MATH 104 HW \#9

James Ni

Problem 1. Construct a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ for $x \leq 0, f(x)=1$ for $x \geq 1$, and $f(x) \in[0,1]$ when $x \in(0,1)$.

Proof. Let us define the function f as

$$
f(x)= \begin{cases}0 & x \leq 0 \\ e^{-1 / x} & x>0\end{cases}
$$

By Example 31.3 of Ross, f is smooth and nonnegative.
We claim that the function g defined by

$$
g(x)=\frac{f(x)}{f(x)+f(1-x)}
$$

satisfies the required properties. We first verify the behavior of g.
If $x \leq 0$, then $g(x)=\frac{0}{0+e^{-1 /(1-x)}}=0$. If $x \geq 1$, then $g(x)=\frac{e^{-1 / x}}{e^{-1 / x+0}}=1$. Because f is nonnegative, we also know that $x \in(0,1) \Rightarrow f(x) \in[0,1]$.

Because both the numerator and denominator are smooth, and the denominator is nonzero, g is also smooth.

Problem 2. Rudin 5.4. If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where C_{0}, \ldots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

has at least one real root between 0 and 1.
Proof. Let us define the function f as

$$
f(x)=C_{0} x+\frac{C_{1}}{2} x^{2}+\cdots+\frac{C_{n-1}}{n} x^{n}+\frac{C_{n}}{n+1} x^{n+1}
$$

such that $f(0)=f(1)=1$. By Rolle's Theorem, there exists $x \in[0,1]$ such that $f^{\prime}(x)=0 \Rightarrow$

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

Problem 3. Rudin 5.8. Suppose f^{\prime} is continuous on $[a, b]$ and $\varepsilon>0$. Prove that there exists $\delta>0$ such that

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\varepsilon
$$

whenever $|t-x|<\delta$ and $x, t \in[a, b]$. This can be expressed by saying that f is uniformly differentiable on $[a, b]$ if f^{\prime} is continuous on $[a, b]$. Does this hold for vector-valued functions too?

Proof. By the limit definition of f^{\prime} at $t, \forall \varepsilon>0 \exists \delta_{1}>0$ such that $\forall|t-x|<\delta$ and $x, t \in[a, b]$,

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(t)\right|<\varepsilon / 2
$$

Because f^{\prime} is continuous on a compact set by Heine-Borel, f^{\prime} is uniformly continuous. Thus, $\forall \varepsilon>0 \exists \delta_{2}>0$ such that $\forall|t-x|<\delta$ and $x, t \in[a, b]$, $\left|f^{\prime}(t)-f^{\prime}(x)\right|<\varepsilon / 2$. If we take $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, then we get

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right| \leq\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(t)\right|+\left|f^{\prime}(t)-f^{\prime}(x)\right|<\varepsilon
$$

Problem 4. Rudin 5.18. Suppose f is a real function on $[a, b], n$ is a positive integer, and $f^{(n-1)}$ exists for every $t \in[a, b]$. Let α, β, and P be as in Taylor's theorem. Define

$$
Q(t)=\frac{f(t)-f(\beta)}{t-\beta}
$$

for $t \in[a, b], t \neq \beta$, differentiate

$$
f(t)-f(\beta)=(t-\beta) Q(t)
$$

$n-1$ times at $t=\alpha$, and derive the following version of Taylor's theorem:

$$
f(\beta)=P(\beta)+\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}
$$

Proof. We first show that $Q^{(k)}:[a, b] \backslash \beta \rightarrow \mathbb{R}$ exists for $k=1, \ldots, n-1$. We claim that

$$
Q^{(k)}(t)=\frac{f^{(k)}(t)-k Q^{(k-1)}(t)}{t-\beta}
$$

where $P_{i}(t)$ are finite degree polynomials. We shall prove this using induction on k. The base case $k=1$ is quite simple:

$$
Q^{\prime}(t)=\frac{d}{d t} \frac{f(t)-f(\beta)}{t-\beta}=\frac{f^{\prime}(t)(t-\beta)-(f(t)-f(\beta))}{(t-\beta)^{2}}=\frac{f^{\prime}(t)-Q(t)}{t-\beta}
$$

Because f^{\prime} exists and the denominator is nonzero, this implies Q^{\prime} exists.

Now suppose that for some $k<n-1, Q^{(k)}(t)$ exists and is of the form stated above. Then,

$$
\begin{aligned}
Q^{(k+1)}(t) & =\frac{d}{d t} \frac{f^{(k)}(t)-k Q^{(k-1)}(t)}{t-\beta} \\
& =\frac{\left(f^{(k+1)}(t)-k Q^{(k)}(t)\right)(t-\beta)-\left(f^{(k)}(t)-k Q^{(k-1)}\right)}{(t-\beta)^{2}} \\
& =\frac{f^{(k+1)}(t)-(k+1) Q^{(k)}(t)}{t-\beta}
\end{aligned}
$$

Because $f^{(k+1)}$ exists and the denominator is nonzero, this implies $Q^{(k+1)}$ exists.
Now that we have established the existence of $Q^{(k)}$, we can see that $f^{(k)}(t)=$ $k Q^{(k-1)}(t)+(t-\beta) Q^{(k)}(t)$ for $k=1, \ldots, n-1$. Substituting into the definition of P and evaluating at β we get

$$
\begin{aligned}
P(\alpha) & =\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k} \\
& =f(\alpha)+\sum_{k=1}^{n-1} \frac{k Q^{(k-1)}(\alpha)+(t-\beta) Q^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k} \\
& =f(\alpha)+\sum_{k=1}^{n-1} \frac{Q^{(k-1)}(\alpha)}{(k-1)!}(\beta-\alpha)^{k}-\sum_{k=1}^{n-1} \frac{Q^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k+1} \\
& =f(\alpha)+Q(\alpha)(\beta-\alpha)-\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n} \\
& =f(\beta)-\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n} .
\end{aligned}
$$

This yields the alternative version of Taylor's theorem:

$$
f(\beta)=P(\beta)+\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}
$$

Problem 5. Rudin 5.22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point of f if $f(x)=x$.
(a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every real t, prove that f has at most one fixed point.
(b) Show that the function f defined by

$$
f(t)=t+\left(1+e^{t}\right)^{-1}
$$

has no fixed point, although $0<f^{\prime}(t)<1$ for all real t.
(c) However, if there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t,
prove that a fixed point of f exists, and that $x=\lim x_{n}$, where x_{1} is an arbitrary real nuimber and

$$
x_{n+1}=f\left(x_{n}\right)
$$

for $n=1,2,3, \ldots$.
(d) Show that the process described in (c) can be visualized by the zig-zag path $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{2}\right) \rightarrow\left(x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{3}\right) \rightarrow\left(x_{3}, x_{4}\right) \rightarrow \cdots$.

Proof. Let $f(x)=x$ be a fixed point of f. Suppose that $\exists y \neq x$ such that $f(y)=$ y. Without loss of generality, suppose $y>x$. Because f is differentiable, by the Mean Value Theorem there exists $t \in[x, y]$ such that $f^{\prime}(t)=\frac{f(y)-f(x)}{y-x}=1$. This is a contradiction; hence, f has at most one fixed point.

Proof. Suppose that $\exists x$ such that $f(x)=x$. This implies $x+\left(1+e^{x}\right)^{-1}=$ $x \Rightarrow\left(1+e^{x}\right)^{-1}=0$. However, no such $x \in \mathbb{R}$ satisfies this equation. This is a contradiction; hence, f has no fixed points. Despite this, observe that $f^{\prime}(t)=$ $1-e^{t}\left(1+e^{t}\right)^{-2}$. Because $e^{t}\left(1+e^{t}\right)^{-2}>0$ and $\left(1+e^{t}\right)^{2}>e^{t}, 0<f^{\prime}(t)<1$.

Proof. By the Mean Value Theorem, $\exists c \in\left[x_{n}, x_{n+1}\right]$ such that

$$
f^{\prime}(c)=\frac{f\left(x_{n+1}-f\left(x_{n}\right)\right.}{x_{n+1}-x_{n}}=\frac{f\left(x_{n+1}-x_{n+1}\right.}{f\left(x_{n}\right)-x_{n}} .
$$

Because $\left|f^{\prime}(c)\right|<1$, this implies that the sequence $\left(f\left(x_{n}\right)-x_{n}\right) \rightarrow 0$. Hence, the point $x=\lim x_{n}$ satisfies $f(x)=x$, which implies x is a fixed point.

Proof. Note that the sequence defined alternates between points on the graphs $y=x$ and $y=f(x)$. By our Mean Value Theorem construction, the path traced by these points gradually converges to the intersection of these graphs, $x=f(x)$, which defines a fixed point.

