0, N > 0,− log1 0(ε),∀n > N , |en − e| < ε. Thus, by construction,
we have created a sequence (en)→ e. This implies that E contains all its limit
points, which implies E is closed. Because E is bounded from below by 0 and
bounded from above by 1, this implies that E ∈ R is compact.

Problem 3. Let A1, A2, · · · be subsets of a metric space. If B = ∪iAi, then
B̄ ⊇ ∪iĀj. Is it possible that this inclusion is a strict inclusion?

Proof. If i is finite, then we claim a strict inclusion is not possible. For any
b ∈ B̄, ∃(bn) ∈ B such that (bn)→ b. Because the number of Ai is finite, by the
Pigeonhole Principle, ∃Ai such that there are an infinite number of elements
bn ∈ Ai. This implies that ∃(bnk

) ∈ Ai such that (bnk
) → b ⇒ b ∈ Āi ⇒ b ∈

∪iAi. Thus, B = ∪iĀj , which proves our result.
If i is infinite, then consider Ai = { 1i }. Clearly, Āi = Ai. This implies that

∪iĀj = ∪iAj = B. However, the closure of the set B = { 1i |i ≥ 1} includes the
limit point 0 /∈ B. Thus, a strict inclusion is possible.

Problem 4. Find the flaw in the reasoning of and a counterexample to the
claim and its proof: Every closed subset of R is a countable union of closed
intervals. This is because every closed set is the complement of an open set, and
adjacent open intervals sandwich a closed interval.

Proof. The flaw in the logic is that while adjacent open intervals do always
sandwich a closed interval, that closed interval may only consist of a single point.
Thus, a closed subset of R may not be able to be expressed as a countable union
of points. As a counterexample, consider Problem 2, where E is closed, but also
is an uncountable union of points.
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