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Problem 1. Prove that [0,1]? in R? is sequentially compact.

Proof. We first prove a more general result which will directly imply the result.

Lemma 1.1. Suppose U C X and V C Y are sequentially compact. Then
UxV CX xY is also sequentially compact.

Proof. For any (t,,) € UxV, let us write t,, = (un, v, ). Because U is sequentially
compact, then V(u,) € U, 3(un, ),u € U such that (u,,) — u. Because V is
also sequentially compact and (v,,) € V, 3(vm,),v € U such that (my) is a
subindexing of (ny) and (v.,, ) — v. Because (un, ) is a subsequence of (uy, ),
(tm, ) — u. Thus, the subsequence (t,,,) — (u,v). By construction, U x V is
also sequentially compact. O

Endowed with this lemma, because we know [0, 1] in R is sequentially com-
pact, this implies that [0, 1]? in R? is sequentially compact. O

Problem 2. Let E be the set of points x € [0,1] whose decimal expansion
consists of only 4 and 7. Is E countable? Is E compact?

Proof. Suppose E is countable. This implies that there exists a bijection f :
N — E. Hence, we can define an enumeration (e,) of the elements of E. For
each e;, let e;[j] denote the jth element of the decimal expansion of e;. We
use an argument similar to Cantor’s diagonalization to construct an e € E as
follows: if e;[i] = 4 then e[i] = 7 and if ¢;[i] = 7 then e[i] = 4. We denote this
construction as the complement e;[i] of a digit e;[i]. Because each element of e
is eitheradora7,e€ E = e € (e,). However, Ve;3j such that e[j] # e;[j] = e
is not equal to any element in (e,). This is a contradiction, so thus, E is not
countable.

Now, for any e € E, consider a sequence (e,,) such that for i < n, e,[i] = e]i]
and i > n, e,[i] = e[i]“. Then,
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Hence, Ve > 0, N > 0,—log, 0(¢),¥n > N, |e,, — e| < €. Thus, by construction,
we have created a sequence (e,) — e. This implies that F contains all its limit
points, which implies F is closed. Because E is bounded from below by 0 and
bounded from above by 1, this implies that £ € R is compact. O

Problem 3. Let Ay, Az, -+ be subsets of a metric space. If B = U;A;, then
B D U;Aj. Is it possible that this inclusion is a strict inclusion?

Proof. If i is finite, then we claim a strict inclusion is not possible. For any
b€ B, 3(b,) € B such that (b,) — b. Because the number of A; is finite, by the
Pigeonhole Principle, 3A; such that there are an infinite number of elements
b, € A;. This implies that 3(b,,) € A; such that (b,,) - b=0b€ A; = b€
U;Ai. Thus, B = U; A;, which proves our result.

If 4 is infinite, then consider A; = {%} Clearly, A; = A;. This implies that
U;A; = U;A; = B. However, the closure of the set B = {1|i > 1} includes the
limit point 0 ¢ B. Thus, a strict inclusion is possible. O

Problem 4. Find the flaw in the reasoning of and a counterexample to the
claim and its proof: FEvery closed subset of R is a countable union of closed
intervals. This is because every closed set is the complement of an open set, and
adjacent open intervals sandwich a closed interval.

Proof. The flaw in the logic is that while adjacent open intervals do always
sandwich a closed interval, that closed interval may only consist of a single point.
Thus, a closed subset of R may not be able to be expressed as a countable union
of points. As a counterexample, consider Problem 2, where E is closed, but also
is an uncountable union of points. O



