MATH 104 HW 49

James Ni

Problem 1. Construct a smooth function f : R — R such that f(z) = 0 for
z<0,f(x)=1 forxz>1, and f(z) € [0,1] when z € (0,1).

Proof. Let us define the function f as

flz) = {SW z<0

x>0

By Example 31.3 of Ross, f is smooth and nonnegative.
We claim that the function g defined by

f(z)
f@)+f(1—x)

satisfies the required properties. We first verify the behavior of g.

If £ <0, then g(z) = W% =0. If z > 1, then g(z) = ;;/71:;)
Because f is nonnegative, we also know that z € (0,1) = f(z) € [0,1].
Because both the numerator and denominator are smooth, and the denom-

inator is nonzero, g is also smooth. O

g(x) =

=1.

Problem 2. Rudin 5.4. If

C] Cn—l C’ﬂ
Ch+ 22 4 ... -0
o+ 5 + 4+ i + Y ;
where Cy, ..., Cy are real constants, prove that the equation

Co+Ciz+ - 4+Ch1z" 1 +Crz" =0
has at least one real root between 0 and 1.
Proof. Let us define the function f as

Cn—lxn+ Cn :CnJrl
n n—+1

C
f(z):00x+?lx2+~'+

such that f(0) = f(1) = 1. By Rolle’s Theorem, there exists « € [0, 1] such that
Fla)=0=
Co+Ciz+-+Ch1z™ ' +Chz™ =0.



Problem 3. Rudin 5.8. Suppose f' is continuous on [a,b] and € > 0. Prove
that there exists § > 0 such that

f(t) = f(z)

t—=x

| - f(@)l <e

whenever |t — x| < § and z,t € [a,b]. This can be expressed by saying that f is
uniformly differentiable on [a,b] if f' is continuous on [a,b]. Does this hold for
vector-valued functions too?

Proof. By the limit definition of f’ at ¢, Ve > 036; > 0 such that V|t — x| < §

and z,t € [a,b],
f@t) = f(x)
t—x

| — ')l <e/2.

Because f’ is continuous on a compact set by Heine-Borel, f’ is uniformly
continuous. Thus, Ve > 03d; > 0 such that V|t — z| < § and x,t € [a,b],
|f'(t) — f'(x)] <e/2. If we take § = min(d1, d2), then we get

'W - f'@)| < Iw — O+ (t) - ()] <e.
O

Problem 4. Rudin 5.18. Suppose f is a real function on [a,b],n is a positive
integer, and "1 exists for every t € [a,b]. Let a, 8, and P be as in Taylor’s
theorem. Define

fort € [a,b),t # B, differentiate

f) = 1(B) = (- pB)R)

n — 1 times at t = «, and derive the following version of Taylor’s theorem:

(n1)(q
16 = o)+ L5 -y

Proof. We first show that Q) : [a,b]\f — R exists for k = 1,...,n — 1. We
claim that

190 k(1)

= . ,

where P;(t) are finite degree polynomials. We shall prove this using induction
on k. The base case k = 1 is quite simple:

_df®)—fB) _ -5 - (f0) - f(B) _ f'() —QE)

S dt t—-8 (t — B)2 t—p

Because f’ exists and the denominator is nonzero, this implies Q' exists.

QM(t)

Q'(t)



Now suppose that for some k < n—1, Q) (t) exists and is of the form stated
above. Then,

Q(k“)(t) _ if(k)(t) _ ]{;Q(kfl)(t)

dt t—2
_ () = RQM @) (= B) = (SR (1) — QD)
a (t—p)?
_ S = (k+1)QW(1)
t—p '

Because f(#**1) exists and the denominator is nonzero, this implies Q*t1) exists.

Now that we have established the existence of Q%) we can see that f(*)(t) =
EQF=1D(t) + (t — B)QW(t) for k = 1,...,n— 1. Substituting into the definition
of P and evaluating at 3 we get

n—1 (k) a
Pla)=3 L@ oy

k!
k=0

n-l (k=1) (¢ _ B) (o

:f(a)JerQ ( )*k('t B)Q™( )(Bia)k
(k— 1) (k)
+ZQ a)k Q k'( )(B—Ot)k+1
k=1

- Q" (a) n
= /(@) + Qa)(8 — ) = (6~ )

Q" (a)

= f(B) — W(ﬁ —a)™.

This yields the alternative version of Taylor’s theorem:

Q(n—l)(a)

£(8) = P(8) + =

(B —a)".

O

Problem 5. Rudin 5.22. Suppose f is a real function on (—oo,00). Call x a
fized point of f if f(x) ==

(a) If f is differentiable and f'(t) # 1 for every real t, prove that f has at most
one fixed point.

(b) Show that the function f defined by

f@)=t+ (1 +e) !

has no fixed point, although 0 < f'(t) < 1 for all real t.
(¢) However, if there is a constant A < 1 such that |f'(t)| < A for all real t,



prove that a fized point of f exists, and that x = lim x,,, where x1 is an arbitrary
real nuimber and

Tpt1 = f(zn)
form=1,23,....
(d) Show that the process described in (c) can be visualized by the zig-zag path
({El,l‘g) — ({Eg,l‘g) — ({Eg,l‘g) — ({E3,l‘3) — ({E3,l‘4) —

Proof. Let f(x) = z be a fixed point of f. Suppose that Jy # z such that f(y) =
y. Without loss of generality, suppose y > x. Because f is differentiable, by
the Mean Value Theorem there exists ¢ € [z, y] such that f'(t) = % =1
This is a contradiction; hence, f has at most one fixed point. O

Proof. Suppose that 3z such that f(z) = 2. This implies z + (1 + e%)~! =
r = (1+¢%)~! = 0. However, no such z € R satisfies this equation. This is a
contradiction; hence, f has no fixed points. Despite this, observe that f/(t) =
1—et(1+e')72 Because ef(1+e) 2 >0and (1+e)? >ef,0< f/(t) <1. O

Proof. By the Mean Value Theorem, 3¢ € [z,,, Z,,41] such that

Fle) = f(@ng1 — flan) _ f@ng1 — T+l

Tn4+1l — Tn N f(xn) — Tn

Because |f'(c)| < 1, this implies that the sequence (f(z,) — z,) — 0. Hence,
the point z = lim z,, satisfies f(z) = z, which implies z is a fixed point. O

Proof. Note that the sequence defined alternates between points on the graphs
y =z and y = f(x). By our Mean Value Theorem construction, the path
traced by these points gradually converges to the intersection of these graphs,
x = f(z), which defines a fixed point. O



