MATH 104 HW \#5

James Ni

Problem 1. Prove that $[0,1]^{2}$ in \mathbb{R}^{2} is sequentially compact.
Proof. We first prove a more general result which will directly imply the result.
Lemma 1.1. Suppose $U \subseteq X$ and $V \subseteq Y$ are sequentially compact. Then $U \times V \subset X \times Y$ is also sequentially compact.

Proof. For any $\left(t_{n}\right) \in U \times V$, let us write $t_{n}=\left(u_{n}, v_{n}\right)$. Because U is sequentially compact, then $\forall\left(u_{n}\right) \in U, \exists\left(u_{n_{k}}\right), u \in U$ such that $\left(u_{n_{k}}\right) \rightarrow u$. Because V is also sequentially compact and $\left(v_{n_{k}}\right) \in V, \exists\left(v_{m_{k}}\right), v \in U$ such that $\left(m_{k}\right)$ is a subindexing of $\left(n_{k}\right)$ and $\left(v_{m_{k}}\right) \rightarrow v$. Because $\left(u_{m_{k}}\right)$ is a subsequence of $\left(u_{n_{k}}\right)$, $\left(u_{m_{k}}\right) \rightarrow u$. Thus, the subsequence $\left(t_{m_{k}}\right) \rightarrow(u, v)$. By construction, $U \times V$ is also sequentially compact.

Endowed with this lemma, because we know $[0,1]$ in \mathbb{R} is sequentially compact, this implies that $[0,1]^{2}$ in \mathbb{R}^{2} is sequentially compact.

Problem 2. Let E be the set of points $x \in[0,1]$ whose decimal expansion consists of only 4 and 7. Is E countable? Is E compact?
Proof. Suppose E is countable. This implies that there exists a bijection f : $\mathbb{N} \rightarrow E$. Hence, we can define an enumeration $\left(e_{n}\right)$ of the elements of E. For each e_{i}, let $e_{i}[j]$ denote the j th element of the decimal expansion of e_{i}. We use an argument similar to Cantor's diagonalization to construct an $e \in E$ as follows: if $e_{i}[i]=4$ then $e[i]=7$ and if $e_{i}[i]=7$ then $e[i]=4$. We denote this construction as the complement $e_{i}[i]^{C}$ of a digit $e_{i}[i]$. Because each element of e is either a 4 or a $7, e \in E \Rightarrow e \in\left(e_{n}\right)$. However, $\forall e_{i} \exists j$ such that $e[j] \neq e_{i}[j] \Rightarrow e$ is not equal to any element in $\left(e_{n}\right)$. This is a contradiction, so thus, E is not countable.

Now, for any $e \in E$, consider a sequence $\left(e_{n}\right)$ such that for $i \leq n, e_{n}[i]=e[i]$ and $i>n, e_{n}[i]=e[i]^{C}$. Then,

$$
\begin{aligned}
\left|e_{n}-e\right| & =\left|\sum_{i=1}^{\infty} 10^{-i} e_{n}[i]-\sum_{i=1}^{\infty} 10^{-i} e[i]\right|=\left|\sum_{i=1}^{\infty} 10^{-i}\left(e_{n}[i]-e[i]\right)\right| \\
& =\left|\sum_{i=n+1}^{\infty} 10^{-i}\left(e_{n}[i]-e[i]\right)\right| \leq \sum_{i=n+1}^{\infty} 10^{-i}\left|e_{n}[i]-e[i]\right| \\
& \leq \sum_{i=n+1}^{\infty} 3 \cdot 10^{-i}=10^{-n} / 3<10^{-n}
\end{aligned}
$$

Hence, $\forall \varepsilon>0, N>0,-\log _{1} 0(\varepsilon), \forall n>N,\left|e_{n}-e\right|<\varepsilon$. Thus, by construction, we have created a sequence $\left(e_{n}\right) \rightarrow e$. This implies that E contains all its limit points, which implies E is closed. Because E is bounded from below by 0 and bounded from above by 1 , this implies that $E \in \mathbb{R}$ is compact.

Problem 3. Let A_{1}, A_{2}, \cdots be subsets of a metric space. If $B=\cup_{i} A_{i}$, then $\bar{B} \supseteq \cup_{i} \bar{A}_{j}$. Is it possible that this inclusion is a strict inclusion?

Proof. If i is finite, then we claim a strict inclusion is not possible. For any $b \in \bar{B}, \exists\left(b_{n}\right) \in B$ such that $\left(b_{n}\right) \rightarrow b$. Because the number of A_{i} is finite, by the Pigeonhole Principle, $\exists A_{i}$ such that there are an infinite number of elements $b_{n} \in A_{i}$. This implies that $\exists\left(b_{n_{k}}\right) \in A_{i}$ such that $\left(b_{n_{k}}\right) \rightarrow b \Rightarrow b \in \bar{A}_{i} \Rightarrow b \in$ $\cup_{i} A_{i}$. Thus, $B=\cup_{i} \bar{A}_{j}$, which proves our result.

If i is infinite, then consider $A_{i}=\left\{\frac{1}{i}\right\}$. Clearly, $\bar{A}_{i}=A_{i}$. This implies that $\cup_{i} \bar{A}_{j}=\cup_{i} A_{j}=B$. However, the closure of the set $B=\left\{\left.\frac{1}{i} \right\rvert\, i \geq 1\right\}$ includes the limit point $0 \notin B$. Thus, a strict inclusion is possible.

Problem 4. Find the flaw in the reasoning of and a counterexample to the claim and its proof: Every closed subset of \mathbb{R} is a countable union of closed intervals. This is because every closed set is the complement of an open set, and adjacent open intervals sandwich a closed interval.

Proof. The flaw in the logic is that while adjacent open intervals do always sandwich a closed interval, that closed interval may only consist of a single point. Thus, a closed subset of \mathbb{R} may not be able to be expressed as a countable union of points. As a counterexample, consider Problem 2, where E is closed, but also is an uncountable union of points.

