MATH 104 HW \#8

James Ni

Problem 1. Let $f_{n}(x)=\frac{n+\sin x}{2 n+\cos n^{2} x}$. Show that f_{n} converges uniformly on \mathbb{R}.
Proof. We claim that $f_{n}(x) \rightarrow \frac{1}{2}$. Since $|\sin x| \leq 1,\left|\cos n^{2} x\right| \leq 1$ and $f_{n}(x)$ is nonnegative, we know that $\frac{n-1}{2 n+1} \leq \frac{n+\sin x}{2 n+\cos n^{2} x} \leq \frac{n+1}{2 n-1}$. Using this, we can deduce that the quantity $f_{n}(x)-\frac{1}{2}$ is bounded from below by

$$
\frac{n-1}{2 n+1}-\frac{1}{2}=\frac{2(n-1)-(2 n+1)}{2(2 n+1)}=\frac{-3}{2(2 n+1)}
$$

and bounded from above by

$$
\frac{n+1}{2 n-1}-\frac{1}{2}=\frac{2(n+1)-(2 n-1)}{2(2 n-1)}=\frac{3}{2(2 n-1)}
$$

This implies that $\left|f_{n}(x)-\frac{1}{2}\right| \leq \frac{3}{2(2 n-1)}$. Thus, $\forall \varepsilon>0$, we can find an $N=\frac{3+2 \varepsilon}{4 \varepsilon}$ such that $\forall x \in \mathbb{R}, \forall n>N$, we have $\left|f_{n}(x)-\frac{1}{2}\right|<\varepsilon$.

Problem 2. Let $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$. Show that the series is continuous on $[-1,1]$ if $\sum_{n=1}^{\infty}\left|a_{n}\right|<+\infty$. Additionally, prove that $\sum_{n=1}^{\infty} n^{-2} x^{n}$ is continuous on $[-1,1]$.

Proof. Let $f_{n}(x)=a_{n} x^{n}$. For $x \in[-1,1]$, we have $\left|f_{n}(x)\right|=\left|a_{n}\right|\left|x^{n}\right| \leq\left|a_{n}\right|$. Because $\sum_{n=1}^{\infty}\left|a_{n}\right|<+\infty$, by the Weierstrass M-test, $f(x)$ converges uniformly on $[-1,1]$. Because each partial sum $F_{n}(x)=\sum_{i=1}^{n}$ is a finite polynomial, each partial sum is continuous. Hence, $f(x)$ is continuous on $[-1,1]$.

As a brief aside, to see why a finite degree polynomial is continuous on \mathbb{R}, we first observe that $f(x)=c$ and $g(x)=x$ are trivially continuous. By induction, $f(x)=c x^{n}$ is also continuous. Because every finite degree polynomial can be decomposed as the sum of such functions, every finite degree polynomial must be continuous.

Using this, because $\sum_{n=1}^{\infty} n^{-2}<+\infty, \sum_{n=1}^{\infty} n^{-2} x^{n}$ is continuous on $[-1,1]$.

Problem 3. Show that $f(x)=\sum_{n=1}^{\infty} x^{n}$ represents a continuous function on $(-1,1)$, but the convergence is not uniform.

Proof. Let $f_{n}(x)=x^{n}$. For $a \in(0,1), x \in[-a, a]$, we have $\left|f_{n}(x)\right|=\left|x^{n}\right| \leq a^{n}$. Because $\sum_{n=1}^{\infty} a^{n}<+\infty$, by the Weierstrauss M-test, $f(x)$ converges uniformly
on $[-a, a]$. By similar logic in Problem 2, we deduce that $f(x)$ is continuous on $[-a, a]$, and hence on $(-1,1)$.

However, we claim that the convergence is not uniform. To see this, let $F_{n}(x)=\sum_{i=1}^{n} x^{n}$. Observe that $x=1$ is a limit point of the set $(-1,1)$. Thus, if $F_{n} \rightarrow f$ uniformly, we have that the sequence $\left(A_{n}\right)$ produced by taking the limits $A_{n}=\lim _{x \rightarrow 1} F_{n}(x)=n$ is convergent. However, $\left(A_{n}\right)$ clearly diverges; by contradiction, the convergence cannot be uniform.

