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Chapter 1

Sequences and Series

1.1 January 18

1.1.1 Natural Numbers
e N=1{0,1,2,3,...,}

e successor construction: 2 is the successor of 1, 3 is the successor of 2. So starting from 0 one can reach
all rational numbers (for any given natural number, it can be reached from 0 in finitely many steps)

e Peano Axioms for natural Numbers (see Tao 1)

— Mathematical Induction Property (Axiom 5): let n be a natural number and let P(n) be a statement
depending on n, if the following two conditions hold:

x P(0) is true
x If P(k) is true, then P(k + 1) is true
then P(n) is true for all n € N

e operations allowed for N : 4+, x

—ifn,meN, thenn+méeNandn xméeN

— —,/ are not always defined

1.1.2 Integers
o Z={..,-2-1,01,2..}

e allowed operations: +,—, x  (formally, Z is a ring)

1.1.3 Rational Numbers
e Q={%|m,n € Z,n # 0}
e We have all four operations +, —, -, /

e (Q is now a field
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Theorem 1.1.1 (Field Axioms(Ross 3)).
Addition:

e a+(b+c)=(a+0b)+cforalla,b,ec

e at+b=>b+aforall ab

eag+0=aqaforalla

e For each a, there is an element —a such that a + (—a) =0

Multiplication:

a(be) = (ab) = ¢ for all a, b, ¢
e ab = ba for all a,b
e a-1=aforall a

For each a # 0, there is an element a~! such that aa=! =1

Distributive Law:

e a(b+c) = ab+ ac for all a,b,c

Theorem 1.1.2 (Useful Properties of Fields(Ross 3)).
e a+c=>b+cimpliesa =5
e (—a)b= —ab for all a,b
o (—a)(—b) = ab for all a,b
e ac=bcand c# 0 imply a = b
e ab = 0 implies either a =0 or b=10

for a,b,c € Q

Q is an ordered field, there is a “relation” <

Definition 1.1.3. A relation S is a subset of Q x Q, if (a,b) € S we say “a and b have relation S” or “aSb”

The relation “<” has 3 properties:
e ifa<band b<a,thena=5
e ifa<band b<c thena<c (transitivity)
e for any a,b € Q, at least one of the following is true: a < bor b<a
Since Q is an ordered field, the field structure (+, —, -, /) is compatible with (<)
e Ifa<b thena+c<b+cforallceQ
e Ifa>0andb>0, then ab >0
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Theorem 1.1.4 (Useful Properties of Ordered Fields(Ross 3)).
o If a <b, then —b<a
e If a <bandc >0, then ac < be
e If a <band c <0, then bc < ac
e 0<qa?foralla
e 0«1
e If0<a,then 0 < a™ !
e If0<a<b then0<b !l <ag?

for a,b,c € Q

1.1.4 What’s lacking in Q?

1. There are certain gaps in Q. For example, the equation 22 — 2 cannot be solved in Q

2. For a bounded set in QQ, F, it may not have a “most economical” or “sharpest” upper bound in Q
Ex: E = {z € Q|2 < 2} there is no least upper bound(sup) of E in Q (we want to take v/2 as sup(E)
but v/2 is not a rational number)

1.2 January 20

1.2.1 Rational Zeros Theorem

Definition 1.2.1. An integer coefficient polynomial in z is of the form: c,2? 4+ cp_12™ ' + -+ c12 + ¢
ClyeeyCn € Ly cp #0.

1. A Z-coefficient equation is f(z) =0

2. One can ask: when does a Z—coefficient equation have roots in Q

Fact 1.2.2. A degree n polynomial has n roots in C, ie. 3z1,...,2, € Csuch that f(z) =cp(x—21) - (x—25)

Theorem 1.2.3. If a rational number r satisfies the equation x,, 2"+ - -4+c1x+co = 0, with ¢; € Z, ¢, ¢ # 0
and r = §(where ¢ and d are coprime integers). Then c divides ¢y and d divides c,.

Proof. Plug in 2 = < into the equation to get ¢, (5)™ 4+ ¢p—1(5)" ' + -+ + c1($) + ¢, = 0 multiply both
sides by d" to get c,c” + cp_1c” td 4 -+ cied” ! +epd =0

Since ¢,c® = —d(c,_1c" L+ - + c1d™ 1Y), d divides ¢, c”. Since d and ¢ are coprimes, d does not divide
c" so d has to divide ¢,
Also, since cod™ = —c(c,” '+ cp_1¢"72d + - - + c;d™ 1) by similar reasoning ¢|cg

Using the rational zeros theorem, we can answer questions about rationality

6



1.2. JANUARY 20 104: Real Analysis

Example 1.2.4. Show /6 is irrational.

{/6 is rational « z® — 6 has rational roots. The only possible rational roots such that r = 4§ need c[6,d|[1.

Taking d =1, ¢ = £1,+2, 3, +£6. Once can check all of these do not satisfy the equation so there is no solution
in Q

1.2.2 Historical Construction of R from Q

1. Dedekind Cut: (Q: if V2 ¢ Q, how can we save the information of \/57)
A: the subset of Q C 5 = {r € Q|r > z}
For every « € R, consider C, = {z € Q|r < x}. We can define addition, multiplication on the subsets C,

2. Sequences in Q
ie. Use a sequence of rational numbers to “aproximate” a real number
eg. V2 can be approximated by 1,1.4,1.41.1.414, . ..
Problems:

(a) Given any real number, how do you get such a sequence?

(b) How do you determine if 2 different sequences approximate the same real number
(eg. 1+ 1.1,1.01,1.001,... or 1 + 0.9,0.99,0.999,... or 1 + 1,1,1,...) all have the same limit

1.2.3 Properties (Axioms) of R

Given the existence of R, we have certain properties (axoims) of R

Definition 1.2.5. A subset of R is said to be bounded above if Ja € R such that for any = € E, we have
r<a

Theorem 1.2.6 (Completeness Axiom of R). Given a set E C R, bounded above, there exists a unique r
such that:

1. r is an upper bound of E
2. for any other upper bound of «, we have r < «

r is called the least upper bound of E, r = sup F
(ie. sup E is well defined for subsets that are bounded above)

Example 1.2.7. sup([0,1]) = 1, sup((0,1)) = 1, sup({r € Qr% < 2}) = V2

Theorem 1.2.8 (Archimedean Property). For any » € R, » > 0 3n € N such that nr > 1 or equivalently,
r> %

1.2.4 +o00,—0

e With these symbols, we can say sup(N) = +00 <+ N is not bounded above

e +00, —0o are not real numbers. They have part of the defined operations R has
ie. 3400 =400, (—=3) - +00 = —o0 but (+00) + (—o0) =NAN, 0 - (+00) = undefined.

7
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1.2.5 Sequences and Limits

o A sequence of real numbers is: ag, a1, az, ... denoted (a,)%2, or shortened (a,)

e We care about the “eventual behavior” of a sequence

Definition 1.2.9. A sequence (a,) converges to a € R if Ve > 0, 3N € N such that Vn > N, |a, —a| < e.

1.3 January 25

1.3.1 Sequences and Limits

Definition 1.3.1. A sequence (a,) is bounded if IM > 0, |a,| < M for all n.

Theorem 1.3.2. Convergent sequences are bounded.

Proof. Let (a,) be a convergent sequence that converges to a.
Let € = 1, then by definition of convergence, there exists N > 0 such that Vn > n

la, —a| <1 <= a—1<a,<a+1 Vn>N.

Let M = max{ay,aqs,...,an}, Ma = max{|a—1]|,|a+ 1|} and M = max{My, M>}. Thus if n < N we have
lan| < M, and if n > N we have |a,| < M so

vn, |an| < max{My, Ms} = M

Remark 1.3.3. One can deal with the first few terms of a sequence easily, it is the “tail of the sequence” that
matters.

1.3.2 Operations on Convergent Sequences

Theorem 1.3.4. c € R, V convergent sequences a,, — a, we have c-a, — c- a.

Proof. If ¢ = 0, the result is obvious.
If ¢ # 0, we want to show for all ¢ > 0, IN such that Vn > N

£

lc-an —c-a|<e <= || -|an, —a|<e <= |a, —al < EE

Now let ¢’ = ry- By definition of a, — a, we have N' > 0 such that la, —a| <& = rr- This gives the
desired V.

Theorem 1.3.5. If a,, — a, b, — b, then a,, + b, — a + b.
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Proof. We want to show Ve > 0, AN such that Vvn > N
|an, +bp, — (a+D)| <e <= |(an —a) + (b, —b)| < e. (*)

|(an —a) + (by, — b)| < |a, — a| + |b, — b] by the triangle inequality so

() < lan —al <e (**)
la, —a| <e/2 ok
- {|bn—b|<s/2 9

By the convergence of a, and b,, IN1, Ny such that Vn > Ny, |a, —a| < §, and Vn > N, |b, —b| < 5.
Take N = max{Nj, No}, then Vn > N (x* x) is satisfied hence (*) is satsified.

Corollary 1.3.6. If a,, — a, b,, — b, then a,, — b, — a — b.

Proof. Let ¢,, = (—1) - b,. Then ¢, — —b so a,, + ¢, = a —b.

Theorem 1.3.7. If a,, — a, b, — b, then a, - b, — ab.

Proof. Want to show: Ve > 0, AN such that Vn > N
|an, — ab| < e. (*
Since a,, is convergent, it is bounded by some M > 0 which yields the following inequalities.
|anby, — abl = |an, (b —b) + apb — ab|
= |an(bp = b) + (an, — a)b|
< lan(bn = b)[ +[(an — a)b|

< lan| - |bn = bl +[an —al - [0
< M|b, — b| + |bl|a, — al

So
M|b, —b| <e/2
() - il 0l 272 ()
|bl|an —al <e/2
Since a, — a, let e1 = ﬁ, then 3N such that Yn > N,
lan —al <&, <= |bllan —a| < %
Also, since b, — b, let e5 = 557, then N such that ¥n > N,
by —b| < &3 <= Mlb, — b < %

. Let N = max{N;y, N}, then for n > N, (s*) holds so () holds.
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Theorem 1.3.8. If a,, — a, and a,, # 0Vn and a # 0, then ai — 1

a

Proof. Want to show Ve > 0, 3N such that Vn > N,

1 1
|- ——|<e.
a ap
Observe that
Ly e
a ay a-ap la| - |an|

Claim: Jc > 0 such that |a,| > ¢Vn.

Proof. Let ¢’ = §, then 3N’ such that ¥n > N’
la, — al SE’:% = —la|/2 < a, —a<|al|/2
= a7M<an<a+M%|an|>M
2 2 -2
Let ¢; = min{lay|, |az],...,|an’|} > 0. Let ¢ = min{cy, |a|/2}.
Thus, 1%~ < lan=al fopce
* lal-lan] lal-c | |
ap - @
*)
() la| - ¢ —

and (xx) can be satisfied since a,, — a.

Remark 1.3.9. a,, # 0 does not imply a # 0. For example consider the sequence a,, = %

Corollary 1.3.10. If a,, — a, by, = b and b, # 0, b # 0, then 3= — 3.

1

Proof. =ay, - bi. Since by Thm 8, bi =3y Antps A % by Thm 7.

an
b'ﬂ

Theorem 1.3.11 (Useful Results).
(1) Timp o0 & =0 ¥p > 0.
(2) lim, 00 a™ =0 V|a| < 1.
(3) limy, oo n'/™ =1.
(4)

4) lim,, o0 a¥/™ =1 for all n > 0.

10
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Proof (Proof of (3)). Let S,, = n'/™ — 1, then s,, > 0 Vn positive integers.
145, =n"'" < (1+s,)" =n.

Using to binomial theorem we see

—1
1+nsn+"("2 )si+ =n
nn—1) ,
<
5 s, <n
2
— <
sy < 1

Thus, s, —» 0 as n — oo.

1.4 January 27

1.4.1 Monotone Sequences

exists N such that s, > M Vn > N.

Definition 1.4.1 (lims,, = 400). A sequence (s,) is said to “diverge to +o0”, if for every M € R there

consisting of the values of (s,), is called the value set.

Definition 1.4.2 (Values of a Sequence). If (s,)*)n=1 is a sequence, then {s,}52,, the subset of R

Example 1.4.3.

L4 (sn) = 172a 1727 st {SW}ZOZI = {172}
o (50)=1,1,2,21,1,2,2,... {sa}p2, = {1,2}
o (sp)=1,2,3,4,... {sn}2,={1,2,3,4,...}

Definition 1.4.4 (Monotone Sequences).
e A sequence (s,,) is monotonically increasing if a,4+1 > a, Vn

e A sequence (s,) is monotonically increasing if a,4+1 < a, Vn

Example 1.4.5.

e (a,) = a, a constant sequence is monotonically increasing and decreasing

e (a,)=1,2,3,..., is increasing

o (ap) = —%, is increasing and bounded above (also below)

Theorem 1.4.6. A bounded monotone sequence is convergent.

11
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Proof. (We will show for increasing, the proof for decreasing is similar.)

Let (a,) be a bounded monotone increasing sequence and let v = sup{a, }5>; (= supay). Then a,, < yVn
and for any ¢ > 0, Ja,, such that a,, > v —e. Thus for every € > 0, let N = ng(as defined above), then
for every n > N, we have v — & < an, < a, <~ thus |a, — 7| < € then lima, =~

Example 1.4.7 (Recursive Definition of Sequences). Let s,, be any positive number and let

s2+5

Vn > 1. *
25, "= )

Spn+1 =

We want to show lim s,, exists and find it.
Remark 1.4.8. If we assume lim s,, exists, call it s, then s satisfies
245

since we can apply lim,, ,-, to both sides.

(x%) — 252 = 52+ 5 — s = £+/5. Since s, is a positive sequence lim s,, can only be > 0, thus s can only by
NG

e To show lim s,, exists, we can only need to show s,, is bounded and monotone

e Here is a trick: let f(z) = "”22';5, then sp41 = f(sn)

— Consider the graph of f, ie. y = f(x)

— Consider the diagonal, ie. y =«

t2 Sl

ty

If s1 > /5, we should try to prove v/b < ---s3 < s9 < 51

e If 0 < s; < /5, then we show that sy > /5, we can consider (s,)2 ;, which reduces to case 1
e If (s,) is unbounded and increasing, then lim s,, = +00

o If (s,) is unbounded and decreasing, then lim s, = —co

12
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1.4.2 Lim inf and sup of a sequence

Definition 1.4.9 (limsup). Let (s,)52; be a sequence,

limsup s, := lim (sup{sn}p—1)

o (5,)5 y is called a “tail of the sequence (s,)” starting at N
o Ay =sup{s,}i>y = SUP,,> N Sn
e limsups, =lim A, = +o00

Example 1.4.10.

(1) (sn)=1,2,3,4,5,...
Ay =sup,,>q $n = +00, Az = SUp,,>9 Sp = +00
limsups, = lim A,, = +00

(2) (sn)=1-73
Al = Suanl Sn = 13 A2 = SuanQ Sp = 1

limsup s,, = lim A,, = 1 (for any monotonic increasing sequence limsup s,, = sup s; = 4;)

(3) sn=14+21 (s))=21+31+3,...
A =sup{2,1+ 31, 14+3,..} =2
Ag:sup{l—&—;l—l—%,l—l—i...}

Ay = sy so limsup s, = lim(1 4 1)

=
[N

+
1

Lemma 1.4.11. A,, = sup,,,>,, Sm forms a decreasing sequence.

Proof. Since {s,}5o_, D {sn}e_pi1, SUP{sn oo, > sup{sm}o_, 1, ie. A, > A,

Corollary 1.4.12. lim,_, ., A, = inf 4,2, (= inf, A,)

nn=1

Example 1.4.13. s, :1(*1)71 ’ % (8n) 1: (-1, %7 *%7 oel)
Ay =sup,>; Sp =52 =5, A2 = 5, A3 = 7, 80
111111

(An)=3.595 16 6--- limsups, =1limA, =0
A, is like the “upper envelope.”

1.5 February 1

1.5.1 Cauchy Sequences

Definition 1.5.1 (Cauchy Sequence). A sequence (a,,) is cauchy if Ve > 0, IN > 0, such that Vn,m > N
we have |a, — ap| < e.

13
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Lemma 1.5.2. If (a,) converges to a, then (a,) is cauchy.

Proof. Let £; = §, then since a, — a, 3N; > 0 such that Vn,m < N, |a, —a| < 1 and |a,, —a| < &;1.
Thus,
lan, — am| = |(an — @) = (am — a)| < |an —al + |am —a] <e1+e1 =¢.

Remark 1.5.3. This is also for true in Q

Lemma 1.5.4 (Squeze Lemma). Given sequences (A,), (By), (a,) such that A,, > a,, > B,, Vn, if 4,, — q,
B, — a, then a,, — a.

Proof. Ve > 0, we have N > 0 such that Vn > N, |4, —a| <e and |B, —a| <e. Thena, < A4, <a-+¢
and a, > B, >a—¢€ so
a—e<a,<a+te<|a, —al<e.

Lemma 1.5.5. Cauchy Sequences are bounded.

Proof. Let e = 1. Then IN > 0 such that Vn,m > N, |s,—s,,| < €. Consider the term sy;. Observe that
Vn < N, [sy+1— Sm| <1soVn <N, [sy]| < snt1+ 1. Taking M = max{|s1],|sz2], ..., |sn+1], [sn+1| + 1},
we see that M > |s,,| for all n.

Theorem 1.5.6. If (a,) is cauchy in R, then (a,,) is convergent.

Proof. Since (ay) is cauchy, (ay) is bounded so limsupa,, and liminfa, exist. Let A, = sup,,s, am,
B, =inf,,>, ap,, then A, > a,, > B,,. Let A =1lim A4,, and B,, = lim B,,. By the Squeeze Lemma, we only
need to show A = B. Since A,, > B,,, we know A > B, hence we only have to rule out A < B.

Assume A < B. Let € = @. By Cauchy criterion 3N > 0 such that Vn,m > N, |a,, — a,| < €. By
the previous lemma, since A = limsup a,, and B = liminf a,,, given €, N above, we have n > N such that
|an, — A| < € and m > N such that |a,, — B| < e. Then

|A—B| <|A-an|+|an —am|+|am —B|<e+e+e=A—B=|A—- B,

which is a contradiction.

1.5.2 Subsequences

Let (ay,) be a sequence. If we pick an infinite subset of N, n; < ngy < ng < ---, then we can have a new sequence
bk = Qs (D) = Anys Gngs Gngy - - -

Example 1.5.7. For (a,) = (—=1)", a1 = —1,a2 = +1,... does not converge but subsequence consisting of
odd terms converges to —1 and subsequence consisting of even terms converges to 1.

14
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Definition 1.5.8. Let (a,) be a sequence. Then a € R is a subsequential limit if there exists (ay,,) such
that limg_oo ar = a.

Theorem 1.5.9. Let (a,) be a sequence. Then:
(1) a is a subsequential limit of (a,)

(2) < Ve >0,VN >0, In > N such that |a, —a| < e

(3) « Ve > 0, the set A, = {nl|a, — a| < €} is infinite

Proof. 2 <+ 3) follows from definitions.

1 — 3) If a,, — a, then for a given € > 0, 3K > 0 such that |a,, —a| < e. Thus {ngx|k > K} C A.. So A,
is infinite.

3 — 1) Cantor’s Diagonal Trick: Let AL = {nllan —al < 3}

A ni1p<nig<nypz<---

Ay Ng1 <Moo <ngz < -

Observe that A#l - A%, thus ng; < ngg1,.

Claim: (an, ) — a.

First observe that this is a valid subsequence since a,, , < an, ., < Gnyyy .y, for all k. Also for e > 0, 3K
such that & < e so for all k > K, |a, — a| < % < € so it converges to a.

1.6 February 3

1.6.1 Subsequences

Proposition 1.6.1. If s,, — s, then all subsequences of s,, converge to s.

Proof. Any tail of a subsequence belongs to a tail of the original sequence to they must converge to the
same limit.

Proposition 1.6.2. Any sequence has a monotone subsequence.

Proof. We say that s,, is a dominant term if s,, > sm for all m > n.

Case 1: Suppose there are infinitely many dominant terms. Then the subsequence if dominant terms forms
a monotone decreasing sequence.

Case 2: There are finitely many dominant terms. Then we can choose N > 0 such that for all n > N, s,
is not dominant. We can construct an increasing sequence as follows :

e pick n; > N, and get s,

e pick ng > ny such that s,, > s,,. This is posible since otherwise s,,, would be a dominant term.

e continue in this fashion to achieve a sequence such that s,,, < s, < s, <---

15
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Theorem 1.6.3 (Bolzano - Weierstrass). Every bounded sequence has a convergent subsequence.

Proof (Proof 1). Assume WLOG, that the sequence is bounded in [0, 1]. We may write [0, 1] = [0, ]U[3, 1].
Then (s,) must visit one of the intervals infinitely many times. We can then subdivide that interval and
continue in a similar fashion to obtain a decreasing sequence of closed intervals Iy =[0,1] DIy DI, D - --
with |I,,] =27". Let A, = {n|n € I,}. Then Ay C Ax_1. The sequence (ay. ) is a cauchy sequence since
Ve > 0, Jko such that == < ¢ for k,, > ko.

2k0

Proof (Proof 2). Every sequence contains a monotone sequence so since the sequence is bounded the given
monotone sequence converges.

Proposition 1.6.4. Let (s,,) be a sequence, the limsup s,, is a subsequential limit.

Proof. We know that for € > 0, N > 0, 3ng > N such that |s,, —limsup s,| < e. Thus by the alternative
of a subsequential limit, lim sup s,, is a subsequential limit.

Remark 1.6.5. This sequence can be refined to a montone sequence by considering the monotone subsequence
of the generated sequence.

Theorem 1.6.6. Let (s,,) be a bounded sequence and let S by the set of subsequential limits of (s;,).
Then:

(a) sup S = limsup s, inf S = liminf s,, and lim sup s, liminf s,, € S.
(b) lim s, exists iff S contains only one element.

(c) S is closed under taking limits. ie. if there is a convergent sequence t, — t with t,, € S, we will have
tesS.

Proof.

1. For t € S suppose s,, — t. Then limsups,, = liminfs,,. Since {s,, : k > N} C{s, : n > N},
liminfs, < liminfs,, = limsups,, < limsups,. Thus, liminfs, < infS < supS < limsups,.
Since by the previous proposition lim sup s,,,liminf s,, € S, sup.S = limsup s,, and inf S = liminf s,,.

2. This follows since s,, — s iff limsup s, = liminf s,,.

3. We will show ¢ is a subsequential limit of (s,). We want to show, Ve > 0, VN > 0, 3ng > N such
that |s,, —t| <e.
Since t,, — t, 3N such that Vn > N, |,

—t 5. For n; < N, there are infinitely many s, with
|sp —tn,| < 5. Thus, Ing such that |s,, —ty, |

| <
< £, Thus, [spy —t] < [Sng — by | +tn, —t| < E+5 =€

16
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1.7 February 8

1.7.1 liminf and limsup (cont.)

Proposition 1.7.1. If A = limsup a,, then Ve > 0, 3N such that sup{a, :n > N} < A +e.

Example 1.7.2. For a,, = %, limsup a,, = 0 so it is necessary to raise A by € to have some a,, < A + €.

Proposition 1.7.3. Given a,, — a, a > 0 and b,, bounded, then lim sup(a,b,) = (lima,) - limsup b,,.

Proof. Let b = limsup b,

<) We plan to show that a - b is a subsequential limit of a,, - b,, then since all subsequential limits <
lim sup(a,by), the result follows.

We know 3 subsequence (by, ) that converges to b. We also know all subsequences of (a,) converge to a.
Thus, ay,, - bp, —a-b.

>) Since a > 0, then 3N such that a,, > 0 for all n > N. Thus, if we throw away a,, with n < N, we may
assume a,, > 0Vn. Then lim i = % Thus

1 1
limsup b,, = lim sup(a,by, - —) > limsup(anby,) lim(—) = — limsup(a,bn)
a,” a

so a - limsup b,, > lim sup(a,by,)

Example 1.7.4. Need a > 0. Consider a, = —1, b, = 1,3,1,3,.... Then limsup(a,b,) = —1, limsup(b,) = 3,
but lim a,, - limsup a,b, = (—1) -3 = —3.

Theorem 1.7.5. Let a,, be a sequence of positive real numbers. Then

lim inf(“1) < liminf )/ < lmsupa}/” < lim sup(“-).
an @
Example 1.7.6.
(1) ap =r™ for r > 0, then al/™ = r,a;bizl:r.
(2) ap=C-r" for C >0,r > 0. Then o™ = CV/" . azf:randlimai/n:r.
(%)n n is even 1/n % n is even
(3> e (l)n nisodd ’ n =191 n is odd
3 3

However, lim “"“ has a lot of oscillations.

In general, root “test is stronger than ratio test.
Proof. Note liminf(---) < limsup(---) so middle < is obvious.
We will show lim sup an/ < lim sup a”“ (other < is similar).

Assume lilrnsupa;—::1 =L < o0, then Ve > 0, AN > 0 such that sup{% :n > N} < L+e We may

write ¥n > N, ap = ay - “50 . 252 8 (N terms). 50 a, < ay - (L+ )" N = ()L + )"
so ay/" < Cl/n(L +¢) where Oy = 745w So hmsup(C’l/”(L +¢)) = (limC’]lV/")(L +¢e)=L+e So
lim sup an/ < L + €. Since the holds for any € > 0, we have lim sup ai/n <L. O

17
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1.7.2 Series

e A series is of the form Y7 | a,

e We denote the partial sum, Sy = 25:1 an, and we say “Y_ ° | = L if lim Sy = L. Convergence of a series
<= Convergence of its partial sums.

Definition 1.7.7. )" a, is cauchy if Ve > 0, IN such that Vn > N, we have |am + ami1 + -+ an| < e.

Proposition 1.7.8. > a,, is convergent <= 3 a, is cauchy.

Proposition 1.7.9.

(1) “Sanity Check™ if > a, is convergent, then lima,, = 0.

Proof. Convergence — Cauchy so if we take n = m, then we have Ve > 0, 3N such that V¥n > N,
lan| <e.

(2) Comparison Test: If a,, is a positive sequence, 0 < a, < b, then if > b, is convergent, > a, is
convergent.

| Proof. > a, is a montonic series since a,, > 0. Since it is bounded by Y b,,, it converges.

Definition 1.7.10. Y a,, is “absolutely convergent” if Y |a,| is convergent.

Proposition 1.7.11. If > |a,| is convergent, then > a, is convergent.

Proof. |a,, + ant1 + -+ + am| < lan| + |ans1]| + -+ - + |am| so it follows since Y |a,| is cauchy.

Proposition 1.7.12.

e Ratio Test: > a, is absolutely convergent if lim sup % =r <1

e Root Test: 3 a, is absolutely convergent if limsup |a,|"/™ = r < 1.

Proof (Proof (Root Test)). Choose r’ such that 7 < 7/ < 1. 3N > 0 such that sup{|a,|'/" : n > N} <.

ie. Yn > N, |a,| < (r')" = 2 so 3 |a,| is convergent.

Proof (Proof (Ratio Test)). Follows from root test and theorem 7.5

18
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1.8.1 Series
Root Test(extended): Let R = limsup |a,|'/™

e If R < 1, then Y a, is absolutely convergent
e If R > 1. then Y a, is divergent  (doesn’t satisfy cauchy)
o If R=1, it depends eg. Consider }_ L and 3 ;.

Integral Test: If 3" a, has a, > 0. If 3f(z) with graph for f(z) > a, for # € [n — 1,n] and [ f(z) < oo for
some a > 0, then )" a, < cc.
Example 1.8.1. > % converges since floo ;—zd:p < 00

Alternating Series:

bbbyt
by, >0

o Test: If (by,) is decreasing, ie. b1 < by, then > 2 (—1)""'b, converges.

Proof. Define montonic increasing and decreasing seqeunces based on upper and lower bounds of series
since each term is absorbed into the following one. Since b, — 0 the two sequences converge to the same
limit. O

Example 1.8.2.

° 1—%—1—%—%—-.' is convergent
° 1—%—1—%—%—--- is also convergent

1.8.2 Summation by Parts

Example 1.8.3. Consider a1b; + asbs + azbs + aqbs. Let Ag = 0, Ay = a1, A> = a1 + az, .... Notice
Ap = An — An—1~

a1by + asby + asbs + asbs = (A — Ag)br + (A2 — A1)ba + (A3 — Aa)bs + (As — As)bs
= Apby + A1(by — ba) + -+ + A3(bs — by) + Agby

In general, if a,, b, are sequences of real numbers, if A,, = ay + -+ a,, Ag = 0, then for any p < ¢,

qg—1
apbp + .o+ aqbq = —Apflbp + Z Az(bz - bi+1) + Aqbq
n=p

Theorem 1.8.4. Suppose the partial sum A, forms a bounded sequence and suppose by > by > b3 > - - -,
limb,, — 0. Then Y a,b, is convergent. (if a,, = (—1)""1, gives alternating series).
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Proof. Since (A,) is bounded, 3M > 0 such that |4,| < M Vn.
WTS Ve > 0, AN such that VNV < p < ¢, we have

|apbp + -+ + aghg| < (*)

Claim: Since b, — 0, AN such that Vn > N, b, < 53;. This N will satisfy (*).

g—1
lapby + - -+ + agbg| = | — Ap—1b, + ZAi(bi = bit1) + Agbg|
n=p
q—1
SMbp+ZM(bi—bi+1)+Mbq
n=p
= M[bp + (bp + bp+1) +eee (bqfl - bq) +bq]
€

Example 1.8.5. > >°  sin(n - 27z)+, where z is irrational, is convergent.

n
_ Sy i2mnx 1
=Im) " e ol

An — ZN 2TTn ei27r:c l—e

i2naN 9
n=1¢ 1—ei2me

s0 |An| < 1=

PIREEIN

1.8.3 Power Series
o > jana", a, €R

e If we plug in « € R, then this becomes a series of numbers. We ask, for which = does > a,z™ converge?

Theorem 1.8.6. Let o = limsup |a,|"/", let R = é (radius of convergence), then
o if x| < R, > a,z™ is absolutely convergent
o if |z| > R, )" anx™ is divergent

o if x| = R, it depends

Proof. limsup |a,z"|"/" = |z|a so follows from root test.

Example 1.8.7.
oY < 2" ap=1,a=1 R= 1 — 1 so for |z| < 1, this is convergent.

[0}

e > 20 4, =21 a=limsup(1)/" =0, R = .

z" 1 1
n!? n!? n
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Chapter 2

Topology and Metric Spaces

2.1 February 22

2.1.1 Topology and Metric Spaces

Definition 2.1.1. A metric space is a pair (X, d) such that:
e X is a set
e dis a function d: X x X — R (le. V,z,y € X, d(x,y) is nonnegative) satisfying:
(1) d(z,y) >0 and d(z,y) =0z =y

(2) d(z,y) = d(y, z)
(3) Va,y,z € X, d(z,y) +d(y, z) > d(z, 2)

Example 2.1.2.

(1) X =R, d(z,y) = |z —y|

(2) X =R? = {(z1,z2)|z1,72 € R}, d((21, 72), (Y1,92)) = \/|a:1 —y1|? + |z2 — y2|? (Euclidean Metric)

(3) X =R?% d = dpax Where dyax = max(|zy — y1|, |72 — y2|).
dmax satisfies condition 3:
d(z,y) +d(y, z) = max(|z1 — 1], [v2 — ye|) + max(|ys — 21/, [y2 — 22|)

= max(|x1 — 1| + [y1 — 21], [z2 — ya| + |y2 — 22])
> max(|z; — 1], T2 — 22|) = d(x, 2)

(4) “discrete” metric space:

1
X is a set, d(x7y):{0 z7Y
rT=y

(5) Undirected (connected) graph distance:
graph: (vertices, edges)- vertices with labeled with positive distances.

d(v1,v9) = min(length of paths between vy, v3)
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Terminology (Given (X, d) a metric space):
e Open ball: given z € X, r > 0, B,(z) = {y € X|d(z,y) <r}

e Closed ball: Open ball: given z € X, r > 0, B,(z) = {y € X|d(z,y) <1}

Definition 2.1.3. Let (X, d) be a metric space. A subset U C X is called an open subset if Vo € U, Ir > 0
such that B,(z) C U.

Example 2.1.4. (R?, d = dguclidean), U = (0,1) x (0,1) = {(z1,22)|71,72 € (0,1)}. Claim: U is open.

Proof. Let (x1,22) € U, r = min(z1,1—z1, 22, 1—22). Ify € B,(z), thend(z,y) < rie. \/|z1 — y1]? + |22 — 32| <
rso|ry—y1| <rand|ra—ya| <rsoy; € (x1—r,x1+7r) C (0,1) and y2 € (g —7,22+7) C (0,1)soy € U. O

Proposition 2.1.5.
1

(1)
(2)
(3)
(4)

(), X are open in X
IfUy,...,U, C X are open then Uy NUy N ---U, is open.

3) If {Uqs}aer is an arbitrary collection of open sets then | . Uy is open.

acl

4) Every open ball B, (z) is open.

Proof. WTS, Yy € B,(z), e such that B.(z) C B.(z). Let ¢ = r — d(z,y). Then Vz € B.(y),
d(z,z) <d(z,y) +d(y,z) < (r—e)+e=r,so B:(y) C By(x).

2.2 February 24

2.2.1 Metric Spaces
Example 2.2.1.
1
(1) R™, dp(z,y) = D2 | — vil?]7
(2) Rb? “p = OO”? d(mvy) = max(|x1 - y1|7 ERR |xn - yn‘)
3) R, p=1,d(z,y) =>_|z1 —y;| “taxi-cab” metric.

Definition 2.2.2. Let (X, d) be a metric space. A sequence in X is denoted (p,)32; or (p,). We say that
prn — p for some p € X if Ve > 0, IN > 0 such that if n > N then d(p,,p) < e.

e Cauchy Criterion: Ve > 0, N such that Yn,m > N d(pn,pm) < €.

e Subsequences have an equivalent definition.

Warning: For general metric space, (p,,) convergent — (p,,) cauchy but the converse is not true, eg. there is no
p € X such that p, — p

Example 2.2.3.
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(1) Q, d(z,y) = |z — y|. Let p, be a sequence that converges to v/2 (in R). Hence it is cauchy but (p,) does
not converge in Q (just because “would be” limit is not in X).

(2) X =(0,1), d(z,y) = |z — yl|, p, = + fails to converge in X ie. there is not p € X such that d(p,,p) — 0

Definition 2.2.4. If (X, dx) is a metric space, Y C X a subset. Then restricting dto Y xY C X x X
makes Y a metric space (Y, dy).

2.2.2 Topology
In a metric space (X, d):

e open “ball”: B,(p) = {z € X|d(z,p) <r}. p € X center, r > 0 radius.

Definition 2.2.5. A subset U C X is open if Vp € U, 3B,.(p) C U.

Proposition 2.2.6.
(0) ¥p € X, Vr > 0 B,(p) is open.
(1) 0, X is open.
(2) IfUy,...,U, is open, then Uy N---NU, is open.
(3)

3) If {U,|a € I} is a collection of open sets, then |J U, is open.

Proof.
(0) WTS, Vz € B,.(p) 3 > 0 such that B.(x) C B.(p). Take e =r — d(z,p).
(1) Clear

(2) Vpe Uy N---NU, since p € U; Vi, and Uj; is open then 3B, (p) C U;, then () By, (p) = B-(p) where
r=min(ry,...,r,). So B.(p) =iy Br.(p) C Niz, Ui

(3) Ifp € Uyer Ua then there is a ag such that p € U,,. Since Uy, is open, we have B,(p) C Uy, C
UaEI UO‘

Definition 2.2.7. If X is a set, 7 is a collection of subsets of X such that
(1) 0,XeT
(2) fUy,...,U, €T, then Uy N---NU, €T
(3) U, eT Vael, then YU, €T

Then 7 is a topology of X and elements of T are called open subsets of X.

Example 2.2.8.
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(1) X =R, any open interval (a,b) is open. Also, any union of open intervals is open eg. |, .5 (n,n+ 3).

(2) Open sets in R?: open balls are open, open squares are open. Topology on R? induced by the metric d
equals the topology induced by dpax-

Definition 2.2.9 (Closure). If (X, d) is a metric space, S C X a subset. S = {p € X| there is a sequence
(pn) such that p, — p.

Example 2.2.10. If S = (0,1), S = [0,1]. Also, if S = (0,1)NQ, S =10,1]

Remark 2.2.11. S C S. Vp € S, take the sequence p,, = p, then p, — p.

Proposition 2.2.12. Let S C X, then S = S <+ S¢(= X \ S) is open.

Proof. —) To show S¢ is open, WTS Vp € S¢, 3B,.(p) C S°.

Suppose there is no open ball B,.(p) C S¢, ie Vr > 0 B.(p) ¢ S¢ <> B.(p) NS # (). Then, take r = %, for
n=1,2,3,... and pick p, € By (p) N'S. We have p,, — p so p € S which contradicts p € S¢ and S = S.
+) If S¢ is open, we need to show Vp € S, we have p € S. Suppose p € S but p ¢ S. Then p € S¢. Since
S¢ is open, 3B,.(p) C S¢. Since p € S, 3 sequence (py,), pn € S Vn, p, — p. Thus IN such that Vn > N,
pn € By(p). This is a contradiction since p, can’t be in B,(p) and S.

Definition 2.2.13. S C X is closed if S¢ is open.

Proposition 2.2.14. S =75 for any subset S C X.

Proposition 2.2.15. VS C X, S = {F C X closed, F O S}

Proposition 2.2.16. For a metric space (X, d):
(0) 0, X are closed
(1) if Fy,..., F, are closed then Fy U---U F, is closed.
(2) if F, is closed Va, (] F, is closed.

If U is open, then U is the union of open balls.

Proof. Vp € U, B,,)(p) C U is an open ball so U C U,cry Brp)(p); U Br(p)(p) C U hence U = U,y Brp) (p)-
O
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2.3 March 1

2.3.1 Metric Spaces

Example 2.3.1. X =the set of all pairs of points on R = {{z1, 22}, 21 # 22 € R}. Want to define a reasonable
metric on X.
Ideas:

e dist(p, p2) = distance from smallest point in p; to largest point in po.
Fails to satisfy condition since d(p, p) # 0.

o dist({z1, 2}, {y1,¥2}) = min{d(z;,y;) :i=1,25=1,2}
Fails since d({1,2},{2,3}) = 0.

? points in R?, {1, 22} — R2. potentially ambiguous lifting but can say z1 < . distance({z1, 22}, {y1,92}) =
\/d(xlayl)Q +d(x2,y2)? w1 <x291 < Y2

e Alternate Solution: define the distance from a point to a set by d(p, B) = inf,ep d(p, q).
Let d(A, B) = SUPpe 4 (infgen(p,q)) + Supqu(infpeA(p, q))-
For the above example, dist({z1,y1}, {22, 92}) = max(min(|z1 — y1], |1 — y2|), min(|ze — y1|, [22 — y2)) +
max(min(|z1 — y1, [v2 — y1]), min(|z1 — yal, [22 — y2l)).
This is called the Gromov-Hausdorff distance.

2.3.2 Continuous functions

Definition 2.3.2. Let X,Y be topological spaces, a map of stes f : X — Y is continous if for any open
subset V C Y, we have f~1(v) open in X.
Here, f~1(V) = {z € A|f(z) € V}.

Example 2.3.3. f : R — S (circle) = [0,1]/0 ~ 1 by z +— x — |z].
Continuous as the preimage of an open interval is the union of open intervals, which is open.

o

Definition 2.3.4 (Inherited Topology). If X is a topological space, S C X then a subset E C X is said
to be open in S if there exists £ C X, open in X such that ENS = F.

Example 2.3.5 (Inherited or Induced Topology). If X =R, S = [0,1]. What are the open sets in S?
[0,a), (a,b),(b,1] ) < a,b <1 are open in S though they may not be open in R.
[0,a] = (—&,a) N [0,1]. [0,1] is both closed and open in S.
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Example 2.3.6. If we have f: R — [0,1) by 2 — o — |z]

[0, %) open in [0,1) but f71([0,3) = U,z n + 3) is not open in R so f is not continuous.
Example 2.3.7. X =R, S = Q. Open sets in Q come from open sets in R, NQ.

eg. (0,1)NQ is open in Q.

Observe that [f\/ﬁ, \/§] nQ = (f\/z \@) N Q is both closed and open in Q.

Definition 2.3.8. Let X,Y be a metric space. f: X — Y a map of sets. Then f is continuous if Vx € X,
Vry >0, 3ry > 0 such that f(B, (r)) C B, (y) where y = f(x).

2.4 March 3

2.4.1 Compact Sets

Definition 2.4.1 (Sequential Compactness). In a metric space (X,d), a subset K C X is sequentially
compact if any sequence in K has a convergent subsequence in K (ie. V(py) in K, 3(pn,) such that
limy, 00 Pn, =P € K)

Definition 2.4.2 (Open Cover). A C X, and U, C X open with o € I such that A C J,c; Ua-
e A finite cover means the index set I is finite.

o A subcover of {Uy }aer, means a subset I C I such that A C {J,cp Ua

Definition 2.4.3 (Open Cover Compactness). A subset K is (open cover) compact of any open cover of
K admits a finite subcover.

Example 2.4.4.

(1) Finite subset K C X is both sequentially compact and open cover compact. K = {p1,...,pn} C X.
If (z,) is a sequence in K, there is a p; that will be visited infinitely many times, take that constant
subsequence (it converges to p;)

If K C U,c;Ua, then for each i € K, p; € U, c;Ua so Ja; € I such that p; € Uy, , then K C Uy, U---UU,,, -

(2) X =R,K=R.
Claim: K is not sequentially compact: (take sequence 1,2,3,4,... then no subsequence converges)
K is not open cover compact: R = J,c,(n — 3,n+ 2) but has no finite subcover.

(3) K=(0,1) CcR.
Not compact: |J;2;(0,1 = (3)™) = (0,1) but has no finite subcover.

Also sequence p,, = 1 — ()" is not convergent in K.

(4) K =10,1] is sequentially compact and open cover compact.

Proof.

(a) Let (pn) be a sequence in [0,1]. Since p,, is bounded 3 p,, — p for p € R. Since K is closed, the
limit of the sequence in also in K. Thus p € K.
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(b) Let {U,} be an open cover of [0,1]. Let a = sup{b|[0,b] has a finite subcover }. We claim [0, a]
also admits a finite subcover. Since there is some open set with a € Uy, then d¢ > 0 such that
[a —e,a] C Uy and 3 b such that b > a — € so [0, b] has a finite subcover hence combining this with
Uy so does [0, al.
Now, we will show @ = 1. If @ < 1, then the finite subcover of [0, a] also contains [0, a + ¢] for some
€>0,0 < a+e <1 contradicting the maximality of a.

Note: If K is open cover compact then:
(1) K is bounded.
(2) K is closed.
Proof.
(1) pick pe K. K C U221 Bn(po). By open cover compactness, K C By, (pg) for some nyg.
(2) To show K is closed WTS Vp ¢ K, 3B,.(p) N K = 0.
Lemma: if A;, B; disjoint for i = 1,...,N. Then (UA4:)N(NB;)) =0

Vg € K let B, = B%d(p!q)(q). Then K C {J,cp By 50 K C By, U+ U By,. Let r = miny . n(3d(p, q))
then B, (p) is disjoint from |J B, D K.

qeK

O

Theorem 2.4.5. Sequential compactness is equivalent to open cover compactness.

Proof. <) Suppose K C X is open cover compact. If 3 (p,) in K such that there is no convergent
subsequence in K then Vp € K 3r, > 0 such that (p,) visits B, = B, finitely many times, otherwise
Jp € K such that ¥r, > 0 (p,) visits B, (p) infinitely many times so there is a susbequence that converges
to p. Thus, K C J,ex Bp- Since K is compact, K C By, U---U B, and the sequence has to visit one of
the balls infinitely many times, contracting our assumption.
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2.5.1 More Topology

Example 2.5.1. (X = R,dgq), ¥ = {1,2,3}

What is Ty ?

Claim: collection of all subsets of Y: Ty = {0, {1},{2}, {3}, {1,2},{2,3}, {1, 3},{1,2,3}}

Why is {1} open in Y'?

Bi(1) ={qeYld(l,q) < 1} = {1}. Similarly, {2} and {3} are open in Y and their unions generate Ty .
Another Solution: {1} C Y is open in Y since (1 —¢,1+¢) C X =Risopen and (1 —¢,14+¢)N{1,2,3} = {1}.
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2.5.2 Completness
Ex of Complete subsets in R?
e [a.b], any closed interval

e Every bounded and closed subset.

Proof (Proof of Thm 12.5 (cont)). Sequential Compactness — Open cover Compactnes

(1) Let U and V be open covers of X, we say that U refines V if for any U € U, IV € V such that U C V.

Lemma: If I/ is a subset of X and V is a refinement of U/, that covers X and V admits a finite subcover
of X, then U admits a finite subcover of X.

Proof. Since X = Ufil V; and V; C U;, then X C UZI\LI U;.

Lemma 1: Assume X is sequentially compact. Vr > 0, the open cover {B,.(p)|p € X} of X admits a finite
subcover, ie. 3P;,..., P, € X such that X = Ufil B.(P;).

Proof. X cannot contain infinitely many disjoint open balls of radius r/2. Pick a “maximally sphere
packing” of disjoint (r/2)—balls in X to choose pi,...,p, such that {B:(p;)} disjoint and for any

. N
p€ X, Bz(p) N Bz (pi) # 0 for some i so Vp € X Jp; such that d(p,p;) < r. Thus, X C ;_, Br(pi).

Lemma 2: Let (X, d) be sequentially compact. Let I be an open cover of X. Then 3r > 0 such that the
open cover {B,(p)|p € X} refines U, ie.Vp € X, U € U such that B,(p) C U.

Proof. Suppose not. then Vr > 0, 3p € X such that B, (p) is not contained in U € Y. Then for r = %,
n = 1,2,... pick p, such that B% (pn) not in U € U. Then (p,) subconverges to p € X, but p € X
so Uy C€ U such that p € Uy so 3B, (p) C Up. So 3N > 0 such that d(py,p) < 7, and % < 5 so
B (pn) C Bry(p). Thus B (pn) C Up contradicting the construction of py.

For any open cover, the theorem follows by taking the refinement of » > 0 balls guaranteed by Lemma 2
and finding a finite subcover using Lemma 1.

Remark 2.5.2. Such an r is called a Lebesgue number of the open cover .

Theorem 2.5.3. [0,1]¢ C R¢ is compact Vd = 1,2, ...

Proof. Prove the sequential compactness definition. We need to show ¥(p,,) in [0, 1]¢ there is a subsequence
that converges to P € R%.

Lemma: The distances dpax, d1,ds are “equivalent” (d, d are equivalent if J¢q, co > 0 such that Vz,y € X
d(z,y) < a1d'(z,y) and d'(z,y) < cad(z,y).

o di =X |ri—yil do=|T|wi—will?  diax = max(jz; — i)
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A sequence converges in R? if it converges in all its coordinates.

2 . . . _
For d = 2, (1‘171,l‘172), (.%2)1, 1‘2,2), A (xl,l‘g) € R= iff hma:ml =T, 1111’1.%‘7172 = I9.
Given p,, for each coordinate we can then refine it to a convergent series iteratively.

Theorem 2.5.4 (Heine Borel). A K C R™ is compact iff it is closed and bounded.

Proof.
o K closed in R™ — K is sequentially compact in R™ (works only for R™)

e K is compact — K is closed and bounded (true for all metric spaces)

2.6 March 10

2.6.1 Connectedness

Example 2.6.1. X = {1,2,3,...,} with a funny topology. Open sets:
e ), X
e {1,2,...,n} for some n integer > 1.

Is X connected?

Definition 2.6.2. Let X be a topological space. X is connected if X cannot be written as the disjoint
union of two nonempty open subsets.

Example 2.6.3.

e X = {1,2} with usual topology (ie. discrete) is not connected since X = {1} L {2} and {1}, {2} are open
in X.

e X =0,1] (under induced topology) is connected.

Example 2.6.4. Q is disconnected.

Q = [(~00,v2) NQIU[(V2, ~c0) N Q]

Remark 2.6.5. If X = GU H, G, H open in X then G, H are closed in X since G = X \ H, and complement
of an open set is closed.

Theorem 2.6.6. Let E C R, then F is connected iff Va,y € E and x < y we have [z,y] C E.

Proof. —) Suppose E is connected and suppose 3x,y € E with z € (z,y) but z € E. Then let E; =
(—00,2) N E, B3 = (2,+00) N E then

e F1, Fs are nonempty, = € Ey, y € Es

e I, Fs are open in F
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So E = E7 U E5 is not connected, contradicting our assumption.

+) If E satisfies the condition above and if E is not connected. A = AU B, A, B nonempty subsets of F.
Pick € A, y € B and assume WLOG z < y. Then let A’ = [z,y]| N A, B’ = [z,y] N B. Since z,y € E, by
assumption [z,y] C E.

[z,y] = [z, y]NE = ([z,y] N A) U ([z,y] N B) = AU B".

Let 2 = sup A’ and consider the following cases:

(a) z =z, then A’ = {2} not open in [z, y]

(b) x <z<y. If z€ A’ then A’ is not open (Be(z) will not be in A’). Similarly if z € B’ is not open.
c) If z=1y, then 2 € B’ so B’ is not open.

() y p

In all cases there is a contradiction, thus E must be connected.

Remark 2.6.7.

e Being connected is an intrinsic property of a topological space

e If X is a topological space, E C X, then if we ask “Is E connected” we treat E with respect to the induced
topology.

Definition 2.6.8 (Separated - Rudin). Let X be a topological space. G,H C X we say that G, H are
separated if GNH =0, GNH = (.

Example 2.6.9. X =R, G = (0,1), H = (1,2)
GNH=[0,1]n(1,2)=0 GNH=(0,1)N[1,2] =0 so G, H separated.
Example 2.6.10. G = (0,1),H = [1,2] G, H not separated.

Proposition 2.6.11. Let X be a topological space, E C X, then FE is connected iff £ cannot be written
as G U H with G, H separated (in X)

Proof. —) Suppose E is connected and E = GU H, G, H separated. We want to show that G, H are open
in E, or equivalently G, H are closed in F.

Since GNH =0,G=GNE=GN(GUH)=GNG =G so G is closed in E. Similarly, H is closed in F
so F is not connected.

Let f: X — Y be a continuous map between topological spaces. Then
(1) If A C X is compact, then f(A) is compact
(2) If A C X is connected, then f(A) is connected.

3) f X =R, Y =R, A = [a,b], then f(A) = [¢,d] for some ¢, d.
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2.7.1 Completeness and Compactness are Preserved by Continuous Maps
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Proposition 2.7.1. Let f: X — Y be a continuous map, if X is compact then f(X) is compact.

Proof. (use open cover compactness) Let {V,,} be a collection of open sets in Y covering f(X). Then
f(z)c U, Vaso X cl, f (Va). By continuity of f, f~!(V,) is open so by the compactness of X there
is a finite subcover X C Ufil 1 (Va,) so f(X) C vazl f(f~Y (V) C Ufil .Va,. Thus we have a finite
subcover of f(X).

Corollary 2.7.2. If f: X — Y continuous, and K C X is compact, then f(K) is compact.

Proof. Let g = f|x : K — Y, still continuous. Follows from previous thm.

Remark 2.7.3. Proof. (Using sequential compactness). Given a sequence (y,) in f(X) we can choose z,, in X
such that f(x,) =y. Then (z,) is a sequence in X. By sequential compactness 3(z,,, ) converging to xg, thus
Yn, = f(xy, ) converges to f(xg). O

Lemma 2.7.4.
(a) If f: X =Y continuous, F C X any subset, then the restriction f|g : E — Y is continuous.

(b) If f: X — Y is continuous, then g : X — f(X) is continous.

Proof.
(a) For any open V C Y, (f|g)~*(V)=F (V)N E is open in E so f|g is continuous.

(b) For any F C f(X) open, 3F C Y open such that F = F N f(X), then g~ '(F) = f~'(F), hence is
open in X.

Proposition 2.7.5. If f : X — Y is continuous and X is connected, f(X) is connected.

Proof. let g : X — f(X) be the restriction of f, then g is continuous. If f(X) = U UV of 2 nonzero open
sets in f(X), then X = g~ *(U) U g~1(V), nonempty and open. Hence X is not connected, contradicting
our premise. Thus, f(X) is connected.

Theorem 2.7.6 (Intermediate Value Theorem). Suppose f : [a,b] — R continuous. if f(a) = a, f(b) =8
and v € («, 8) then 3z € (a,b) such that f(z) =~.

Proof. Since [a,b] connected, then f([a,b]) connected. Since o, € f([a,b]) then [, 8] C f([e, B]) so
v € f([o, B]) so Fx € (a,b) such that f(x)=".

If f continuous

e f does not preserve openness. f: {0} — R, {0} open in X but not in R.
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e f does not preserve boundedness. f:(0,1) = R by f(z) = 1. (If X is compact, then f(X) is bounded)

2.7.2 Uniformly Continuous Maps Between Metric Spaces

Definition 2.7.7. f : X — Y is a uniform continuous if Ve > 0, 3§ > 0 such that if x1, 25 € X satisfy
d(x1,22) < 0, then d(f(z1), f(z2)) < e.

Example 2.7.8.

(1) f:R = R by f(x) = 2? is not uniformly continuous.

Proof. Suppose that for all ¢ > 0, 3§ > 0 such that |z; — x3| < § — |27 — 23| < e. Then let z; = n,
To =n+ %, we have

) )
|n? — (n + 5)2| > |nd + (5)2| >nd >e
for large enough n. O
2) f:R—= R by f(z) =sinz is uniformly continuous.
(

(3) f:]0,1] = R by x — /z is uniformly continuous even though the slope is unbounded at z = 0.

Theorem 2.7.9. If f: X — Y is continuous and X is compact, then f is uniformly continuous.

Proof. Let ¢ > 0 be given, we need to find 6 > 0 such that Vaq,29 € X, d(z1,22) < 9, we have
d(f(z1), f(x)2) < e. Since f is continuous X — Y, Vo € X, Vry, > 0, Ir; > 0 such that if z1,22 €
By, (x), then d(f(x1), f(x2)) < 2ry. Vx € X, choose r, > 0 such that f(Ba,, (z)) C B./2(f(z)). Then
X C Ugex Br.(X). By compactness of X, pick a finite open cover such that X = Uf\il B,,(x;), where
r; = x;. Let 6 = min{ry,...,ry}. Vp1,p2 € X, p1 € By, (x;) for some i. Since d(pz,p1) < § < 74,
d(p2, ;) < d(p2,p1) + d(p1,x:) < ri+r; = 2r;. Since f(p1), f(p2) € f(Bar,(2i)) C Bej2(f(z:)), we have
d(f(p1), f(p2)) <e.

2.7.3 Discontinuity

Definition 2.7.10 (Limit of a Function at a Point). Let E C X and f : E — Y be amap. Let p € E, then
we say lim,_,, f(x) =y € Y, if for all sequences of points z, = p, z, € E, we have lim,,_,o f(z,) =y.

e For f: (a,b) » R, Vz € (a,b) we let f(z—) and f(x+) denote the "left” and "right” limits. lim(z—) =

lim toa f(x) =lim;_,,— f(z) and lim(z+) = lim t(_mb) f(z) = lim;_,+ f(x). (They need not exist)
te(a,z te(z,

e fis continuous at f « f(z) = f(a—) = f(z+)
e Discontinuity of the first kind: f(z+) and f(x—) exists but f is discontinuous at .

e else discontinuity of the second kind.

Example 2.7.11.
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<0
(1) f(z) = m 1 = has a discontinuity of the second kind at 0.
sin() x>0
0 zeR\QU{0}
(2) f(z)= 1 _p .
7 2€Q\{0},z =L p,q coprime
Claim: f(z) is continuous on all R\ Q and 0.

1 zeR\Q

is discontinuous at all points in R.
0 z€Q

3) f(z) = {

Theorem 2.7.12. If f(z) is a monotonic increasing function on (a,b) (if z1 < x9, f(x1) < f(x2)), then
f(x) can have at most countably many discontinuities, all of the first kind.
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2.8.1 Sequences and Series of Functions
Sequence: fi (), fo(x), fo(a), ..
Series: > o7 | fu(x)

2 00 00 22
Example 2.8.1. f,(z) = (14:67)”’ flz) = Zn:o fu(w) = ano (11++T)”

1 \n_,2 1 _ 21422 2
1JFIQ) =t = =1+ 22
x241

fix an z, forms a geometric series: 2 > (

so f(z) = {3-1-552 ;‘joo

Example 2.8.2. f,,(7) = lim,, ,oo[cos(m!mz)]*,  f(z) = limy o0 fin ().
if mlrz = nwx, mlz is an integer then cos(m!ma) = 1. This happens if x is a rational number, z = g and

1 ifzeQ, mzeZ

alml. fu(w) = { s0

0 else

1 ifzeQ
0 else

fla) =limp o0 f(z) = {

Example 2.8.3. Suppose there is f such that fol f(z)dx = 1.

ht A
/ \\ fa(@) =nf(nz) so [pnf(nz)de = [ f(u)du=1.
//‘ \ for any x € R, lim f,,(x) = ?) z i Eg’ B
0 1 so [ (lim f,(2))dz = 0 # limy o0 [ fo(w)dz = 1

2.8.2 Uniform Convergence
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Definition 2.8.4. Let f, : (a,b) = R be a sequence of functions and f : (a,b) - R. We say f, — f
uniformly if for any € > 0 there exists N > 0 such that

Vn > N, Vz € (a,v) |fu(z) = f(z)| <e

Remark 2.8.5. Uniform convergence means N does not depend on x.

Alternatively, we define distances between 2 functions f,g : X — Y, X,Y metric spaces by dw(f,g9) =
sup,cx dy (f(x),g(x)). We say f, — f uniformly if lim,, o0 doo(fn, f) = 0.

Example 2.8.6. With f asin Ex 3, dw(f,0) = sup|f(z)—0| = h, and de(fn,0) = n-h so f, does not converge
uniformly.

g.f R R, da(f.9) = [ |f(2) — g(x) *da]>
(Warning: only makes sense for “nice enough” f,g)
Define di(f,9),dso(f, g) similarly.

Theorem 2.8.7. Let f, : X — Y be a sequence of continuous functions between 2 metric spaces. If
fn — f uniformly, then f is continuous.

Proof. To show f is continuous, WTS Vx € X, Ve > 0, 30 > 0 such that if d(2’,2) < ¢, then
dy (f(z'), f(z)) < e. Fix zp € X, we will show [ is continuous at x.

e By uniform convergence of f,, — f, we know 3N such that Vn > N, Vo € X d(f.(z), f(z)) < §. Fix
Ng = N.

e Since fp,(x) continuous at xg, we know 3§ > 0 such that d(z,z) < 6 = dy (fn,(0), fre(z)) <
Thus, if d(x,x9) < 6,

wlm

Definition 2.8.8. A sequence of functions f, if uniformly Cauchy if Ve > 0, 3N > 0 such that Vn,m > N,
doo(fry fm) <&, ie. Vo € R, |fu(x) — frn(2)] < e.

Proposition 2.8.9. If f, : R — R satisfies the uniform Cauchy condition then f, is uniformly convergent
to some f: R — R.

Proof. For each z € R, f,(z) from a sequence of numbers in R and is Cauchy in R, hence it is convergent.
Let f(z) :=lim, o0 fn(z). WTS f, — f uniformly.

To show f,, — f uniformly, fix £ > 0, WTS IN > 0 such that Vo € R, ¥n > N, |f,(x) — f(z)| < e. Choose
N large enough such that Vn,m > N, |fn(z) — fm(z)] < e. Fix n, let m — oo, then limm — oo, then

Hm fpn (2) = f(2), [fo(2) = f(@)] = limp o0 [fn(2) = fr(2)] < e
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Differentiation and Integration

3.1 March 29

3.1.1 Differentiation

Given a nice function, f’(p) = the slope of the tangent line of p.

Definition 3.1.1. A function f : [a,b] — R is differentiable at a point p € [a, b] if the limit lim,_,, %ﬁ:(”)

exists. If so, we call it f'(p).

Proposition 3.1.2. If f(x) is differentiable at p, then f(z) is continuous at p, ie. lim,_,, f(z) = f(p).

Proof. f(z)—f(p) = L9=LE) (a—p) so lim, [ (2)— f(p)] = limy,, [L2=LE) (z—p)] = lim,, ({102,

T—p r—p T

lim,,,(x —p) = f'(0)-0 =

2
€
Example 3.1.3. f(z) =" * D Claim: f(0) = 0.
—x° x¢€Q
Proof. f'(0) = lim,_,, %. lim,_o |%| — lim,_o Hlthil =limz — 0|z| = 0. O

Theorem 3.1.4. If f, g : [a.b] — R, differentiable at a point o € [a, b].
(1) Ve, (¢ f)'(zo) = c- (f'(x0))
(2) (f +9)(z0) = f'(z0) + ¢'(0)
(3) (f9)(z0) = f'(z0)g(w0) + ¢’ (w0) f(20)

Theorem 3.1.5 (Chain Rule). If f : R — R is differentiable at zq, ie. f(zo) = yo, f'(x0) exists and if
g : R — R, is differentiable at yo, ie. g(yo) = 20, ¢'(yo) exists. The composition h = go f, ie h(x) = g(f(z))
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is differentiable at xo, h'(z0) = ¢'(vo0) - f'(z0).

Proof. Use "baby taylor expansion”.

f(@) = f(zo) + f'(z0) - (x — 20) + (x —20) - 7p(x) limgp,rp(2) =0
g(x) = g(zo) + ¢'(0) - (v — o) + (x —20) - 7g(x)  limgp, r4(x) =0
Then

h(z) = h(0) = g(f(x)) — g(f(x0))
= (f(@) = f(20))(g'(f(0)) + rq(f(2)))
= (z = 20)(f'(zo) + 1§ (2))(g'(f (0)) + 14 (f(2)))

Dividing both sides by (z — z¢) and taking the limit as  — zo but = # zg, we see that h/(zg) =
f(x0)d' (f(x0)), as desired.

Example 3.1.6. h(z) = sin’z
fx)=22% f'(x) =22 g(x) =sinx, ¢'(z) = cosx
W(z) = f'(z)g'(f(z)) = 2z cos(z?)

Definition 3.1.7. f : [a,b] — R, we say p € [a, b] is a local maximum if 36 > 0 such that Vz € [a,b] N (p —
6,p+96), f(p) = f(x).

Proposition 3.1.8. If p is a local maximum of f and f’(p) exists, then f’(p) = 0.

= lim,_,,- L{)(p). For z > p, £{&=1®) > 0 for 2 < p,

Proof. If f/(p) exists, lim,_,,+ %ﬁ(?) )=

flo)—f .
%p(p) < 0 so we must have lim,_,, ———

Theorem 3.1.9 (Rolle). If f : [a,b] — R is continuous and if f is differentiable on (a,b), if f(a) = f(b),
then 3c € (a,b) with f'(c) = 0.

Proof. Suffices to find a local max or local min of f on (a,b). If constant then f/(x) =0 for all z € (a,b)
otherwise must either increase so must have local max or min.
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3.2.1 Differentiation

Theorem 3.2.1 (Generalized Mean Value Theorem). Let f,g : [a,b] — R be differentiable on (a,b)
and continuous on [a, 8] then 3¢ € (a,b), [f(b) = f(a)lg'(c) = [9(b) — g(a)lf'(c) ie. LH=LD = Llgf i
g(a) = g(b), g(c) # 0.

e For simple case take g(z) = x.
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Proof. Define h(z) = [f(b) — f(a)]lg(z) — g(a)] — [f(x) — f(a)]lg(b) — g(a)]. Then h(a) = 0, h(b) = 0, so
by Rolle’s Theorem Je such that h'(c) =0 = [f(b) — f(a)]g'(c) — f'(c)[g(b) — g(a)].

Remark 3.2.2. If f(b) — f(a) = g(b) — g(a) = 1, then Je such that f/(c) = ¢'(c).

Corollary 3.2.3. Suppose f : R — R differentiable Va € R, |f'(x)| < M for some constant M, then f is
uniformly continuous.

Proof. To show f is uniformly continuous we need to show that Ve > 0, 36 > 0 such that if |x — y| < d
then |f(z) — f(z)| < e. Hence we can take § = 57, then by MVT, f(z) — f(y) = f'(c)(x — y) for some
c € (a,y). Thus [f(z) — F(y)] = 1f(0)] - [z —y| < M -5 < e.

Corollary 3.2.4. If f'(z) > 0 Vx € [a,b] then y > 2 — f(y) > f(x). (monotonic increasing)

Proof. f(y) — f(x) = f(c) - (y— x) > 0.

Theorem 3.2.5 (Intermediate Value Theorem). Let f : [a,b] — R be differentiable, f(a) < f(b). For u
such that f'(a) < p < f'(b), Ic € (a,b) such that f'(c) = p.

Remark 3.2.6. Since f’(x) as a function on [a,b] may not be continuous so cannot use mean value theorem

for f'(z).

Proof. Let h(z) = f(z) — p-z, W (x) = f'(x) — p then h'(a) < 0 < A/(b). Consider h : [a,b] — R, let
¢ € [a,b] such that h(c) = minh(z), © € [a,b]. Want to show ¢ # a, ¢ # b. By definition of h'(a), we
know M=)~  then for ¢ close enough to a, t > a, h(t) < h(a). Thus h(a) # minh(b). Similarly,

h(b) £ min(h).

3.2.2 L’Hopital’s Rule
Example 3.2.7.

(1) limg o % = limg 0 (Sé;l)af)/ = lim, o COISI =1

. log . 1/x . 1
(2) limg 0 =2% = limg 50 =~ = lim, 0 7 = 0.

Theorem 3.2.8 (L’Hopital’s Rule). Assume f,g : (a,b) — R differentiable, g(z) > 0 over (a,b). If

limg, _, o+ 5:83 = A € RU {400, —00} and one of the following are true:

(1) limg g f(z) =0, limgq g(x) =0

(2) lim, 4 g(z) = 0.
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Then, lim,_,, L; = A.

Proof. Assume for simplicity, A € R. The cases where A = +co are similar.
Case 1: limzﬂag( ) =0, lim,, f(x) =0.

Since lim,_,, ch (wg A, Ve >0, 36 > 0 such that if z € (a,a + 9), then |f (z) — A| < e. Then for «, 5 such
that a < a < 8 < a+4, f(ﬂ) 5((2‘)) = g,g;’g € (A—¢e,A+e¢) for some v € (« ,ﬁ). Take the limit @ — a, then

o), g(a) = 050 LB = limg o (LE=019 € [A—¢, A+e]. Then Ve > 0, 35 > 0 such that V8 € (o, a+0),

gggg € [A —ve, A+ ¢]. Thus lim ;EB; A.

Case 2: limg(x) = o0
Consider a < o < 8 < b, LO=F) 45 ahove. Then (A — 5)(g(aa)7)g(ﬂ) < {216 g(a)fg)(ﬂ) < (A+

> g(B)—g(c) g(c g(c) g(c
5)(%). Then as @ — a, A —¢ < liminfaﬂaw = liminfaﬂa% < limsup,_,, f;gsg =
limsup,_,, W < (A +¢€). Since € > 0 was arbitrary lim gg—g) = A.
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3.3.1 Higher Derivatives

e If f: R — R continuous, if f’(z) exists fro all x € R and f'(x) is continuous, we say f € C*(R)

e If f/(x) is also differentiable, (f')'(z) = lim._q M, and if f”(z) = f®)(x) exists for all z and is
continuous, then f € C%(R).

o If f(*)(x) exists and is continuous, f € C*(R)

o If f € C¥(R) Yk =1,2,3,... then f € C®(R) is called a smooth function.
Example 3.3.1.

if f(x)

2) n—2

¥ (x)

=ap+ Ha+ 22 + Lead 4 4 W then f(z) = apna™ ! +an_1(n — 1)z +an_o(n —
+---Far.
exists and is a polynomial. Thus, f € C>*(R).

2 2o0 , f€CYR) but f(x) =<¢<DNE z=0
22 >0

0 z<0 0 <0
zf(x):{ -

3.3.2 Taylor Approximation of Smooth Functions

Remark 3.3.2. P(x )—a0+ Up = L2224 G355 ... 4 dagn

P'(z) = a1 + aow + S 2* + - —I—(na"l),x -1

P'(0) = a1, P"(0) = az, -+, PM(0) = a

There exists a nice function such that its value at the kth derivative (k =1,...,n) can be specified.

Py (z) = P(z — x9) = ag + a1(z — x0) + B(x — x0)? + -+ + (2 — xo) . Then, P, (x0) = P(0) = ay,
P‘,;O(.’L‘()) = Q1,y-.-,

nth Taylor Expansion Centered at a point:
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e Assume f : R — R is a C* functions. Then we can use f(z), f'(x0),. .., f*)(20) to cook up a polynomial.
Pry(@) = f(w0) + f'(0) 522 + (o) S5 + - + f7(a) S5
Note: Px(f)(xg) = fF)(x0)

Theorem 3.3.3 (Taylor’s Theorem). Suppose f : R — R is C™(R) and f("+1) exists (may not be contin-
uous)

e Let P(x) be the nth order taylor approximation of f at .
P(r) = g £ (a0) 5
e Then Vz € R, 36 € [0,1] such that if 29 = 20(1 — 0) + 26
F(@) = Pry(z) = £ () =g

Sanity Check: for the n = 0 case, P, (z) = f(zo) then 30 such that
f(@) = f(wo) = f'(wg) (2522), ie. f'(zg) = Lﬂg(mo) (mean value theorem)

x

Proof. Fix z¢ and z; € R, WTS there is zy such that f(z1) — Py, (z1) = ") () - %

e Define M € R such that f(z1) — Py, (21) = (71 — x)" - M
o Let g(x) = f(x) — Pro(x) — Mz — 20)™1,

Then g(xo) = f(xg) — Py, (z0) —0 =0 and

g9(x1) = f(21) = Pry(21) = M(21 — 20)" " =0

Moreover, g*) (29) = f*) (20) — Pz(f) (2g) —0=00<k<n

Step 1: Use g(z9) =0, g(x1) =0 — a1 € (x0, 1) such that ¢'(a;)
"(a a

0
Step 2: Use ¢'(z0) =0, ¢'(a1) =0 — a2 € (x0,a1) such that g’ (a2) =

2) =0

Step k: Use g™ (z) =0, g™ (a,) =0 = any1 € (29, an) such that ¢+ (a,41) =0
0 =g (ans1) = FOT(ang1) —0— M(n +1)!

(n+1) (g,
Thus, f(71) = Pag(21) = (w1 — wp) "+ L)
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3.4.1 Taylor Expansions/Power Series

e Taylor expansion: Let f: R — R, C°° (smooth) functions. Let 2y € R, let N be a positive integer. The
Nth order taylor expansion of f centered at xg is the polynomial P(x), such that

P®)(xq) — f*)(29) VE=0,1,...,N
and degp < N

Concretely: Py, n(x) = Zk o f¥(z )w
Remainder: f(x) — P(z) = Ry, ~(z) has the property that Rgz))N(.’L‘Q) =0for k=0,1,...,N.
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Definition 3.4.1 (Analytic Function). We say a smooth function us analytic at a point x if 3R > 0 such
(n)
that f(z) = > pegan(@ — x)" for all |z — 9| < R. If f is analytic at zg, then a, = fT(,mO)

Remark 3.4.2. There exists a smooth function such that f(0) = 0, f/(0) = 0,..., f(™(0) = 0,... but f(z) is
0 <0

t identically 0. =
not identically 0. f(z) {6_1/I =0

Lemma 3.4.3.
lim & =0 (*)

Proof. Let u = %, then () equivalent to lim, o % = lim, 00 ’e‘—: = lim,,— 00 e% = 0 by L’Hopitals.

Thus f is smooth but not analytic at z =0

Example 3.4.4. For f(x) = H%’ if f analytic?

We need to study Y ", ﬂ"n7)|(())($ —0)™.

F1(@) = (D) sy F/(@) = (-1)(=2) gy £ (=) = G

FM(0) = (=1)"n!, 352 (—1)"z", a sufficient and necessary condition to converge is |z| < 1.
n=1

We know:

) VO <r <1, 30 =2

(1 1—7r
(2) If 3" lan| < 00, Y ay, converges

H% =30 1%1: when |z| < 1

Theorem 3.4.5. Let Y 7 a,(z — )" be a power series centered at g, then let o = limsup,,_, ., |a,|*/",
R =1, then if |z — o] < R, the series converges. If |z — | > R, the series diverges. If |z — zo| = R, it
depends. (if @ =0, R = oo so the series is always convergent)

Example 3.4.6. > % - 2", o = limsup(:%)"/", R=1

If |z — 20| < R =1, it converges

If |z — zo| > R =1, it diverges

If | — 2| = r it still converges. (Not always true, consider % -z™)

Remark 3.4.7. Taylor Expression is just one way to approximate a function
e If only cares about 1 point
e Suppose you wanted a polynomial p(z) such that P(z;) = f(z;) for z1,...,z, € R. We can use interpo-

lation.

3.4.2 Integration

What is Integration?

e Can be thought of as signed area bounded between a graph and the z-axis
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e Want to know when our method of approximating area converges (eg. when the integral is defined)

e Let f:[a,b] = R be a bounded function (may not be continuous)
o Let P={a=x¢9 <z <---<xy =>b} be a partion. Let Azx; = x; — x;_1: the i-th segment.

o M; = Supp, .4 f(x), m;y = inf,, | .. f(x). For a partition P, U(P, f) = Z?:l m;Az;, L(P,f) =

e We say a partition @ refines P if @) D P as a set of “cut” points.

Lemma 3.4.8. If Q refines P, then L(Q, f) > L(P, f) and U(Q, f) < U(P, f).

Definition 3.4.9. L(f)(= fabfdx) :=sup L(P, f) over all partitions.
U(f)(= f:fdac) :=inf U(P, f) over all partitions.

e We say that f is Riemann integrable if f: fdx = f: fdx and denote the common value by fab fdx.

0 z€Qnio,1]

E le 3.4.10 (Non-Integrable). =
xample (Non-Integrable). f(z) {1 reQNo.1]

Lffdxzo, fabfdle

Theorem 3.4.11. If f : [a,b] — R is a continuous (hence bounded, and uniformly continuous) then f is
Reimann Integrable.

Proof. WTS, Ve > 0, 3P partition such that f;fda: - f;fdx <e.

Let & = 3=, by uniform continuity 30 such that if |z — y| < d, then |f(z) — f(y)| < &. Choose a partition
P such Az; < § (eg. take N = [b*Tﬂ) then even partition works. Then M; = suplx,_1, ;] f(x) = f(s;) for
some s; € [x;—1,x;], m; = inflx,_1, 2], f(z) = f(t;) for some t; € [x;_1, ;] so |m;—m;| = | f(s:)—f(t:)| < €.
Thus, U(P, f) — L(P, f) = Y (M; — m;)Ax; <> Az, =E(b—a) =e.

Corollary 3.4.12. If f(z) is piecewise continuous on [a, b] ie. discontinuous on finitely many points, then
f is integrable.
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3.5.1 Integration

0 z=0
sin(3) = € (0,1]

=

Example 3.5.1. f : [0,1] = R, bounded by f(z) = {
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Proof. Yes, Ve > 0, consider the partition of the form [0, {], some partition of [$,1]. Let P’ be a partition
such that U(P', f,[5,1]) — L(P', f,[5,1]) < §. Let P = [0,5] U P'. Then, U(P, f,[0,1]) — L(P, f,[0,1]) <
=€ O

(=D +HUWEL ) =L, NI <5+35

Proposition 3.5.2. If f : [a,b] — R is a bounded function with finitely many discontinuities, then f is
integrable.

Theorem 3.5.3. If f is a monotonic function over [a, b], then f is integrable.

Proof. WLOG f is increasing. Let € > 0, Ym > 0 integer, consider the partition P, with n segments such
that each segment has length =% = § then U(P,, f)—L(P,, f) = Y | (M;—m;)6 = 03 f(2;) — f(zi—1) =
3(f(b) — f(a)). By making n large enough, w <e.

3.5.2 Reimann - Stieltjes Integral (density included)

e Want to assign a "density” function p(z) that assigned a different weight to different parts of a function -
mass of a small segment

e One general way is to replace p(x)dx by d(a(x)), a(z) called the “cumulative mass” function. «(x)= mass
of the interval [a,z] = [ p(x)da.

e Want: a(z) to be monotone increasing.
Example 3.5.4. [a,b] = [0, 1]

e a(z) =z, then d(a(z)) = dx so p(z) =1

1
% <zr<l1
(Here ¢ is the function with infinite value at 1 but area of 1)

. a(z) = g then d(a(x)) = 36(z — L)da
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Example 3.5.5. Suppose we ant to compute the center of mass of two points.

mp m2

s o TiTudzomy Jo zd(a(x))
0 L1 X2 1 ™ mitme T [Ld(a(x)

my + mo—+ J
2
_ mi+
a(x) Yo
1 1
r1 @9

Definition 3.5.6 (Reimann - Stieltjes Integral).

e Let «: [a,b] — R be monotone increasing.
Let f : [a,b] — R be bounded.
Let P be a partition of [a,b], a = xg < 1 < -+ < xp, = b.

o U(P, f,a) => m;Aa(l;), L(P, f,a) = > m;Aa(ly)
U(f,a)=infpU(P, f,a), L(f,a) = supp L(P, f, )

Let I; = [xi—1, 23], Aa(l;) = a(z;) — a(xi—1), M; = supy, f, m; = infy, f

o if U(f,a) = L(f, ), we say f is “Reimann integrable with respect to o’ denoted as f € R(a).

Theorem 3.5.7. Suppose f is continuous, then f; fda exists.

Theorem 3.5.8. Suppose f is montonic, « is continuous and monotonic then f; fda exists.

0 ze€[0,1/2)

| rely21] then U(P, f,a) — L(P, f,a) = 1.

Remark 3.5.9. If f = {

e If P has a segment containing 1/2 in the interior, U = L=(1-0)-1=1

e If P=(0,4], (3,1, then U~ L=(1-0)-1+(1-1)-0=1

Proof. Since « is continuous and monotonic on [a, b]

e For each n integer, let yo,y1,. ..,y be an even partition of [a(a), a(b)]. Let x; be chosen such that
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o then a(x;) — ol 1) =y —yi_1 = M -5

||
M:
§
,_.
-
S,

U(P7f7 ) Pf7

I IN

—~ SMS
5
B
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3.6.1 Reimann Steiltjes Itegral
Example 3.6.1.
(1) If a( ) is smooth [a,b] =[0,1], ax) =22 + 3, f(z) =
Jo £( = limp partition 2_ f (i) a(Az;) = a(1) — a(0) = 3
e If v is a smooth function (or at least differentiable), say a(x) = p(z), d(a(x)) = p(z)dz.
e Applying this to above integral, fol 1d(2 + 3x) = fol 1-3de =3

x x €[0,1]
(2) If f has finitely many jumps a(z) =< x+1 =z € (1,2] , then
xr+2 x€ (2,3

[ rate@) = [ vde@)+ [ 1dee)+ [ tdee) s Y e - o)

+ 1+ 2+ p:jumps of a

=14+1414+1+1=5

Theorem 3.6.2. If f continuous on [a,b], & monotonically increasing, then f: fd(a(x)) exists.

Theorem 3.6.3. If f is monotonic on [a, b] and « is continuous and monotonically increasing on [a, b] then
f: fda exists.

Theorem 3.6.4. If f : [a,b] — R is bounded and has finitely many discontinuities. If «v is continuous when
f is discontinuous, then f: fda exists.

Remark 3.6.5. If a(x) = z, the usual Reimann Integral, we show this by contstructing partitions areound the
jump points of f.

Proof. Let € > 0 be given, let M = sup |f(x)|. Let E = {c1,...,c,} be the points where f is discontinuous.
Step 1: Choose a small enough interval [u;, v;] containing ¢; such that (u;) < € and the intervals
are disjoint. By continuity of a at ¢; we can have this.

a(vj)—a
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Step 2: Let K = [a,b] \ U~ (uj,v;), still compact.
Choose a partition P of K fine enough such that U(P, f,&) — L(P, f,&) < e. Then P = PUJ.", [u;, vj],

UP)—L(P)<e+Y (M—(—M))-Aa; < £ +2Me = (1+2M)e

By making o small enough, we can make the difference small.

Theorem 3.6.6.
e Let f:[a,b] — R be integrable with respect to a(z), assume f([a,b]) C [m, M]

o if ¢ : [m, M] — R continuous, then h(z) = p(f(z)) is integrable with respect to a(x)

Example 3.6.7. o(z) = =, f(x) =some monotonic function. [a, b] ER [M,m)] =opllp i f; f(z)dz exist, then
[ elf@ldz exists.

Proof. Fix an € > 0 since ¢ is continuous on [M,m], it is uniformly continuous. Then 34 > 0 such that if
ly1 — y2| <, then |o(y1) — @(y2)| <€

e Since f is integrable, 3 a partition P of [a, b] such that U(P, f,a) — L(P, f,a) < §?
e Forinterval I; = [2;_1, 2], let M; = sup;, f, m; = infy, f. Let M sup,.;. o(f(x)), m] = infeq, f(2)

o We say [; is of the “short” type, i € A, if M; —m; < §. Then M} —m} <e.
Note: M —mj = sup,, s,er [h(x1) —h(xz)| since if 21,20 € I, then f(x1), f(z2) € [my, M;] < 0, thus
by uniform continuity of ¢, |p(f(z1)) — o(f(z2))] < e

o Otherwise, say I; is of the “long” type, i € B, M} —m} < sup|p(z)| = 2K.

Also,
- 25041' < Z<M’ —m;)Aa; <U(P, f,a) — L(P, f,a) < 6% so ZAai < 0.

i€B icB i€B
Thus,

m

U(P,h,a) = L(P,h,a) = > _(M; —m})Aq;

:Z( —m; Aal—&—z ; NAa;

€A i€B
< ZE-AO@-FZ?K-AO{Z'
i€ A i€B

zn:Aal )+ 2K - Z Aoy

=¢ela(b) — a(a)] + 2K - 0
e(a(b) — ala) + 2K) (since we can assume WLOG 6 < ¢)

[ /\
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Theorem 3.6.8. “ [ is linear in both f and o”
(1) If f, g are integrable with respect to «, then
o [cfda=c [ fdo exists Vc € R
o [f+gda= [ fda+ [gdo exists
(2) If f is integrable with respect to a; and ag, then

e f is integrable with respect to ¢-a1) (¢ > 0) and [ fd(caq) = ¢ [ fda)
e [ is integrable with respect to a1 + ap then [ fd(aq 4+ ao) = [ fdoy + [ fdas

Theorem 3.6.9.
1. if f and g are integrable with respect to « then [ fgda is integrable with respect to a.

2. If f is integrable, then |f| is integrable.
(follows by taking ¢(x) = |z|, continuous then ¢(f(z)) = |f(x)])
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3.7.1 Properties of Integrals

Lemma 3.7.1 (Sampling Lemma). Given a partition a =29 < 21 < ... <z, =, f : [a,b] = R bounded,
«: [a,b] — R monotone increasing.

o Vi=1,...,npick s; € I;. Then L(P, f,a) <> f(s:)Aa)i <U(P, f, )
o If U — L < ¢, then for any s;,t; € I,

D_If(s) = F(t)|Aas < 3 (Mi—mi)Aa; =U —L<e

i=1

Theorem 3.7.2. if f is bounded, « increasing, if o’ exists and is integrable. Then

(1) feR(a)+ fd'ER

(2) If f € R(«), then fab fda = [ fo/dz.

Proof. Need to prove ftbfda = Efo/dx and fffdoz = f:fa’da:.
We are going to show Ve > 0, P partition such that |U(P, f,«a) — U(P, fa')| < e. &' is integrable so 3
partition P, a = 29 < ... < x, = b such that U(P,a/) — L(P,d/) < e.
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e By Mean Value theorem, 3t; € (z;_1, ;) such that Aa; = a(x;) — a(z;—1) = &/ (t;) Ax;.
e By Sampling lemma, Vs; € [zi_1, 2], D [&/(s;) — &' (t:)|Az; < e.
Thus, Vs; € 1, 3 f(s:)Aa; — 37 f(si)a' (si)Azs| = [ 37 f(si)a (t:) Aws — f(si)a' (si) Azl
Let M = supy, ;| f|, then above sum
<D I (sa)lla’ (k) — o (s)| A
< M- o/ (fi) — o (si)| A
< Me
Thus, Vs; € I, |> f(si)Aa; — Y f(si)d!(si)Ax;| < Me so Y f(si)Aa; < 3 f(s:)a!(si)Axy + Me <
U(P, f,a’) + Me so taking the sup over all partitions, we get U(P, f,a) < U(P, fa') + Me. Similarly,
ST F(s)Aa; <3 f(si)d! (s;)Ax; + Me so U(P, fo!) <U(P, f,a)+ Me. Thus, |U(P, fa')—U(P, f,«a) < e.

For any refinement @ of P all previous statements still hold. Thus, limp |U(P, fa/) — U(P, f,a)| <e- M
hence |U(P, fo!) — U(P, f,«)| = 0. Similarly, |L(P, fa') — L(P, f,«)| = 0. Thus, (1), (2) hold.

Theorem 3.7.3 (Change of Variable). Let « be increasing on [a,b], f € R(a), elet ¢ : [4,B] — [a,b]
be a strictly increasing function. Define g : [A,B] — R, g(y) = f(p(y)). Define g : [A,B] — R by

B(y) = a(p(y)). Then [ fda = [y gdb.

Theorem 3.7.4. Let f € R on [a,b]. For any a <  <b, define F(z) = [ f(t)dt. Then

1. F(z) is a continuous function.

2. if f(z) is continuous at a point zg € [a, b], then F(z) is differentiable at xg, F'(z0) = f(zo)

Example 3.7.5. Consider f(z) = {

1+ o
/+—slope=1
0—= 0
1
2

N =1

Proof.

(1) Let M =supy, ) |f(2)], for any a <z <y < b, we have

@) - F)l = | " f(t)dt — / " ftyde] = | / " peyde] < / " F@ldt < / "Mt = M |y af

Thus, F is lipschitz continous with constant M.
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(2) If f is continuous at xg, then Ve > 0, 3§ > 0 such that if |z — x¢| < 4, then \f( ) flzo)| < e.

Then, foranyste[a b] suchthatx075<5<z0<t<:170+5,FiF(s) f fw)du. Also,
f(zo) = f f(zo)du. So

F(t) — F(s) _ '

‘f— (xo)‘—‘tis/(f(u)—f(l”o))du‘

fxo)|du

1
/5 du = (t—s)-e=¢
t—s /s t—s

<

This implies limy,_,o ZEH=E0) — ()

Theorem 3.7.6. Let F be a differentiable function on [a,b], F'(z) = f(z). If f(z) is integrable, then
Ji f(z)dz = F(b) - F(a).

Proof. Fix ¢ > 0,
1. 3P partition of [a,b] such that U(P, f) — L(P, f) < .

2. F(b) ( ) Zl 1F(l‘z) — F(Jii_l) = Z?:l F’(Sl)AJh for S; € (xi_l,xi) = Z?:l f(Si)Al‘i S

[L(P, f),U(P, f)]. Also, [’ fdz € [L(P, f),U(P, f)]. Thus, |[F(b) — F(a) — [’ fdz| < U — L < e.
Since LHS is independent of ¢, and € > 0 is arbitrary, LHS=0.

Theorem 3.7.7. Suppose f and g are differentiable and their derivatives are integrable, then

/abfg’dx:/abfdg:/abd(fg)—gdf:fg|g_/abgdf

Proof. Let h = f - g, then h is differentiable, ' = f'g + fg’ so

/abf’gdx—l-/abfg'dx = /abh’dx = h(b) — h(a)
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3.8.1 Uniform Convergence with Integration

Recall:

e A sequence of functions f, : [a,b] — R is uniformly convergent to f : [a,b] — R if for any £ > 0, IN > 0
such that Vn > N, Vz € [a,b] |fn(z) — f(z)] < e.

e Equivalently, define deo (fn, f) = supge(qp) [fn(2) = f(2)], then f, — f uniformly iff lim, o doo (fn, f) = 0.
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e If f,, — f uniformly, and {f,} is continuous, then f is cotinuous.
Q:
(1) If f,, — f uniformly and f,(z) are integrable (with resepct to some weight function a(x)) is f(x) € R(«)?
(ves)

(2) If f, = f uniformly and f'n exists and is continuous, does f’ exist?  (No)

Theorem 3.8.1. If f,, — f uniformly, f,, € R(a), then f € R(«) and f: fda =lim, o f: frnda.

Proof. For any given & > 0, 3N such that sup | f,(x)—f(z)| < &,Vn > N. ThusVn > N, f,—e < f < fa+e.
Thus VP parition, we have

L(P, fn,a)—e(a(b)—a(b)) = L(P, fo—e,a) < L(P, f,a) SU(P, f,a) S U(P, fote,a) = U(P, fr, a)+e(a(b)—a(a))
Fix an n > N, we can choose a partition P such that U(P, f,,a) — L(P, fn, ) < € - (ac(b) — a(a)). Thus,

UP, f,a) — L(P, f,a) SU(P, fn,a) — L(P, fn,a) + 2¢(a(b) — a(a))
=3 e(a(d) — ala))

Thus, Ve > 0, 3 parition P that makes U(P, f,a) — L(P, f, a) small enough. Hence, f € R(a).

Corollary 3.8.2. Let f,(z) € R(a), over [a,b], assume F(z) = > 2 fo(x) is a uniformly convergent
series, then

b 0 b
/ F(z)dz = Z fn(x)dx

n=1v4a

Proof. Define Fy(z) = Zi\;l fn(x). This is a finite sum of R(«) functions, hence Fy(x) € R(a). By
previous theorem, since Fiy — F uniformly, and f,, is integrable, F(z) € R(«) and

N —oc0

/b F(z)= lim F,(z)dz

3.8.2 Uniform Convergence with Differentiation
Example 3.8.3. f,, — 0 uniformly , f/ exists and is continuous but f/ (z) 4 0

fn(z) = Lsin(n?z), f!(z) = n - cos(nz)

T n
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Despite this, we still have a theorem

Theorem 3.8.4. If f,(z) is a sequence of differentiable functions on [a, b] such that
(a) fI(x) — g(x) uniformly on [a, b
(b) 3z € [a,b] such that f,(xg) — ¢
Then we have
(1) 3f such that f,, — f, uniformly
(2) f is differentiable and f'(x) = g(x) = lim f/,(z)

Remark 3.8.5. (b) is necessary otherwise we can have f,,(z) =n, f/(z) =0 but f is not uniformly continous.

Proof.
(1) Ve > 0, choose N large enough such that

(1) [fa(zo) = frm(z0)| <5  VYn,m >N
(2) doo( S} fr)) <5525 Vn,m>N

a

Apply MVT to f,, — fm, over the interval [z, t],

[fn(@) = fm(@) = (fu(t) = fn (@) = 1£1(8) = fru(s)] - |2 — 1|

Thus, Vz € [a, b],

[fn(@) = [ ()] < [(fa(@) = fin(2)) = (fu(20) = fin(0)) + (fn(20) = fin(20))|
<

e,
2 2
Thus, f, is uniformly Cauchy, and henec uniformly convergent. Thus, 3 function f such that f, — f
uniformly.
(2) To prove f(z) is differentiable in [a,b], we fix = € [a, ]
o Define ¢(t) = w Goal: Show limy_,, ¢(t) = g(z)

e Define ¢, (t) = fn(®)=fn(z)

t—x

, it suffices to show

. limy, o0 ¢n (t) = ¢(t)
S
“mhm%%wzﬁ@

lim lim ¢,(t) = lim lim ¢, (t) (*)

t—xr n—o0 n—oo t—x
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Since by above we have, Ve > 0, AN > 0 such that VYn,m > N

€
2(b—a)

[fn() = fm (@) = (fut) = fm ()] < |t — x|

so dividing both sides by [t — x|, we see ¢, (t) — dm(t)| < ﬁ so ¢ uniformly convergent over
[a,b] \ {z}. Thus (*) holds.
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