MATH 104 HW #10

James Ni

Problem 1. Ross 33.4. Give an example of a function f on [0,1] that is not integrable for which |f| is integrable.

Proof. Consider $f : [0,1] \to \mathbb{R}$ such that f(x) = -1 if $x \in \mathbb{Q}$ and f(x) = 1 if $x \in \mathbb{R} \setminus \mathbb{Q}$. Then, for any partition P of [0,1], we have $U(f,P) = \sum_{k=1}^{n} (t_k - t_{k-1}) = b - a$. On the other hand, by the Denseness of \mathbb{Q} , we have $L(f,P) = \sum_{k=1}^{n} -(t_k - t_{k-1}) = a - b$. This implies $U(f) \neq L(f)$, so thus, f is not integrable.

However, |f(x)| = 1 for any $x \in [0, 1]$. Thus, U(|f|, P) = L(|f|, P) = b - a. This implies U(|f|) = L(|f|) so thus, |f| is integrable.

Problem 2. Ross 33.7. Let f be a bounded function on [a,b], so that there exists B > 0 such that $|f(x)| \leq B$ for all $x \in [a,b]$.

(a) Show $U(f^2, P) - L(f^2, P) \le 2B[U(f, P) - L(f, P)]$ for all partitions P of [a, b].

(b) Show that if f is integrable on [a, b], then f^2 is also integrable on [a, b].

Proof. For some partition P of [a,b], let $x_k, y_k \in [t_{k-1}, t_k]$ such that $f(x_k) = M(f,P)$ and $f(y_k) = m(f,P)$. Then,

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{k=1}^{n} (f(x_{k})^{2} - f(y_{k})^{2})(t_{k} - t_{k-1})$$

$$= \sum_{k=1}^{n} (f(x_{k}) + f(y_{k}))(f(x_{k}) - f(y_{k}))(t_{k} - t_{k-1})$$

$$\leq 2B \sum_{k=1}^{n} (f(x_{k}) - f(y_{k}))(t_{k} - t_{k-1}) =$$

$$\leq 2B [U(f, P) - L(f, P)].$$

Thus, if f is integrable on [a, b], then $\forall \varepsilon > 0 \exists P$ such that

$$U(f,P) - L(f,P) < \varepsilon/2B \Rightarrow U(f^2,P) - L(f^2,P) < \varepsilon.$$

This implies that f^2 is integrable.

Problem 3. Ross 33.13. Suppose f and g are continuous functions on [a, b] such that $\int_a^b f = \int_a^b g$. Prove there exists x in (a, b) such that f(x) = g(x).

Proof. Let h = f - g such that $\int_a^b h = 0$. By the Intermediete Value Theorem for Integrals, this implies that there exists an $x \in (a, b)$ such that $h(x) = 0 \Rightarrow f(x) = g(x)$.

Problem 4. Ross 35.4. Let $F(t) = \sin t$ for $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Calculate (a) $\int_{0}^{\pi/2} x dF(x)$, (b) $\int_{-\pi/2}^{\pi/2} x dF(x)$.

Proof. Because $F(t) = \sin t$ is continuously differentiable on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$\int_{0}^{\pi/2} x dF(x) = \int_{0}^{\pi/2} x \cos x dx = x \sin x |_{0}^{\pi/2} + \int_{0}^{\pi/2} \sin x dx$$
$$= \frac{\pi}{2} + \cos x |_{0}^{\pi/2} = \frac{\pi}{2} - 1.$$
$$\int_{-\pi/2}^{\pi/2} x dF(x) = \int_{-\pi/2}^{\pi/2} x \cos x dx = 0 \text{ by symmetry.}$$

Problem 5. Ross 35.9.a). Let f be continuous on [a,b]. Show $\int_a^b f dF = f(x)[F(b) - F(a)]$ for some x in [a,b].

Proof. Because f is continuous on [a, b], it is also F-integrable on [a, b]. This implies that $\int_a^b f dF = U_F(f) = L_F(f)$. By definition of sup and inf, respectively, we have $L_F(f, P) \leq \int_a^b f dF \leq U_F(f, P)$, for any partition of [a, b]. Let M = M(f, [a, b]) and m = m(f, [a, b]). Then,

$$U_F(f,P) = \sum_{k=0}^n f(t_k) [F(t_k^+) - F(t_k^-)] + \sum_{k=1}^n M(f,(t_{k-1},t_k)) [F(t_k^-) - F(t_{k-1}^+)]$$

$$\leq \sum_{k=0}^n M[F(t_k^+) - F(t_k^-)] + \sum_{k=1}^n M[F(t_k^-) - F(t_{k-1}^+)] =$$

$$\leq M[F(t_n^+) - F(t_0^-)] = M[F(b) - F(a)].$$

A similar process gives us $L_F(f, P) \ge m[F(b) - F(a)]$. This implies $m[F(b) - F(a)] \le \int_a^b f dF \le M[F(b) - F(a)]$. Because $m \le f \le M$, by the Intermediete Value Theorem, this implies that there exists some $x \in [a, b]$ such that $\int_a^b f dF = f(x)[F(b) - F(a)]$.