MATH 104 HW \#10

James Ni

Problem 1. Ross 33.4. Give an example of a function f on $[0,1]$ that is not integrable for which $|f|$ is integrable.
Proof. Consider $f:[0,1] \rightarrow \mathbb{R}$ such that $f(x)=-1$ if $x \in \mathbb{Q}$ and $f(x)=1$ if $x \in \mathbb{R} \backslash \mathbb{Q}$. Then, for any partition P of $[0,1]$, we have $U(f, P)=\sum_{k=1}^{n}\left(t_{k}-\right.$ $\left.t_{k-1}\right)=b-a$. On the other hand, by the Denseness of \mathbb{Q}, we have $L(f, P)=$ $\sum_{k=1}^{n}-\left(t_{k}-t_{k-1}\right)=a-b$. This implies $U(f) \neq L(f)$, so thus, f is not integrable.

However, $|f(x)|=1$ for any $x \in[0,1]$. Thus, $U(|f|, P)=L(|f|, P)=b-a$. This implies $U(|f|)=L(|f|)$ so thus, $|f|$ is integrable.

Problem 2. Ross 33.7. Let f be a bounded function on $[a, b]$, so that there exists $B>0$ such that $|f(x)| \leq B$ for all $x \in[a, b]$.
(a) Show $U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]$ for all partitions P of $[a, b]$.
(b) Show that if f is integrable on $[a, b]$, then f^{2} is also integrable on $[a, b]$.

Proof. For some partition P of $[a, b]$, let $x_{k}, y_{k} \in\left[t_{k-1}, t_{k}\right]$ such that $f\left(x_{k}\right)=$ $M(f, P)$ and $f\left(y_{k}\right)=m(f, P)$. Then,

$$
\begin{aligned}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) & =\sum_{k=1}^{n}\left(f\left(x_{k}\right)^{2}-f\left(y_{k}\right)^{2}\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(f\left(x_{k}\right)+f\left(y_{k}\right)\right)\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)\left(t_{k}-t_{k-1}\right) \\
& \leq 2 B \sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)\left(t_{k}-t_{k-1}\right)= \\
& \leq 2 B[U(f, P)-L(f, P)] .
\end{aligned}
$$

Thus, if f is integrable on $[a, b]$, then $\forall \varepsilon>0 \exists P$ such that

$$
U(f, P)-L(f, P)<\varepsilon / 2 B \Rightarrow U\left(f^{2}, P\right)-L\left(f^{2}, P\right)<\varepsilon
$$

This implies that f^{2} is integrable.
Problem 3. Ross 33.13. Suppose f and g are continuous functions on $[a, b]$ such that $\int_{a}^{b} f=\int_{a}^{b} g$. Prove there exists x in (a, b) such that $f(x)=g(x)$.

Proof. Let $h=f-g$ such that $\int_{a}^{b} h=0$. By the Intermediete Value Theorem for Integrals, this implies that there exists an $x \in(a, b)$ such that $h(x)=0 \Rightarrow$ $f(x)=g(x)$.

Problem 4. Ross 35.4. Let $F(t)=\sin t$ for $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Calculate
(a) $\int_{0}^{\pi / 2} x d F(x)$,
(b) $\int_{-\pi / 2}^{\pi / 2} x d F(x)$.

Proof. Because $F(t)=\sin t$ is continuously differentiable on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\begin{aligned}
\int_{0}^{\pi / 2} x d F(x) & =\int_{0}^{\pi / 2} x \cos x d x=\left.x \sin x\right|_{0} ^{\pi / 2}+\int_{0}^{\pi / 2} \sin x d x \\
& =\frac{\pi}{2}+\left.\cos x\right|_{0} ^{\pi / 2}=\frac{\pi}{2}-1 \\
\int_{-\pi / 2}^{\pi / 2} x d F(x) & =\int_{-\pi / 2}^{\pi / 2} x \cos x d x=0 \text { by symmetry. }
\end{aligned}
$$

Problem 5. Ross 35.9.a). Let f be continuous on $[a, b]$. Show $\int_{a}^{b} f d F=$ $f(x)[F(b)-F(a)]$ for some x in $[a, b]$.
Proof. Because f is continuous on $[a, b]$, it is also F-integrable on $[a, b]$. This implies that $\int_{a}^{b} f d F=U_{F}(f)=L_{F}(f)$. By definition of sup and inf, respectively, we have $L_{F}(f, P) \leq \int_{a}^{b} f d F \leq U_{F}(f, P)$, for any partition of $[a, b]$. Let $M=M(f,[a, b])$ and $m=m(f,[a, b])$. Then,

$$
\begin{aligned}
U_{F}(f, P) & =\sum_{k=0}^{n} f\left(t_{k}\right)\left[F\left(t_{k}^{+}\right)-F\left(t_{k}^{-}\right)\right]+\sum_{k=1}^{n} M\left(f,\left(t_{k-1}, t_{k}\right)\right)\left[F\left(t_{k}^{-}\right)-F\left(t_{k-1}^{+}\right)\right] \\
& \leq \sum_{k=0}^{n} M\left[F\left(t_{k}^{+}\right)-F\left(t_{k}^{-}\right)\right]+\sum_{k=1}^{n} M\left[F\left(t_{k}^{-}\right)-F\left(t_{k-1}^{+}\right)\right]= \\
& \leq M\left[F\left(t_{n}^{+}\right)-F\left(t_{0}^{-}\right)\right]=M[F(b)-F(a)]
\end{aligned}
$$

A similar process gives us $L_{F}(f, P) \geq m[F(b)-F(a)]$. This implies $m[F(b)-$ $F(a)] \leq \int_{a}^{b} f d F \leq M[F(b)-F(a)]$. Because $m \leq f \leq M$, by the Intermediete Value Theorem, this implies that there exists some $x \in[a, b]$ such that $\int_{a}^{b} f d F=$ $f(x)[F(b)-F(a)]$.

