MATH 104 HW \#11

James Ni

Theorem 1. Let f be continuous on $[g(a), g(b)]$ and g be continuously differentiable on $[a, b]$. For $x \in[a, b]$, let

$$
F(x)=\int_{g(a)}^{g(x)} f(t) d t
$$

Then, F is differentiable such that $F^{\prime}(x)=f \circ g(x) g^{\prime}(x)$.
Proof. By change of variables, $F(x)=\int_{a}^{x} f \circ g(x) g^{\prime}(x) d x$. Because $f \circ g$ and g^{\prime} are continuous, the FTC II implies that $F^{\prime}(x)=f \circ g(x) g^{\prime}(x)$.

Problem 1. Ross 34.2. Calculate
(a) $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$,
(b) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t$.

Proof. Let $F(x)=\int_{0}^{x} e^{t^{2}} d t$. Because $F(0)=0$, by the definition of derivative, $F^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}$. By the FTC II, we have $F^{\prime}(0)=\left.e^{t^{2}}\right|_{t=0}=1$.

Let $F(x)=\int_{3}^{\frac{x}{3+h}} e^{t^{2}} d t$. Similarly, we apply $F(0)=0$ and the definition of derivative to get $F^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)}{h}$. By a simple application of Theorem 1, we have $F^{\prime}(0)=\left.e^{(t+3)^{2}}\right|_{t=0}=e^{9}$.

Problem 2. Ross 34.5. Let f be a continuous function on \mathbb{R} and define

$$
F(x)=\int_{x-1}^{x+1} f(t) d t \text { for } x \in \mathbb{R}
$$

Show that F is differentiable on \mathbb{R} and compute F^{\prime}.
Proof. We can write

$$
F(x)=\int_{0}^{x+1} f(t) d t-\int_{0}^{x-1} f(t) d t
$$

By a simple application of Theorem 1, we can express F as the sum of two differentiable functions, which implies F is differentiable and $F^{\prime}(x)=f(x+$ $1)-f(x-1)$.
Problem 3. Ross 34.7. Use change of variables to integrate $\int_{0}^{1} x \sqrt{1-x^{2}} d x$.

Proof. Let $f(x)=\sqrt{x}, g(x)=1-x^{2}$. It is easy to see that f is continuous and g is continuously differentiable on $[0,1]$, and that $g^{\prime}(x)=-2 x$. By change of variables,

$$
\int_{0}^{1} x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int_{1}^{0} \sqrt{u} d u=\left.\frac{1}{3} u^{3 / 2}\right|_{u=0} ^{u=1}=\frac{1}{3}
$$

