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Problem 1. Construct a smooth function f : R → R such that f(x) = 0 for
x ≤ 0, f(x) = 1 for x ≥ 1, and f(x) ∈ [0, 1] when x ∈ (0, 1).

Proof. Let us define the function f as

f(x) =

{
0 x ≤ 0

e−1/x x > 0
.

By Example 31.3 of Ross, f is smooth and nonnegative.
We claim that the function g defined by

g(x) =
f(x)

f(x) + f(1− x)

satisfies the required properties. We first verify the behavior of g.

If x ≤ 0, then g(x) = 0
0+e−1/(1−x) = 0. If x ≥ 1, then g(x) = e−1/x

e−1/x+0
= 1.

Because f is nonnegative, we also know that x ∈ (0, 1)⇒ f(x) ∈ [0, 1].
Because both the numerator and denominator are smooth, and the denom-

inator is nonzero, g is also smooth.

Problem 2. Rudin 5.4. If

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn

n+ 1
= 0,

where C0, . . . , Cn are real constants, prove that the equation

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0

has at least one real root between 0 and 1.

Proof. Let us define the function f as

f(x) = C0x+
C1

2
x2 + · · ·+ Cn−1

n
xn +

Cn

n+ 1
xn+1

such that f(0) = f(1) = 1. By Rolle’s Theorem, there exists x ∈ [0, 1] such that
f ′(x) = 0⇒

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0.
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Problem 3. Rudin 5.8. Suppose f ′ is continuous on [a, b] and ε > 0. Prove
that there exists δ > 0 such that

|f(t)− f(x)

t− x
− f ′(x)| < ε

whenever |t− x| < δ and x, t ∈ [a, b]. This can be expressed by saying that f is
uniformly differentiable on [a, b] if f ′ is continuous on [a, b]. Does this hold for
vector-valued functions too?

Proof. By the limit definition of f ′ at t, ∀ε > 0∃δ1 > 0 such that ∀|t − x| < δ
and x, t ∈ [a, b],

|f(t)− f(x)

t− x
− f ′(t)| < ε/2.

Because f ′ is continuous on a compact set by Heine-Borel, f ′ is uniformly
continuous. Thus, ∀ε > 0∃δ2 > 0 such that ∀|t − x| < δ and x, t ∈ [a, b],
|f ′(t)− f ′(x)| < ε/2. If we take δ = min(δ1, δ2), then we get

|f(t)− f(x)

t− x
− f ′(x)| ≤ |f(t)− f(x)

t− x
− f ′(t)|+ |f ′(t)− f ′(x)| < ε.

Problem 4. Rudin 5.18. Suppose f is a real function on [a, b], n is a positive
integer, and f (n−1) exists for every t ∈ [a, b]. Let α, β, and P be as in Taylor’s
theorem. Define

Q(t) =
f(t)− f(β)

t− β
for t ∈ [a, b], t 6= β, differentiate

f(t)− f(β) = (t− β)Q(t)

n− 1 times at t = α, and derive the following version of Taylor’s theorem:

f(β) = P (β) +
Q(n−1)(α)

(n− 1)!
(β − α)n.

Proof. We first show that Q(k) : [a, b]\β → R exists for k = 1, . . . , n − 1. We
claim that

Q(k)(t) =
f (k)(t)− kQ(k−1)(t)

t− β
,

where Pi(t) are finite degree polynomials. We shall prove this using induction
on k. The base case k = 1 is quite simple:

Q′(t) =
d

dt

f(t)− f(β)

t− β
=
f ′(t)(t− β)− (f(t)− f(β))

(t− β)2
=
f ′(t)−Q(t)

t− β
.

Because f ′ exists and the denominator is nonzero, this implies Q′ exists.
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Now suppose that for some k < n−1, Q(k)(t) exists and is of the form stated
above. Then,

Q(k+1)(t) =
d

dt

f (k)(t)− kQ(k−1)(t)

t− β

=
(f (k+1)(t)− kQ(k)(t))(t− β)− (f (k)(t)− kQ(k−1))

(t− β)2

=
f (k+1)(t)− (k + 1)Q(k)(t)

t− β
.

Because f (k+1) exists and the denominator is nonzero, this implies Q(k+1) exists.
Now that we have established the existence of Q(k), we can see that f (k)(t) =

kQ(k−1)(t) + (t−β)Q(k)(t) for k = 1, . . . , n− 1. Substituting into the definition
of P and evaluating at β we get

P (α) =

n−1∑
k=0

f (k)(α)

k!
(β − α)k

= f(α) +

n−1∑
k=1

kQ(k−1)(α) + (t− β)Q(k)(α)

k!
(β − α)k

= f(α) +

n−1∑
k=1

Q(k−1)(α)

(k − 1)!
(β − α)k −

n−1∑
k=1

Q(k)(α)

k!
(β − α)k+1

= f(α) +Q(α)(β − α)− Q(n−1)(α)

(n− 1)!
(β − α)n

= f(β)− Q(n−1)(α)

(n− 1)!
(β − α)n.

This yields the alternative version of Taylor’s theorem:

f(β) = P (β) +
Q(n−1)(α)

(n− 1)!
(β − α)n.

Problem 5. Rudin 5.22. Suppose f is a real function on (−∞,∞). Call x a
fixed point of f if f(x) = x.
(a) If f is differentiable and f ′(t) 6= 1 for every real t, prove that f has at most
one fixed point.
(b) Show that the function f defined by

f(t) = t+ (1 + et)−1

has no fixed point, although 0 < f ′(t) < 1 for all real t.
(c) However, if there is a constant A < 1 such that |f ′(t)| ≤ A for all real t,
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prove that a fixed point of f exists, and that x = limxn, where x1 is an arbitrary
real nuimber and

xn+1 = f(xn)

for n = 1, 2, 3, . . ..
(d) Show that the process described in (c) can be visualized by the zig-zag path
(x1, x2)→ (x2, x2)→ (x2, x3)→ (x3, x3)→ (x3, x4)→ · · · .

Proof. Let f(x) = x be a fixed point of f . Suppose that ∃y 6= x such that f(y) =
y. Without loss of generality, suppose y > x. Because f is differentiable, by

the Mean Value Theorem there exists t ∈ [x, y] such that f ′(t) = f(y)−f(x)
y−x = 1.

This is a contradiction; hence, f has at most one fixed point.

Proof. Suppose that ∃x such that f(x) = x. This implies x + (1 + ex)−1 =
x ⇒ (1 + ex)−1 = 0. However, no such x ∈ R satisfies this equation. This is a
contradiction; hence, f has no fixed points. Despite this, observe that f ′(t) =
1− et(1 + et)−2. Because et(1 + et)−2 > 0 and (1 + et)2 > et, 0 < f ′(t) < 1.

Proof. By the Mean Value Theorem, ∃c ∈ [xn, xn+1] such that

f ′(c) =
f(xn+1 − f(xn)

xn+1 − xn
=
f(xn+1 − xn+1

f(xn)− xn
.

Because |f ′(c)| < 1, this implies that the sequence (f(xn) − xn) → 0. Hence,
the point x = limxn satisfies f(x) = x, which implies x is a fixed point.

Proof. Note that the sequence defined alternates between points on the graphs
y = x and y = f(x). By our Mean Value Theorem construction, the path
traced by these points gradually converges to the intersection of these graphs,
x = f(x), which defines a fixed point.
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