MATH 104 HW #9

James Ni

Problem 1. Construct a smooth function $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 for $x \leq 0, f(x) = 1$ for $x \geq 1$, and $f(x) \in [0,1]$ when $x \in (0,1)$.

Proof. Let us define the function f as

$$f(x) = \begin{cases} 0 & x \le 0\\ e^{-1/x} & x > 0 \end{cases}.$$

By Example 31.3 of Ross, f is smooth and nonnegative. We claim that the function g defined by

$$g(x) = \frac{f(x)}{f(x) + f(1-x)}$$

satisfies the required properties. We first verify the behavior of $g. \label{eq:general}$

If $x \leq 0$, then $g(x) = \frac{0}{0+e^{-1/(1-x)}} = 0$. If $x \geq 1$, then $g(x) = \frac{e^{-1/x}}{e^{-1/x+0}} = 1$. Because f is nonnegative, we also know that $x \in (0, 1) \Rightarrow f(x) \in [0, 1]$.

Because both the numerator and denominator are smooth, and the denominator is nonzero, g is also smooth. $\hfill \Box$

Problem 2. Rudin 5.4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let us define the function f as

$$f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}$$

such that f(0) = f(1) = 1. By Rolle's Theorem, there exists $x \in [0, 1]$ such that $f'(x) = 0 \Rightarrow$

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0.$$

Problem 3. Rudin 5.8. Suppose f' is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \varepsilon$$

whenever $|t - x| < \delta$ and $x, t \in [a, b]$. This can be expressed by saying that f is uniformly differentiable on [a, b] if f' is continuous on [a, b]. Does this hold for vector-valued functions too?

Proof. By the limit definition of f' at t, $\forall \varepsilon > 0 \exists \delta_1 > 0$ such that $\forall |t - x| < \delta$ and $x, t \in [a, b]$,

$$\left|\frac{f(t) - f(x)}{t - x} - f'(t)\right| < \varepsilon/2$$

Because f' is continuous on a compact set by Heine-Borel, f' is uniformly continuous. Thus, $\forall \varepsilon > 0 \exists \delta_2 > 0$ such that $\forall |t - x| < \delta$ and $x, t \in [a, b]$, $|f'(t) - f'(x)| < \varepsilon/2$. If we take $\delta = \min(\delta_1, \delta_2)$, then we get

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| \le \left|\frac{f(t) - f(x)}{t - x} - f'(t)\right| + \left|f'(t) - f'(x)\right| < \varepsilon.$$

Problem 4. Rudin 5.18. Suppose f is a real function on [a, b], n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a, b]$. Let α, β , and P be as in Taylor's theorem. Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b], t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t = \alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta - \alpha)^n.$$

Proof. We first show that $Q^{(k)} : [a,b] \setminus \beta \to \mathbb{R}$ exists for k = 1, ..., n-1. We claim that

$$Q^{(k)}(t) = \frac{f^{(k)}(t) - kQ^{(k-1)}(t)}{t - \beta},$$

where $P_i(t)$ are finite degree polynomials. We shall prove this using induction on k. The base case k = 1 is quite simple:

$$Q'(t) = \frac{d}{dt} \frac{f(t) - f(\beta)}{t - \beta} = \frac{f'(t)(t - \beta) - (f(t) - f(\beta))}{(t - \beta)^2} = \frac{f'(t) - Q(t)}{t - \beta}$$

Because f' exists and the denominator is nonzero, this implies Q' exists.

Now suppose that for some $k < n-1, Q^{(k)}(t)$ exists and is of the form stated above. Then,

$$\begin{aligned} Q^{(k+1)}(t) &= \frac{d}{dt} \frac{f^{(k)}(t) - kQ^{(k-1)}(t)}{t - \beta} \\ &= \frac{(f^{(k+1)}(t) - kQ^{(k)}(t))(t - \beta) - (f^{(k)}(t) - kQ^{(k-1)})}{(t - \beta)^2} \\ &= \frac{f^{(k+1)}(t) - (k+1)Q^{(k)}(t)}{t - \beta}. \end{aligned}$$

Because $f^{(k+1)}$ exists and the denominator is nonzero, this implies $Q^{(k+1)}$ exists. Now that we have established the existence of $Q^{(k)}$, we can see that $f^{(k)}(t) = kQ^{(k-1)}(t) + (t-\beta)Q^{(k)}(t)$ for k = 1, ..., n-1. Substituting into the definition of P and evaluating at β we get

$$P(\alpha) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k$$

= $f(\alpha) + \sum_{k=1}^{n-1} \frac{kQ^{(k-1)}(\alpha) + (t - \beta)Q^{(k)}(\alpha)}{k!} (\beta - \alpha)^k$
= $f(\alpha) + \sum_{k=1}^{n-1} \frac{Q^{(k-1)}(\alpha)}{(k-1)!} (\beta - \alpha)^k - \sum_{k=1}^{n-1} \frac{Q^{(k)}(\alpha)}{k!} (\beta - \alpha)^{k+1}$
= $f(\alpha) + Q(\alpha)(\beta - \alpha) - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$
= $f(\beta) - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n$.

This yields the alternative version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Problem 5. Rudin 5.22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point of f if f(x) = x.

(a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.

(b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t. (c) However, if there is a constant A < 1 such that $|f'(t)| \leq A$ for all real t, prove that a fixed point of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for n = 1, 2, 3, ...(d) Show that the process described in (c) can be visualized by the zig-zag path $(x_1, x_2) \rightarrow (x_2, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_3) \rightarrow (x_3, x_4) \rightarrow \cdots$.

Proof. Let f(x) = x be a fixed point of f. Suppose that $\exists y \neq x$ such that f(y) = y. Without loss of generality, suppose y > x. Because f is differentiable, by the Mean Value Theorem there exists $t \in [x, y]$ such that $f'(t) = \frac{f(y) - f(x)}{y - x} = 1$. This is a contradiction; hence, f has at most one fixed point.

Proof. Suppose that $\exists x$ such that f(x) = x. This implies $x + (1 + e^x)^{-1} = x \Rightarrow (1 + e^x)^{-1} = 0$. However, no such $x \in \mathbb{R}$ satisfies this equation. This is a contradiction; hence, f has no fixed points. Despite this, observe that $f'(t) = 1 - e^t(1 + e^t)^{-2}$. Because $e^t(1 + e^t)^{-2} > 0$ and $(1 + e^t)^2 > e^t, 0 < f'(t) < 1$. \Box

Proof. By the Mean Value Theorem, $\exists c \in [x_n, x_{n+1}]$ such that

$$f'(c) = \frac{f(x_{n+1} - f(x_n))}{x_{n+1} - x_n} = \frac{f(x_{n+1} - x_{n+1})}{f(x_n) - x_n}.$$

Because |f'(c)| < 1, this implies that the sequence $(f(x_n) - x_n) \to 0$. Hence, the point $x = \lim x_n$ satisfies f(x) = x, which implies x is a fixed point. \Box

Proof. Note that the sequence defined alternates between points on the graphs y = x and y = f(x). By our Mean Value Theorem construction, the path traced by these points gradually converges to the intersection of these graphs, x = f(x), which defines a fixed point.