MATH 104 HW \#7

James Ni

Problem 1. If X and Y are open cover compact, prove $X \times Y$ is open cover compact.

Proof. Let $\mathcal{U}=\bigcup_{\alpha \in \mathcal{I}} U_{\alpha}$ be an open cover of $X \times Y$. This implies that $\forall(x, y) \in$ $X \times Y, \exists \alpha \in \mathcal{I}$ such that $(x, y) \in U_{\alpha}$. Because U_{α} is open, we can construct an open box $(x, y) \in A_{x} \times B_{y} \subseteq U_{\alpha}$ such that $x \in A_{x} \subseteq X$ and $y \in B_{y} \subseteq Y$. Now consider the set $V_{x}=\{(x, y) \mid y \in Y\}$. From our open cover construction, we can deduce that $V_{x} \subseteq \bigcup_{y \in Y} A_{x} \times B_{y}=A_{x} \times \bigcup_{y \in Y} B_{y}$. Because $\bigcup_{y \in Y} B_{y}$ is an open cover of Y, and Y is open cover compact, there exists a finite subcover \mathcal{B} of Y such that $V_{x} \subseteq A_{x} \times \mathcal{B}$. We take the union over all possible V_{x} to get $X \times Y=\bigcup_{x \in X} V_{x} \subseteq \bigcup_{x \in X}\left(A_{x} \times \mathcal{B}\right)=\bigcup_{x \in X} A_{x} \times \mathcal{B}$. Similarly, because $\bigcup_{x \in X} A_{x}$ is an open cover of X, and X is open cover compact, there exists a finite subcover \mathcal{A} of X such that $X \times Y \subseteq \mathcal{A} \times \mathcal{B}$. Because there exists a U_{α} for each $A_{x} \times B_{y}$ in $\mathcal{A} \times \mathcal{B}$ such that $A_{x} \times B_{y} \subseteq U_{\alpha}$, and that there are a finite number of union elements in $\mathcal{A} \times \mathcal{B}$, this implies that there exists a finite subcover of \mathcal{U}. Hence, $X \times Y$ is open cover compact.

Problem 2. Let $f: X \rightarrow Y$ be a continuous map between metric spaces. Let $A \subset X$. Determine if the following is true:

- if A is open, then $f(A)$ is open,
- if A is closed, then $f(A)$ is closed,
- if A is bounded, then $f(A)$ is bounded,
- if A is compact, then $f(A)$ is compact,
- if A is connected, then $f(A)$ is connected.

Proof. False, consider the continuous function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=0$. If we let A be the open interval $(0,1)$, we see that $f(A)=\{0\}$, which is closed and hence not open.

False, consider the continuous function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x}$. If we let A be the closed interval $(-\infty, 0]$, we see that $f(A)=(0,1]$, which is neither closed nor open.

False, consider the continuous function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(x)=\frac{1}{x}$. If we let A be the bounded interval $(0,1]$, we see that $f(A)=[1, \infty)$, which is unbounded.

True, consider any $\left(s_{n}\right) \in f(A)$. We see that $\forall s_{n} \in f(A), \exists t_{n} \in A$ such that $f\left(t_{n}\right)=s_{n}$. This gives us a sequence $\left(t_{n}\right) \in A$. Because A is compact, $\exists\left(t_{n_{k}}\right) \rightarrow t$. By the definition of continuous functions, we have $f\left(t_{n_{k}}\right) \rightarrow f(t)$. This implies that $f(A)$ is compact.

True, suppose that $f(A)$ is not connected. This implies that $f(A)=\bigcup_{S \in \mathcal{U}} S$, where S are disjoint nonempty open subsets. Taking the preimage, we get that $A=f^{-1}\left(\bigcup_{S \in \mathcal{U}} S\right)=\bigcup_{S \in \mathcal{U}} f^{-1}(S)$. By the definition of continouous functions, each set $f^{-1}(S)$ is open and nonempty. Each of these sets also must be disjoint since otherwise, it would imply that S are not disjoint. This implies A can be represented as the union of disjoint nonempty open subsets, which implies A is not connected. Hence, by contradiction, $f(A)$ must be connected.

Problem 3. Prove there does not exist a continuous map $f:[0,1] \rightarrow \mathbb{R}$ such that f is surjective.

Proof. If such a continuous map existed, then because $[0,1]$ is compact, it would imply $f([0,1])=\mathbb{R}$ is compact. This is a contradiction, so such a map cannot exist.

