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Chapter 1

Sequences and Series

1.1 January 18

1.1.1 Natural Numbers
• N = {0, 1, 2, 3, . . . , }

• successor construction: 2 is the successor of 1, 3 is the successor of 2. So starting from 0 one can reach
all rational numbers (for any given natural number, it can be reached from 0 in finitely many steps)

• Peano Axioms for natural Numbers (see Tao 1)

– Mathematical Induction Property (Axiom 5): let n be a natural number and let P (n) be a statement
depending on n, if the following two conditions hold:

∗ P (0) is true
∗ If P (k) is true, then P (k + 1) is true

then P (n) is true for all n ∈ N

• operations allowed for N : +,×

– if n,m ∈ N, then n+m ∈ N and n×m ∈ N
– −, / are not always defined

1.1.2 Integers
• Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• allowed operations: +,−,× (formally, Z is a ring)

1.1.3 Rational Numbers
• Q = {mn |m,n ∈ Z, n ̸= 0}

• We have all four operations +,−, ·, /

• Q is now a field
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1.1. JANUARY 18 104: Real Analysis

Theorem 1.1.1 (Field Axioms(Ross 3)).
Addition:

• a+ (b+ c) = (a+ b) + c for all a, b, c

• a+ b = b+ a for all a, b

• a+ 0 = a for all a

• For each a, there is an element −a such that a+ (−a) = 0

Multiplication:

• a(bc) = (ab) = c for all a, b, c

• ab = ba for all a, b

• a · 1 = a for all a

• For each a ̸= 0, there is an element a−1 such that aa−1 = 1

Distributive Law:

• a(b+ c) = ab+ ac for all a, b, c

Theorem 1.1.2 (Useful Properties of Fields(Ross 3)).

• a+ c = b+ c implies a = b

• (−a)b = −ab for all a, b

• (−a)(−b) = ab for all a, b

• ac = bc and c ̸= 0 imply a = b

• ab = 0 implies either a = 0 or b = 0

for a, b, c ∈ Q

Q is an ordered field, there is a “relation” ≤

Definition 1.1.3. A relation S is a subset of Q×Q, if (a, b) ∈ S we say “a and b have relation S” or “aSb”

The relation “≤” has 3 properties:

• if a ≤ b and b ≤ a, then a = b

• if a ≤ b and b ≤ c, then a ≤ c (transitivity)

• for any a, b ∈ Q, at least one of the following is true: a ≤ b or b ≤ a

Since Q is an ordered field, the field structure (+,−, ·, /) is compatible with (≤)

• If a ≤ b, then a+ c ≤ b+ c for all c ∈ Q

• If a ≥ 0 and b ≥ 0, then ab ≥ 0

5



1.2. JANUARY 20 104: Real Analysis

Theorem 1.1.4 (Useful Properties of Ordered Fields(Ross 3)).

• If a ≤ b, then −b ≤ a

• If a ≤ b and c ≥ 0, then ac ≤ bc

• If a ≤ b and c ≤ 0, then bc ≤ ac

• 0 ≤ a2 for all a

• 0 < 1

• If 0 < a, then 0 < a−1

• If 0 < a < b, then 0 < b−1 < a−1

for a, b, c ∈ Q

1.1.4 What’s lacking in Q?

1. There are certain gaps in Q. For example, the equation x2 − 2 cannot be solved in Q

2. For a bounded set in Q, E, it may not have a “most economical” or “sharpest” upper bound in Q
Ex: E = {x ∈ Q|x2 < 2} there is no least upper bound(sup) of E in Q (we want to take

√
2 as sup(E)

but
√
2 is not a rational number)

1.2 January 20

1.2.1 Rational Zeros Theorem

Definition 1.2.1. An integer coefficient polynomial in x is of the form: cnx
2 + cn−1x

n−1 + · · ·+ c1x+ c0
c1, . . . , cn ∈ Z, cn ̸= 0.

1. A Z-coefficient equation is f(x) = 0

2. One can ask: when does a Z−coefficient equation have roots in Q

Fact 1.2.2. A degree n polynomial has n roots in C, ie. ∃z1, . . . , zn ∈ C such that f(x) = cn(x−z1) · · · (x−zn)

Theorem 1.2.3. If a rational number r satisfies the equation xnx
n+· · ·+c1x+c0 = 0, with ci ∈ Z, cn, c0 ̸= 0

and r = c
d (where c and d are coprime integers). Then c divides c0 and d divides cn.

Proof. Plug in x = c
d into the equation to get cn(

c
d )

n + cn−1(
c
d )

n−1 + · · ·+ c1(
c
d ) + cn = 0 multiply both

sides by dn to get cnc
n + cn−1c

n−1d+ · · ·+ c1cd
n−1 + c0d = 0

Since cnc
n = −d(cn−1c

n−1 + · · · + c1d
n−1), d divides cnc

n. Since d and c are coprimes, d does not divide
cn so d has to divide cn
Also, since c0d

n = −c(cncn−1 + cn−1c
n−2d+ · · ·+ c1d

n−1) by similar reasoning c|c0

Using the rational zeros theorem, we can answer questions about rationality

6



1.2. JANUARY 20 104: Real Analysis

Example 1.2.4. Show 3
√
6 is irrational.

3
√
6 is rational ↔ x3 − 6 has rational roots. The only possible rational roots such that r = c

d need c|6, d|1.
Taking d = 1, c = ±1,±2,±3,±6. Once can check all of these do not satisfy the equation so there is no solution
in Q

1.2.2 Historical Construction of R from Q
1. Dedekind Cut: (Q: if

√
2 ̸∈ Q, how can we save the information of

√
2?)

A: the subset of Q C√
2 = {r ∈ Q|r > x}

For every x ∈ R, consider Cx = {x ∈ Q|r < x}. We can define addition, multiplication on the subsets Cx

2. Sequences in Q
ie. Use a sequence of rational numbers to “aproximate” a real number
eg.
√
2 can be approximated by 1, 1.4, 1.41.1.414, . . .

Problems:

(a) Given any real number, how do you get such a sequence?

(b) How do you determine if 2 different sequences approximate the same real number
(eg. 1← 1.1, 1.01, 1.001, . . . or 1← 0.9, 0.99, 0.999, . . . or 1← 1, 1, 1, . . .) all have the same limit

1.2.3 Properties (Axioms) of R
Given the existence of R, we have certain properties (axoims) of R

Definition 1.2.5. A subset of R is said to be bounded above if ∃a ∈ R such that for any x ∈ E, we have
x ≤ a

Theorem 1.2.6 (Completeness Axiom of R). Given a set E ⊂ R, bounded above, there exists a unique r
such that:

1. r is an upper bound of E

2. for any other upper bound of α, we have r ≤ α

r is called the least upper bound of E, r = supE
(ie. supE is well defined for subsets that are bounded above)

Example 1.2.7. sup([0, 1]) = 1, sup((0, 1)) = 1, sup({r ∈ Q|r2 < 2}) =
√
2

Theorem 1.2.8 (Archimedean Property). For any r ∈ R, r > 0 ∃n ∈ N such that nr > 1 or equivalently,
r > 1

n

1.2.4 +∞,−∞
• With these symbols, we can say sup(N) = +∞↔ N is not bounded above

• +∞,−∞ are not real numbers. They have part of the defined operations R has
ie. 3 ·+∞ = +∞, (−3) ·+∞ = −∞ but (+∞) + (−∞) =NAN, 0 · (+∞) = undefined.
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1.3. JANUARY 25 104: Real Analysis

1.2.5 Sequences and Limits

• A sequence of real numbers is: a0, a1, a2, . . . denoted (an)
∞
n=0 or shortened (an)

• We care about the “eventual behavior” of a sequence

Definition 1.2.9. A sequence (an) converges to a ∈ R if ∀ε > 0, ∃N ∈ N such that ∀n > N, |an − a| < ε.

1.3 January 25

1.3.1 Sequences and Limits

Definition 1.3.1. A sequence (an) is bounded if ∃M > 0, |an| ≤M for all n.

Theorem 1.3.2. Convergent sequences are bounded.

Proof. Let (an) be a convergent sequence that converges to a.
Let ε = 1, then by definition of convergence, there exists N > 0 such that ∀n > n

|an − a| < 1 ⇐⇒ a− 1 < an < a+ 1 ∀n > N.

Let M = max{a1, a2, . . . , aN}, M2 = max{|a− 1|, |a+1|} and M = max{M1,M2}. Thus if n ≤ N we have
|an| ≤M , and if n ≥ N we have |an| ≤M2 so

∀n, |an| ≤ max{M1,M2} = M

Remark 1.3.3. One can deal with the first few terms of a sequence easily, it is the “tail of the sequence” that
matters.

1.3.2 Operations on Convergent Sequences

Theorem 1.3.4. c ∈ R, ∀ convergent sequences an → a, we have c · an → c · a.

Proof. If c = 0, the result is obvious.
If c ̸= 0, we want to show for all ε > 0, ∃N such that ∀n > N

|c · an − c · a| < ε ⇐⇒ |c| · |an − a| ≤ ε ⇐⇒ |an − a| ≤ ε
|c| .

Now let ε′ = ε
|c| . By definition of an → a, we have N > 0 such that |an − a| ≤ ε′ = ε

|c| . This gives the
desired N .

Theorem 1.3.5. If an → a, bn → b, then an + bn → a+ b.

8



1.3. JANUARY 25 104: Real Analysis

Proof. We want to show ∀ε > 0, ∃N such that ∀n > N

|an + bn − (a+ b)| ≤ ε ⇐⇒ |(an − a) + (bn − b)| ≤ ε. (*)

|(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| by the triangle inequality so

(∗)← |an − a| < ε (**)

←

{
|an − a| ≤ ε/2

|bn − b| ≤ ε/2
(***)

By the convergence of an and bn, ∃N1, N2 such that ∀n > N1, |an − a| ≤ ε
2 , and ∀n > N , |bn − b| ≤ ε

2 .
Take N = max{N1, N2}, then ∀n > N (∗ ∗ ∗) is satisfied hence (∗) is satsified.

Corollary 1.3.6. If an → a, bn → b, then an − bn → a− b.

Proof. Let cn = (−1) · bn. Then cn → −b so an + cn → a− b.

Theorem 1.3.7. If an → a, bn → b, then an · bn → ab.

Proof. Want to show: ∀ε > 0, ∃N such that ∀n > N

|an − ab| ≤ ε. (*)

Since an is convergent, it is bounded by some M > 0 which yields the following inequalities.

|anbn − ab| = |an(b− b) + anb− ab|
= |an(bn − b) + (an − a)b|
≤ |an(bn − b)|+ |(an − a)b|
≤ |an| · |bn − b|+ |an − a| · |b|
≤M |bn − b|+ |b||an − a|

So

(∗)←

{
M |bn − b| ≤ ε/2

|b||an − a| ≤ ε/2
. (**)

Since an → a, let ε1 = ε
2|b| , then ∃N such that ∀n > N ,

|an − a| < ε1 ⇐⇒ |b||an − a| ≤ ε

2
.

Also, since bn → b, let ε2 = ε
2M , then ∃N such that ∀n > N ,

|bn − b| ≤ ε2 ⇐⇒ M |bn − b| ≤ ε

2
.

. Let N = max{N1, N2}, then for n > N , (∗∗) holds so (∗) holds.

9



1.3. JANUARY 25 104: Real Analysis

Theorem 1.3.8. If an → a, and an ̸= 0∀n and a ̸= 0, then 1
an
→ 1

a .

Remark 1.3.9. an ̸= 0 does not imply a ̸= 0. For example consider the sequence an = 1
n

Proof. Want to show ∀ε > 0, ∃N such that ∀n > N ,

|1
a
− 1

an
| ≤ ε. (*)

Observe that
|1
a
− 1

an
| = |a− an

a · an
| = |an − a|
|a| · |an|

.

Claim: ∃c > 0 such that |an| > c∀n.

Proof. Let ε′ = ε
2 , then ∃N ′ such that ∀n ≥ N ′

|an − a| ≤ ε′ =
ε

2
⇐⇒ −|a|/2 < an − a < |a|/2

⇐⇒ a− |a|
2

< an < a+
|a|
2
→ |an| ≥

|a|
2

Let c1 = min{|a1|, |a2|, . . . , |aN ′ |} ≥ 0. Let c = min{c1, |a|/2}.

Thus, |an−a|
|a|·|an| ≤

|an−a|
|a|·c . Hence

(∗)← |an · a|
|a| · c

≤ ε (**)

and (∗∗) can be satisfied since an → a.

Corollary 1.3.10. If an → a, bn → b and bn ̸= 0, b ̸= 0, then an

bn
→ a

b .

Proof. an

bn
= an · 1

bn
. Since by Thm 8, 1

bn
→ 1

b , an · a
bn
→ a · 1b by Thm 7.

Theorem 1.3.11 (Useful Results).

(1) limn→∞
1
np = 0 ∀p > 0.

(2) limn→∞ an = 0 ∀|a| < 1.

(3) limn→∞ n1/n = 1.

(4) limn→∞ a1/n = 1 for all n > 0.

10
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Proof (Proof of (3)). Let Sn = n1/n − 1, then sn ≥ 0 ∀n positive integers.

1 + sn = n1/n ⇐⇒ (1 + sn)
n = n.

Using to binomial theorem we see

1 + nsn +
n(n− 1)

2
s2n + · · · = n

→ n(n− 1)

2
s2n ≤ n

→ s2n ≤
2

n− 1

Thus, sn → 0 as n→∞.

1.4 January 27

1.4.1 Monotone Sequences

Definition 1.4.1 (lim sn = +∞). A sequence (sn) is said to “diverge to +∞”, if for every M ∈ R there
exists N such that sn > M ∀n > N .

Definition 1.4.2 (Values of a Sequence). If (sn)
∞)n=1 is a sequence, then {sn}∞n=1, the subset of R

consisting of the values of (sn), is called the value set.

Example 1.4.3.

• (sn) = 1, 2, 1, 2, . . . {sn}∞n=1 = {1, 2}

• (sn) = 1, 1, 2, 2, 1, 1, 2, 2, . . . {sn}∞n=1 = {1, 2}

• (sn) = 1, 2, 3, 4, . . . {sn}∞n=1 = {1, 2, 3, 4, . . .}

Definition 1.4.4 (Monotone Sequences).

• A sequence (sn) is monotonically increasing if an+1 ≥ an ∀n

• A sequence (sn) is monotonically increasing if an+1 ≤ an ∀n

Example 1.4.5.

• (an) = a, a constant sequence is monotonically increasing and decreasing

• (an) = 1, 2, 3, . . ., is increasing

• (an) = − 1
n , is increasing and bounded above (also below)

Theorem 1.4.6. A bounded monotone sequence is convergent.

11
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Proof. (We will show for increasing, the proof for decreasing is similar.)
Let (an) be a bounded monotone increasing sequence and let γ = sup{an}∞n=1 (= sup an). Then an ≤ γ ∀n
and for any ε > 0, ∃an0 such that an0 > γ − ε. Thus for every ε > 0, let N = n0(as defined above), then
for every n > N , we have γ − ε < an0 ≤ an ≤ γ thus |an − γ| < ε then lim an = γ

Example 1.4.7 (Recursive Definition of Sequences). Let sn be any positive number and let

sn+1 =
s2n + 5

2sn
∀n ≥ 1. (*)

We want to show lim sn exists and find it.
Remark 1.4.8. If we assume lim sn exists, call it s, then s satisfies

s =
s2 + 5

2s
(**)

since we can apply limn→∞ to both sides.
(∗∗)→ 2s2 = s2 + 5→ s = ±

√
5. Since sn is a positive sequence lim sn can only be ≥ 0, thus s can only by√

5

• To show lim sn exists, we can only need to show sn is bounded and monotone

• Here is a trick: let f(x) = x2+5
2x , then sn+1 = f(sn)

– Consider the graph of f , ie. y = f(x)

– Consider the diagonal, ie. y = x

s1
s2

t1

t2

• If s1 >
√
5, we should try to prove

√
5 < · · · s3 < s2 < s1

• If 0 < s1 <
√
5, then we show that s2 >

√
5, we can consider (sn)

∞
n=1, which reduces to case 1

• If (sn) is unbounded and increasing, then lim sn = +∞

• If (sn) is unbounded and decreasing, then lim sn = −∞

12
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1.4.2 Lim inf and sup of a sequence

Definition 1.4.9 (limsup). Let (sn)
∞
n=1 be a sequence,

lim sup
n→∞

sn := lim
n→∞

(sup{sn}∞m=1)

• (sn)
∞
n=N is called a “tail of the sequence (sn)” starting at N

• AN = sup{sn}∞n=N = supn≥N sn

• lim sup sn = limAn = +∞

Example 1.4.10.

(1) (sn) = 1, 2, 3, 4, 5, . . .
A1 = supn≥1 sn = +∞, A2 = supn≥2 sn = +∞
lim sup sn = limAn = +∞

(2) (sn) = 1− 1
n

A1 = supn≥1 sn = 1, A2 = supn≥2 sn = 1
lim sup sn = limAn = 1 (for any monotonic increasing sequence lim sup sn = sup s1 = A1)

(3) sn = 1 + 1
n (sn) = 2, 1 + 1

2 , 1 +
1
3 , . . .

A1 = sup{2, 1 + 1
2 , 1 +

1
3 , . . .} = 2

A2 = sup{1 + 1
2 , 1 +

1
3 , 1 +

1
4 , . . .} = 1 + 1

2
An = sn so lim sup sn = lim(1 + 1

n ) = 1

Lemma 1.4.11. An = supm≥n sm forms a decreasing sequence.

Proof. Since {sn}∞m=n ⊃ {sn}∞m=n+1, sup{sn}∞m=n ≥ sup{sm}∞m=n+1, ie. An ≥ An+1

Corollary 1.4.12. limn→∞ An = inf An
∞
n=1 (= infn An)

Example 1.4.13. sn = (−1)n · 1n (sn) = (−1, 1
2 ,−

1
3 , . . .)

A1 = supn≥1 sn = s2 = 1
2 , A2 = 1

2 , A3 = 1
4 , so

(An) =
1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
6 ,

1
6 , . . . lim sup sn = limAn = 0

An is like the “upper envelope.”

1.5 February 1

1.5.1 Cauchy Sequences

Definition 1.5.1 (Cauchy Sequence). A sequence (an) is cauchy if ∀ε > 0, ∃N > 0, such that ∀n,m > N
we have |an − am| < ε.

13
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Lemma 1.5.2. If (an) converges to a, then (an) is cauchy.

Proof. Let ε1 = ε
2 , then since an → a, ∃N1 > 0 such that ∀n,m < N , |an − a| < ε1 and |am − a| < ε1.

Thus,
|an − am| = |(an − a)− (am − a)| ≤ |an − a|+ |am − a| < ε1 + ε1 = ε.

Remark 1.5.3. This is also for true in Q

Lemma 1.5.4 (Squeze Lemma). Given sequences (An), (Bn), (an) such that An ≥ an ≥ Bn ∀n, if An → a,
Bn → a, then an → a.

Proof. ∀ε > 0, we have N > 0 such that ∀n > N , |An − a| < ε and |Bn − a| < ε. Then an ≤ An < a+ ε
and an ≥ Bn > a− ε so

a− ε < an < a+ ε↔ |an − a| < ε.

Lemma 1.5.5. Cauchy Sequences are bounded.

Proof. Let ε = 1. Then ∃N > 0 such that ∀n,m > N , |sn−sm| < ε. Consider the term sN+1. Observe that
∀n < N , |sN+1 − sm| < 1 so ∀n < N , |sn| < sN+1 + 1. Taking M = max{|s1|, |s2|, . . . , |sN+1|, |sN+1|+ 1},
we see that M ≥ |sn| for all n.

Theorem 1.5.6. If (an) is cauchy in R, then (an) is convergent.

Proof. Since (an) is cauchy, (an) is bounded so lim sup an and lim inf an exist. Let An = supm≥n am,
Bn = infm≥n am, then An ≥ an ≥ Bn. Let A = limAn and Bn = limBn. By the Squeeze Lemma, we only
need to show A = B. Since An ≥ Bn, we know A ≥ B, hence we only have to rule out A < B.
Assume A < B. Let ε = (A−B)

3 . By Cauchy criterion ∃N > 0 such that ∀n,m > N , |an − am| < ε. By
the previous lemma, since A = lim sup an and B = lim inf an, given ε,N above, we have n > N such that
|an −A| < ε and m > N such that |am −B| ≤ ε. Then

|A−B| ≤ |A− an|+ |an − am|+ |am −B| < ε+ ε+ ε = A−B = |A−B|,

which is a contradiction.

1.5.2 Subsequences

Let (an) be a sequence. If we pick an infinite subset of N, n1 < n2 < n3 < · · · , then we can have a new sequence
bk = ank

, (bk) = an1
, an2

, an3
, . . ..

Example 1.5.7. For (an) = (−1)n, a1 = −1, a2 = +1, . . . does not converge but subsequence consisting of
odd terms converges to −1 and subsequence consisting of even terms converges to 1.

14
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Definition 1.5.8. Let (an) be a sequence. Then a ∈ R is a subsequential limit if there exists (ank
) such

that limk→∞ ak = a.

Theorem 1.5.9. Let (an) be a sequence. Then:

(1) a is a subsequential limit of (an)

(2) ↔ ∀ε > 0, ∀N > 0, ∃n > N such that |an − a| ≤ ε

(3) ↔ ∀ε > 0, the set Aε = {n||an − a| < ε} is infinite

Proof. 2↔ 3) follows from definitions.
1→ 3) If ank

→ a, then for a given ε > 0, ∃K > 0 such that |ank
− a| ≤ ε. Thus {nk|k > K} ⊂ Aε. So Aε

is infinite.
3→ 1) Cantor’s Diagonal Trick: Let A 1

k
= {n||an − a| ≤ 1

k}.
A1 : n1,1 < n1,2 < n1,3 < · · ·
A2 : n2,1 < n2,2 < n2,3 < · · ·
Observe that A 1

k+1
⊂ A 1

k
, thus nk,i ≤ nk+1,i.

Claim: (ank,k
)→ a.

First observe that this is a valid subsequence since ank,k
< ank,k+1

≤ ank+1,k+1
for all k. Also for ε > 0, ∃K

such that 1
K < ε so for all k > K, |an − a| < 1

K < ε so it converges to a.

1.6 February 3

1.6.1 Subsequences

Proposition 1.6.1. If sn → s, then all subsequences of sn converge to s.

Proof. Any tail of a subsequence belongs to a tail of the original sequence to they must converge to the
same limit.

Proposition 1.6.2. Any sequence has a monotone subsequence.

Proof. We say that sn is a dominant term if sn > sm for all m > n.
Case 1: Suppose there are infinitely many dominant terms. Then the subsequence if dominant terms forms
a monotone decreasing sequence.
Case 2: There are finitely many dominant terms. Then we can choose N > 0 such that for all n > N , sn
is not dominant. We can construct an increasing sequence as follows :

• pick n1 > N , and get sn1

• pick n2 > n1 such that sn2
≥ sn1

. This is posible since otherwise sn1
would be a dominant term.

• continue in this fashion to achieve a sequence such that sn1
≤ sn2

≤ sn3
≤ · · ·

15
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Theorem 1.6.3 (Bolzano - Weierstrass). Every bounded sequence has a convergent subsequence.

Proof (Proof 1). Assume WLOG, that the sequence is bounded in [0, 1]. We may write [0, 1] = [0, 1
2 ]∪[

1
2 , 1].

Then (sn) must visit one of the intervals infinitely many times. We can then subdivide that interval and
continue in a similar fashion to obtain a decreasing sequence of closed intervals I0 = [0, 1] ⊃ I1 ⊃ I2 ⊃ · · ·
with |In| = 2−n. Let An = {n|n ∈ In}. Then Ak ⊂ Ak−1. The sequence (ak,k)k is a cauchy sequence since
∀ε > 0, ∃k0 such that 1

2k0
≤ ε for kn > k0.

Proof (Proof 2). Every sequence contains a monotone sequence so since the sequence is bounded the given
monotone sequence converges.

Proposition 1.6.4. Let (sn) be a sequence, the lim sup sn is a subsequential limit.

Proof. We know that for ε > 0, N > 0, ∃n0 > N such that |sn0
− lim sup sn| < ε. Thus by the alternative

of a subsequential limit, lim sup sn is a subsequential limit.

Remark 1.6.5. This sequence can be refined to a montone sequence by considering the monotone subsequence
of the generated sequence.

Theorem 1.6.6. Let (sn) be a bounded sequence and let S by the set of subsequential limits of (sn).
Then:

(a) supS = lim sup sn, inf S = lim inf sn and lim sup sn, lim inf sn ∈ S.

(b) lim sn exists iff S contains only one element.

(c) S is closed under taking limits. ie. if there is a convergent sequence tn → t with tn ∈ S, we will have
t ∈ S.

Proof.

1. For t ∈ S suppose snk
→ t. Then lim sup snk

= lim inf snk
. Since {snk

: k > N} ⊆ {sn : n > N},
lim inf sn ≤ lim inf snk

= lim sup snk
≤ lim sup sn. Thus, lim inf sn ≤ inf S ≤ supS ≤ lim sup sn.

Since by the previous proposition lim sup sn, lim inf sn ∈ S, supS = lim sup sn and inf S = lim inf sn.

2. This follows since sn → s iff lim sup sn = lim inf sn.

3. We will show t is a subsequential limit of (sn). We want to show, ∀ε > 0, ∀N > 0, ∃n0 > N such
that |sn0

− t| ≤ ε.
Since tn → t, ∃N such that ∀n > N , |tn − t| ≤ ε

2 . For n1 < N , there are infinitely many sn with
|sn− tn1

| ≤ ε
2 . Thus, ∃n0 such that |sn0

− tn1
| ≤ ε

2 . Thus, |sn0
− t| ≤ |sn0

− tn1
|+ |tn1

− t| < ε
2 +

ε
2 = ε

16
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1.7 February 8

1.7.1 liminf and limsup (cont.)

Proposition 1.7.1. If A = lim sup an, then ∀ε > 0, ∃N such that sup{an : n > N} ≤ A+ ε.

Example 1.7.2. For an = 1
n , lim sup an = 0 so it is necessary to raise A by ε to have some an ≤ A+ ε.

Proposition 1.7.3. Given an → a, a > 0 and bn bounded, then lim sup(anbn) = (lim an) · lim sup bn.

Proof. Let b = lim sup bn
≤) We plan to show that a · b is a subsequential limit of an · bn, then since all subsequential limits ≤
lim sup(anbn), the result follows.
We know ∃ subsequence (bnk

) that converges to b. We also know all subsequences of (an) converge to a.
Thus, ank

· bnk
→ a · b.

≥) Since a > 0, then ∃N such that an > 0 for all n > N . Thus, if we throw away an with n ≤ N , we may
assume an > 0 ∀n. Then lim 1

an
= 1

a . Thus

lim sup bn = lim sup(anbn
1
an

) ≥ lim sup(anbn) lim(
1

an
) =

1

a
lim sup(anbn)

so a · lim sup bn ≥ lim sup(anbn)

Example 1.7.4. Need a > 0. Consider an = −1, bn = 1, 3, 1, 3, . . .. Then lim sup(anbn) = −1, lim sup(bn) = 3,
but lim an · lim sup anbn = (−1) · 3 = −3.

Theorem 1.7.5. Let an be a sequence of positive real numbers. Then

lim inf(
an+1

an
) ≤ lim inf a1/nn ≤ lim sup a1/nn ≤ lim sup(

an+1

an
).

Example 1.7.6.

(1) an = rn for r > 0, then a
1/n
n = r, an+1

an
= r.

(2) an = C · rn for C > 0, r > 0. Then a
1/n
n = C1/n · r, an+1

an
= r and lim a

1/n
n = r.

(3) an =

{
( 12 )

n n is even
( 13 )

n n is odd
, a1/nn =

{
1
2 n is even
1
3 n is odd

.

However, lim an+1

an
has a lot of oscillations.

In general, root test is stronger than ratio test.

Proof. Note lim inf(· · · ) ≤ lim sup(· · · ) so middle ≤ is obvious.
We will show lim sup a

1/n
n ≤ lim sup an+1

an
(other ≤ is similar).

Assume lim sup an+1

an
= L < ∞, then ∀ε > 0, ∃N > 0 such that sup{an+1

an
: n > N} ≤ L + ε. We may

write ∀n > N , an = aN · aN+1

aN
· aN+2

aN+1
· · · an

an−1
(N terms). so an ≤ aN · (L + ε)n−N = ( an

(L+ε)N
)(L + ε)n

so a
1/n
n ≤ C

1/n
N (L + ε) where CN = a−n

(L+ε)N
. So lim sup(C

1/n
N (L + ε)) = (limC

1/n
N )(L + ε) = L + ε. So

lim sup a
1/n
n ≤ L+ ε. Since the holds for any ε > 0, we have lim sup a

1/n
n ≤ L.

17
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1.7.2 Series

• A series is of the form
∑∞

n=1 an

• We denote the partial sum, SN =
∑N

n=1 an and we say “
∑∞

n=1 = L if limSN = L. Convergence of a series
⇐⇒ Convergence of its partial sums.

Definition 1.7.7.
∑

an is cauchy if ∀ε > 0, ∃N such that ∀n > N , we have |am + am+1 + · · ·+ an| ≤ ε.

Proposition 1.7.8.
∑

an is convergent ⇐⇒
∑

an is cauchy.

Proposition 1.7.9.

(1) “Sanity Check”: if
∑

an is convergent, then lim an = 0.

Proof. Convergence→ Cauchy so if we take n = m, then we have ∀ε > 0, ∃N such that ∀n > N ,
|an| ≤ ε.

(2) Comparison Test: If an is a positive sequence, 0 ≤ an ≤ bn then if
∑

bn is convergent,
∑

an is
convergent.

Proof.
∑

an is a montonic series since an ≥ 0. Since it is bounded by
∑

bn, it converges.

Definition 1.7.10.
∑

an is “absolutely convergent” if
∑
|an| is convergent.

Proposition 1.7.11. If
∑
|an| is convergent, then

∑
an is convergent.

Proof. |an + an+1 + · · ·+ am| ≤ |an|+ |an+1|+ · · ·+ |am| so it follows since
∑
|an| is cauchy.

Proposition 1.7.12.

• Ratio Test:
∑

an is absolutely convergent if lim sup |an+1|
|an| = r < 1.

• Root Test:
∑

an is absolutely convergent if lim sup |an|1/n = r < 1.

Proof (Proof (Root Test)). Choose r′ such that r < r′ < 1. ∃N > 0 such that sup{|an|1/n : n > N} ≤ r′.
ie. ∀n > N , |an| ≤ (r′)n = 1

1−r′ so
∑
|an| is convergent.

Proof (Proof (Ratio Test)). Follows from root test and theorem 7.5

18



1.8. FEBRUARY 10 104: Real Analysis

1.8 February 10

1.8.1 Series
Root Test(extended): Let R = lim sup |an|1/n

• If R < 1, then
∑

an is absolutely convergent

• If R > 1. then
∑

an is divergent (doesn’t satisfy cauchy)

• If R = 1, it depends eg. Consider
∑

1
n and

∑
1
n2 .

Integral Test: If
∑

an has an ≥ 0. If ∃f(x) with graph for f(x) ≥ an for x ∈ [n − 1, n] and
∫∞
a

f(x) < ∞ for
some a > 0, then

∑
an <∞.

Example 1.8.1.
∑

1
n2 converges since

∫∞
1

1
x2 dx <∞

Alternating Series:

•

{
b1 − b2 + b3 − b4 + · · ·
bn ≥ 0

• Test: If (bn) is decreasing, ie. bn+1 ≤ bn then
∑∞

n=1(−1)n+1bn converges.

Proof. Define montonic increasing and decreasing seqeunces based on upper and lower bounds of series
since each term is absorbed into the following one. Since bn → 0 the two sequences converge to the same
limit.

Example 1.8.2.

• 1− 1
2 + 1

3 −
1
4 − · · · is convergent

• 1− 1√
2
+ 1√

3
− 1√

4
− · · · is also convergent

1.8.2 Summation by Parts
Example 1.8.3. Consider a1b1 + a2b2 + a3b3 + a4b4. Let A0 = 0, A1 = a1, A2 = a1 + a2, . . .. Notice
an = An −An−1.

a1b1 + a2b2 + a3b3 + a4b4 = (A1 −A0)b1 + (A2 −A1)b2 + (A3 −A2)b3 + (A4 −A3)b4

= A0b1 +A1(b1 − b2) + · · ·+A3(b3 − b4) +A4b4

In general, if an, bn are sequences of real numbers, if An = a1 + · · ·+ an, A0 = 0, then for any p < q,

apbp + · · ·+ aqbq = −Ap−1bp +

q−1∑
n=p

Ai(bi − bi+1) +Aqbq

Theorem 1.8.4. Suppose the partial sum An forms a bounded sequence and suppose b1 ≥ b2 ≥ b3 ≥ · · · ,
lim bn → 0. Then

∑
anbn is convergent. (if an = (−1)n+1, gives alternating series).
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Proof. Since (An) is bounded, ∃M > 0 such that |An| < M ∀n.
WTS ∀ε > 0, ∃N such that ∀N < p < q, we have

|apbp + · · ·+ aqbq| < ε (*)

Claim: Since bn → 0, ∃N such that ∀n > N , bn < ε
2M . This N will satisfy (*).

|apbp + · · ·+ aqbq| = | −Ap−1bp +

q−1∑
n=p

Ai(bi − bi+1) +Aqbq|

≤Mbp +

q−1∑
n=p

M(bi − bi+1) +Mbq

= M [bp + (bp + bp+1) + · · ·+ (bq−1 − bq) + bq]

= M · 2bp < M · 2 · ε

2M
= ε

Example 1.8.5.
∑∞

n=1 sin(n · 2πx)
1
n , where x is irrational, is convergent.

= Im
∑∞

n=1 e
i2πnx 1

n .
An =

∑N
n=1 e

i2πxn = ei2πx 1−ei2πxN

1−ei2πx so |An| < 2
|1−ei2πx| .

1.8.3 Power Series
•
∑∞

n=0 anx
n, an ∈ R

• If we plug in x ∈ R, then this becomes a series of numbers. We ask, for which x does
∑

anx
n converge?

Theorem 1.8.6. Let α = lim sup |an|1/n, let R = 1
α (radius of convergence), then

• if |x| < R,
∑

anx
n is absolutely convergent

• if |x| > R,
∑

anx
n is divergent

• if |x| = R, it depends

Proof. lim sup |anxn|1/n = |x|α so follows from root test.

Example 1.8.7.

•
∑∞

n=1 x
n, an = 1, α = 1, R = 1

α = 1 so for |x| < 1, this is convergent.

•
∑

xn

n! , an = 1
n! , α = lim sup( 1n )

1/n = 0, R =∞.
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Chapter 2

Topology and Metric Spaces

2.1 February 22

2.1.1 Topology and Metric Spaces

Definition 2.1.1. A metric space is a pair (X, d) such that:

• X is a set

• d is a function d : X ×X → R≥0 (ie. ∀, x, y ∈ X, d(x, y) is nonnegative) satisfying:

(1) d(x, y) ≥ 0 and d(x, y) = 0↔ x = y

(2) d(x, y) = d(y, x)

(3) ∀x, y, x ∈ X, d(x, y) + d(y, z) ≥ d(x, z)

Example 2.1.2.

(1) X = R1, d(x, y) = |x− y|

(2) X = R2 = {(x1, x2)|x1, x2 ∈ R}, d((x1, x2), (y1, y2)) =
√
|x1 − y1|2 + |x2 − y2|2 (Euclidean Metric)

(3) X = R2, d = dmax where dmax = max(|x1 − y1|, |x2 − y2|).
dmax satisfies condition 3:

d(x, y) + d(y, z) = max(|x1 − y1|, |x2 − y2|) + max(|y1 − z1|, |y2 − z2|)
≥ max(|x1 − y1|+ |y1 − z1|, |x2 − y2|+ |y2 − z2|)
≥ max(|x1 − z1|, |x2 − z2|) = d(x, z)

(4) “discrete” metric space:

X is a set, d(x, y) =

{
1 x ̸= y

0 x = y

(5) Undirected (connected) graph distance:
graph: (vertices, edges)- vertices with labeled with positive distances.
d(v1, v2) = min(length of paths between v1, v2)
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Terminology (Given (X, d) a metric space):

• Open ball: given x ∈ X, r > 0, Br(x) = {y ∈ X|d(x, y) < r}

• Closed ball: Open ball: given x ∈ X, r > 0, Br(x) = {y ∈ X|d(x, y) ≤ r}

Definition 2.1.3. Let (X, d) be a metric space. A subset U ⊂ X is called an open subset if ∀x ∈ U , ∃r > 0
such that Br(x) ⊂ U .

Example 2.1.4. (R2, d = dEuclidean), U = (0, 1)× (0, 1) = {(x1, x2)|x1, x2 ∈ (0, 1)}. Claim: U is open.

Proof. Let (x1, x2) ∈ U , r = min(x1, 1−x1, x2, 1−x2). If y ∈ Br(x), then d(x, y) < r ie.
√
|x1 − y1|2 + |x2 − y2|2 <

r so |x1−y1| < r and |x2−y2| < r so y1 ∈ (x1−r, x1+r) ⊂ (0, 1) and y2 ∈ (x2−r, x2+r) ⊂ (0, 1) so y ∈ U .

Proposition 2.1.5.

(1) ∅, X are open in X

(2) If U1, . . . , Un ⊂ X are open then U1 ∩ U2 ∩ · · ·Un is open.

(3) If {Uα}α∈I is an arbitrary collection of open sets then
⋃

α∈I Uα is open.

(4) Every open ball Br(x) is open.

Proof. WTS, ∀y ∈ Br(x), ∃ε such that Bε(x) ⊂ Br(x). Let ε = r − d(x, y). Then ∀z ∈ Bε(y),
d(x, z) ≤ d(x, y) + d(y, z) < (r − ε) + ε = r, so Bε(y) ⊂ Br(x).

2.2 February 24

2.2.1 Metric Spaces
Example 2.2.1.

(1) Rn, dp(x, y) = [
∑
|xi − yi|p]

1
p

(2) Rb, “p =∞”, d(x, y) = max(|x1 − y1|, . . . , |xn − yn|)

(3) Rn, p = 1, d(x, y) =
∑
|x1 − yi| “taxi-cab” metric.

Definition 2.2.2. Let (X, d) be a metric space. A sequence in X is denoted (pn)
∞
n=1 or (pn). We say that

pn → p for some p ∈ X if ∀ε > 0, ∃N > 0 such that if n > N then d(pn, p) < ε.

• Cauchy Criterion: ∀ε > 0, ∃N such that ∀n,m > N d(pn, pm) < ε.

• Subsequences have an equivalent definition.

Warning: For general metric space, (pn) convergent → (pn) cauchy but the converse is not true, eg. there is no
p ∈ X such that pn → p

Example 2.2.3.
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2.2. FEBRUARY 24 104: Real Analysis

(1) Q, d(x, y) = |x− y|. Let pn be a sequence that converges to
√
2 (in R). Hence it is cauchy but (pn) does

not converge in Q (just because “would be” limit is not in X).

(2) X = (0, 1), d(x, y) = |x− y|, pn = 1
n fails to converge in X ie. there is not p ∈ X such that d(pn, p)→ 0

Definition 2.2.4. If (X, dX) is a metric space, Y ⊂ X a subset. Then restricting d to Y × Y ⊂ X ×X,
makes Y a metric space (Y, dY ).

2.2.2 Topology
In a metric space (X, d):

• open “ball”: Br(p) = {x ∈ X|d(x, p) < r}. p ∈ X center, r > 0 radius.

Definition 2.2.5. A subset U ⊂ X is open if ∀p ∈ U , ∃Br(p) ⊂ U .

Proposition 2.2.6.

(0) ∀p ∈ X, ∀r > 0 Br(p) is open.

(1) ∅, X is open.

(2) If U1, . . . , Un is open, then U1 ∩ · · · ∩ Un is open.

(3) If {Uα|α ∈ I} is a collection of open sets, then
⋃

Uα is open.

Proof.

(0) WTS, ∀x ∈ Br(p) ∃ε > 0 such that Bε(x) ⊂ Br(p). Take ε = r − d(x, p).

(1) Clear

(2) ∀p ∈ U1 ∩ · · · ∩ Un since p ∈ Ui ∀i, and Ui is open then ∃Bri(p) ⊂ Ui, then
⋂
Bri(p) = Br(p) where

r = min(r1, . . . , rn). So Br(p) =
⋂n

i=1 Bri(p) ⊂
⋂n

i=1 Ui.

(3) Ifp ∈
⋃

α∈I Uα then there is a α0 such that p ∈ Uα0 . Since Uα0 is open, we have Br(p) ⊂ Uα0 ⊂⋃
α∈I Uα

Definition 2.2.7. If X is a set, T is a collection of subsets of X such that

(1) ∅, X ∈ T

(2) If U1, . . . , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T

(3) If Uα ∈ T ∀α ∈ I, then
⋃
Uα ∈ T

Then T is a topology of X and elements of T are called open subsets of X.

Example 2.2.8.
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2.2. FEBRUARY 24 104: Real Analysis

(1) X = R, any open interval (a, b) is open. Also, any union of open intervals is open eg.
⋃

n∈Z(n, n+ 1
2 ).

(2) Open sets in R2: open balls are open, open squares are open. Topology on R2 induced by the metric d2
equals the topology induced by dmax.

Definition 2.2.9 (Closure). If (X, d) is a metric space, S ⊂ X a subset. S = {p ∈ X| there is a sequence
(pn) such that pn → p.

Example 2.2.10. If S = (0, 1), S = [0, 1]. Also, if S = (0, 1) ∩Q, S = [0, 1]

Remark 2.2.11. S ⊂ S. ∀p ∈ S, take the sequence pn = p, then pn → p.

Proposition 2.2.12. Let S ⊂ X, then S = S ↔ Sc(= X \ S) is open.

Proof. →) To show Sc is open, WTS ∀p ∈ Sc, ∃Br(p) ⊂ Sc.
Suppose there is no open ball Br(p) ⊂ Sc, ie ∀r > 0 Br(p) ̸⊂ Sc ↔ Br(p) ∩ S ̸= ∅. Then, take r = 1

n , for
n = 1, 2, 3, . . . and pick pn ∈ B 1

n
(p) ∩ S. We have pn → p so p ∈ S which contradicts p ∈ Sc and S = S.

←) If Sc is open, we need to show ∀p ∈ S, we have p ∈ S. Suppose p ∈ S but p ̸∈ S. Then p ∈ Sc. Since
Sc is open, ∃Br(p) ⊂ Sc. Since p ∈ S, ∃ sequence (pn), pn ∈ S ∀n, pn → p. Thus ∃N such that ∀n > N ,
pn ∈ Br(p). This is a contradiction since pn can’t be in Br(p) and S.

Definition 2.2.13. S ⊂ X is closed if Sc is open.

Proposition 2.2.14. S = S for any subset S ⊂ X.

Proposition 2.2.15. ∀S ⊂ X, S = {F ⊂ X closed, F ⊃ S}

Proposition 2.2.16. For a metric space (X, d):

(0) ∅, X are closed

(1) if F1, . . . , Fn are closed then F1 ∪ · · · ∪ Fn is closed.

(2) if Fα is closed ∀α,
⋂
Fα is closed.

If U is open, then U is the union of open balls.

Proof. ∀p ∈ U , Br(p)(p) ⊂ U is an open ball so U ⊂
⋃

p∈U Br(p)(p),
⋃

Br(p)(p) ⊂ U hence U =
⋃

p∈U Br(p)(p).
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2.3 March 1

2.3.1 Metric Spaces

Example 2.3.1. X =the set of all pairs of points on R = {{x1, x2}, x1 ̸= x2 ∈ R}. Want to define a reasonable
metric on X.
Ideas:

• dist(p1, p2) = distance from smallest point in p1 to largest point in p2.
Fails to satisfy condition since d(p, p) ̸= 0.

• dist({x1, x2}, {y1, y2}) = min{d(xi, yj) : i = 1, 2 j = 1, 2}
Fails since d({1, 2}, {2, 3}) = 0.

? points in R2, {x1, x2} 7→ R2. potentially ambiguous lifting but can say x1 < x2. distance({x1, x2}, {y1, y2}) =√
d(x1, y1)2 + d(x2, y2)2 x1 < x2 y1 < y2

• Alternate Solution: define the distance from a point to a set by d(p,B) = infq∈B d(p, q).
Let d(A,B) = supp∈A(infq∈B(p, q)) + supq∈B(infp∈A(p, q)).
For the above example, dist({x1, y1}, {x2, y2}) = max(min(|x1− y1|, |x1− y2|),min(|x2− y1|, |x2− y2|)) +
max(min(|x1 − y1|, |x2 − y1|),min(|x1 − y2|, |x2 − y2|)).
This is called the Gromov-Hausdorff distance.

2.3.2 Continuous functions

Definition 2.3.2. Let X,Y be topological spaces, a map of stes f : X → Y is continous if for any open
subset V ⊂ Y , we have f−1(v) open in X.
Here, f−1(V ) = {x ∈ A|f(x) ∈ V }.

Example 2.3.3. f : R→ S1 (circle) = [0, 1]/0 ∼ 1 by x 7→ x− ⌊x⌋.
Continuous as the preimage of an open interval is the union of open intervals, which is open.

•0

•1

•2

( )

( )

( )

(0,1)•
( )

Definition 2.3.4 (Inherited Topology). If X is a topological space, S ⊂ X then a subset E ⊂ X is said
to be open in S if there exists Ẽ ⊂ X, open in X such that Ẽ ∩ S = E.

Example 2.3.5 (Inherited or Induced Topology). If X = R, S = [0, 1]. What are the open sets in S?
[0, a), (a, b), (b, 1] ) < a, b < 1 are open in S though they may not be open in R.
[0, a] = (−ε, a) ∩ [0, 1]. [0, 1] is both closed and open in S.
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Example 2.3.6. If we have f : R→ [0, 1) by x 7→ x− ⌊x⌋
[0, 1

2 ) open in [0, 1) but f−1([0, 1
2 ) =

⋃
n∈Z[n, n+ 1

2 ) is not open in R so f is not continuous.
Example 2.3.7. X = R, S = Q. Open sets in Q come from open sets in R, ∩Q.
eg. (0, 1) ∩Q is open in Q.
Observe that [−

√
2,
√
2] ∩Q = (−

√
2,
√
2) ∩Q is both closed and open in Q.

Definition 2.3.8. Let X,Y be a metric space. f : X → Y a map of sets. Then f is continuous if ∀x ∈ X,
∀ry > 0, ∃rx > 0 such that f(Brx(x)) ⊂ Bry (y) where y = f(x).

2.4 March 3

2.4.1 Compact Sets

Definition 2.4.1 (Sequential Compactness). In a metric space (X, d), a subset K ⊂ X is sequentially
compact if any sequence in K has a convergent subsequence in K (ie. ∀(pn) in K, ∃(pnk

) such that
limn→∞ pnk

= p ∈ K)

Definition 2.4.2 (Open Cover). A ⊂ X, and Uα ⊂ X open with α ∈ I such that A ⊂
⋃

α∈I Uα.

• A finite cover means the index set I is finite.

• A subcover of {Uα}α∈I , means a subset I ′ ⊂ I such that A ⊂
⋃

α∈I′ Uα

Definition 2.4.3 (Open Cover Compactness). A subset K is (open cover) compact of any open cover of
K admits a finite subcover.

Example 2.4.4.

(1) Finite subset K ⊂ X is both sequentially compact and open cover compact. K = {p1, . . . , pn} ⊂ X.
If (xn) is a sequence in K, there is a pi that will be visited infinitely many times, take that constant
subsequence (it converges to pi)
If K ⊂

⋃
α∈I Uα, then for each i ∈ K, pi ∈

⋃
α∈I Uα so ∃αi ∈ I such that pi ∈ Uαi

, then K ⊂ Uαi
∪· · ·∪Uαn

.

(2) X = R,K = R.
Claim: K is not sequentially compact: (take sequence 1, 2, 3, 4, . . . then no subsequence converges)
K is not open cover compact: R =

⋃
n∈Z(n−

1
2 , n+ 3

2 ) but has no finite subcover.

(3) K = (0, 1) ⊂ R.
Not compact:

⋃∞
n=1(0, 1− ( 12 )

n) = (0, 1) but has no finite subcover.
Also sequence pn = 1− ( 12 )

n is not convergent in K.

(4) K = [0, 1] is sequentially compact and open cover compact.

Proof.

(a) Let (pn) be a sequence in [0, 1]. Since pn is bounded ∃ pnk
→ p for p ∈ R. Since K is closed, the

limit of the sequence in also in K. Thus p ∈ K.
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(b) Let {Uα} be an open cover of [0, 1]. Let a = sup{b|[0, b] has a finite subcover }. We claim [0, a]
also admits a finite subcover. Since there is some open set with a ∈ U0, then ∃ε > 0 such that
[a − ε, a] ⊂ U0 and ∃ b such that b > a − ε so [0, b] has a finite subcover hence combining this with
U0 so does [0, a].
Now, we will show a = 1. If a < 1, then the finite subcover of [0, a] also contains [0, a+ ε] for some
ε > 0, 0 < a+ ε < 1 contradicting the maximality of a.

Note: If K is open cover compact then:

(1) K is bounded.

(2) K is closed.

Proof.

(1) pick p ∈ K. K ⊂ U∞
n=1Bn(p0). By open cover compactness, K ⊂ Bn0

(p0) for some n0.

(2) To show K is closed WTS ∀p ̸∈ K, ∃Br(p) ∩K = ∅.
Lemma: if Ai, Bi disjoint for i = 1, . . . , N . Then (

⋃
Ai) ∩ (

⋂
Bi)) = ∅

∀q ∈ K let Bq = B 1
2d(p,q)

(q). Then K ⊂
⋃

q∈K Bq so K ⊂ Bq1 ∪ · · · ∪ BqN . Let r = min1,...,N ( 12d(p, q))

then Br(p) is disjoint from
⋃
Bq ⊃ K.

Theorem 2.4.5. Sequential compactness is equivalent to open cover compactness.

Proof. ←) Suppose K ⊂ X is open cover compact. If ∃ (pn) in K such that there is no convergent
subsequence in K then ∀p ∈ K ∃rp > 0 such that (pn) visits Brp = Bp finitely many times, otherwise
∃p ∈ K such that ∀rp > 0 (pn) visits Brp(p) infinitely many times so there is a susbequence that converges
to p. Thus, K ⊂

⋃
p∈K Bp. Since K is compact, K ⊂ Bp1

∪ · · · ∪Bpn
and the sequence has to visit one of

the balls infinitely many times, contracting our assumption.

2.5 March 8

2.5.1 More Topology

Example 2.5.1. (X = R, dstd), Y = {1, 2, 3}
What is TY ?
Claim: collection of all subsets of Y : TY = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}
Why is {1} open in Y ?
B 1

2
(1) = {q ∈ Y |d(1, q) < 1

2} = {1}. Similarly, {2} and {3} are open in Y and their unions generate TY .
Another Solution: {1} ⊂ Y is open in Y since (1− ε, 1+ ε) ⊂ X = R is open and (1− ε, 1+ ε)∩{1, 2, 3} = {1}.
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2.5.2 Completness
Ex of Complete subsets in R?

• [a.b], any closed interval

• Every bounded and closed subset.

Proof (Proof of Thm 12.5 (cont)). Sequential Compactness → Open cover Compactnes

(1) Let U and V be open covers of X, we say that U refines V if for any U ∈ U , ∃V ∈ V such that U ⊂ V .

Lemma: If U is a subset of X and V is a refinement of U , that covers X and V admits a finite subcover
of X, then U admits a finite subcover of X.

Proof. Since X =
⋃N

i=1 Vi and Vi ⊂ Ui, then X ⊂
⋃N

i=1 Ui.

Lemma 1: Assume X is sequentially compact. ∀r > 0, the open cover {Br(p)|p ∈ X} of X admits a finite
subcover, ie. ∃P1, . . . , Pn ∈ X such that X =

⋃N
i=1 Br(Pi).

Proof. X cannot contain infinitely many disjoint open balls of radius r/2. Pick a “maximally sphere
packing” of disjoint (r/2)−balls in X to choose p1, . . . , pn such that {B r

2
(pi)} disjoint and for any

p ∈ X, B r
2
(p) ∩B r

2
(pi) ̸= ∅ for some i so ∀p ∈ X ∃pi such that d(p, pi) < r. Thus, X ⊂

⋃N
i=1 Br(pi).

Lemma 2: Let (X, d) be sequentially compact. Let U be an open cover of X. Then ∃r > 0 such that the
open cover {Br(p)|p ∈ X} refines U , ie.∀p ∈ X, ∃U ∈ U such that Br(p) ⊂ U .

Proof. Suppose not. then ∀r > 0, ∃p ∈ X such that Br(p) is not contained in U ∈ U . Then for r = 1
n ,

n = 1, 2, . . . pick pn such that B 1
n
(pn) not in U ∈ U . Then (pn) subconverges to p ∈ X, but p ∈ X

so ∃U0 ⊂∈ U such that p ∈ U0 so ∃Br0(p) ⊂ U0. So ∃N > 0 such that d(pN , p) < r0
2 , and 1

N < r
2 so

B 1
N
(pN ) ⊂ Br0(p). Thus B 1

N
(pN ) ⊂ U0 contradicting the construction of pN .

For any open cover, the theorem follows by taking the refinement of r > 0 balls guaranteed by Lemma 2
and finding a finite subcover using Lemma 1.

Remark 2.5.2. Such an r is called a Lebesgue number of the open cover U .

Theorem 2.5.3. [0, 1]d ⊂ Rd is compact ∀d = 1, 2, . . .

Proof. Prove the sequential compactness definition. We need to show ∀(pn) in [0, 1]d there is a subsequence
that converges to P ∈ Rd.
Lemma: The distances dmax, d1, d2 are “equivalent” (d, d are equivalent if ∃c1, c2 > 0 such that ∀x, y ∈ X
d(x, y) ≤ c1d

′(x, y) and d′(x, y) ≤ c2d(x, y).

• d1 =
∑
|xi − yi| d2 = |

∑
|xi − yi||

1
2 dmax = max(|xi − yi|)
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A sequence converges in Rd if it converges in all its coordinates.
For d = 2, (x1,1, x1,2), (x2,1, x2,2), . . .→ (x1, x2) ∈ R2 iff limxn,1 = x1, limxn,2 = x2.
Given pn for each coordinate we can then refine it to a convergent series iteratively.

Theorem 2.5.4 (Heine Borel). A K ⊂ Rn is compact iff it is closed and bounded.

Proof.

• K closed in Rn → K is sequentially compact in Rn (works only for Rn)

• K is compact → K is closed and bounded (true for all metric spaces)

2.6 March 10

2.6.1 Connectedness
Example 2.6.1. X = {1, 2, 3, . . . , } with a funny topology. Open sets:

• ∅, X

• {1, 2, . . . , n} for some n integer ≥ 1.

Is X connected?

Definition 2.6.2. Let X be a topological space. X is connected if X cannot be written as the disjoint
union of two nonempty open subsets.

Example 2.6.3.

• X = {1, 2} with usual topology (ie. discrete) is not connected since X = {1} ⊔ {2} and {1}, {2} are open
in X.

• X = [0, 1] (under induced topology) is connected.

Example 2.6.4. Q is disconnected.
Q = [(−∞,

√
2) ∩Q] ⊔ [(

√
2,−∞) ∩Q]

Remark 2.6.5. If X = G ⊔H, G,H open in X then G,H are closed in X since G = X \H, and complement
of an open set is closed.

Theorem 2.6.6. Let E ⊂ R, then E is connected iff ∀x, y ∈ E and x < y we have [x, y] ⊂ E.

Proof. →) Suppose E is connected and suppose ∃x, y ∈ E with z ∈ (x, y) but z ̸∈ E. Then let E1 =
(−∞, z) ∩ E, E2 = (z,+∞) ∩ E then

• E1, E2 are nonempty, x ∈ E1, y ∈ E2

• E1, E2 are open in E
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So E = E1 ⊔ E2 is not connected, contradicting our assumption.
←) If E satisfies the condition above and if E is not connected. A = A ⊔B, A,B nonempty subsets of E.
Pick x ∈ A, y ∈ B and assume WLOG x < y. Then let A′ = [x, y] ∩A, B′ = [x, y] ∩B. Since x, y ∈ E, by
assumption [x, y] ⊂ E.
[x, y] = [x, y] ∩ E = ([x, y] ∩A) ⊔ ([x, y] ∩B) = A′ ⊔B′.
Let z = supA′ and consider the following cases:

(a) z = x, then A′ = {x} not open in [x, y]

(b) x < z < y. If z ∈ A′ then A′ is not open (Bε(z) will not be in A′). Similarly if z ∈ B′ is not open.

(c) If z = y, then z ∈ B′ so B′ is not open.

In all cases there is a contradiction, thus E must be connected.

Remark 2.6.7.

• Being connected is an intrinsic property of a topological space

• If X is a topological space, E ⊂ X, then if we ask “Is E connected” we treat E with respect to the induced
topology.

Definition 2.6.8 (Separated - Rudin). Let X be a topological space. G,H ⊂ X we say that G,H are
separated if G ∩H = ∅, G ∩H = ∅.

Example 2.6.9. X = R, G = (0, 1), H = (1, 2)
G ∩H = [0, 1] ∩ (1, 2) = ∅ G ∩H = (0, 1) ∩ [1, 2] = ∅ so G,H separated.
Example 2.6.10. G = (0, 1), H = [1, 2] G,H not separated.

Proposition 2.6.11. Let X be a topological space, E ⊂ X, then E is connected iff E cannot be written
as G ⊔H with G,H separated (in X)

Proof. →) Suppose E is connected and E = G⊔H, G,H separated. We want to show that G,H are open
in E, or equivalently G,H are closed in E.
Since G ∩H = ∅, G = G ∩E = G ∩ (G ∪H) = G ∩G = G so G is closed in E. Similarly, H is closed in E
so E is not connected.

Let f : X → Y be a continuous map between topological spaces. Then

(1) If A ⊂ X is compact, then f(A) is compact

(2) If A ⊂ X is connected, then f(A) is connected.

(3) If X = R, Y = R, A = [a, b], then f(A) = [c, d] for some c, d.

2.7 March 15

2.7.1 Completeness and Compactness are Preserved by Continuous Maps
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Proposition 2.7.1. Let f : X → Y be a continuous map, if X is compact then f(X) is compact.

Proof. (use open cover compactness) Let {Vα} be a collection of open sets in Y covering f(X). Then
f(x) ⊂

⋃
α Vα so X ⊂

⋃
α f−1(Vα). By continuity of f , f−1(Vα) is open so by the compactness of X there

is a finite subcover X ⊂
⋃N

i=1 f
−1(Vαi) so f(X) ⊂

⋃N
i=1 f(f

−1(Vαi)) ⊂
⋃N

i=1 .Vαi . Thus we have a finite
subcover of f(X).

Corollary 2.7.2. If f : X → Y continuous, and K ⊂ X is compact, then f(K) is compact.

Proof. Let g = f |K : K → Y , still continuous. Follows from previous thm.

Remark 2.7.3. Proof. (Using sequential compactness). Given a sequence (yn) in f(X) we can choose xn in X
such that f(xn) = y. Then (xn) is a sequence in X. By sequential compactness ∃(xnk

) converging to x0, thus
ynk

= f(xnk
) converges to f(x0).

Lemma 2.7.4.

(a) If f : X → Y continuous, E ⊂ X any subset, then the restriction f |E : E → Y is continuous.

(b) If f : X → Y is continuous, then g : X → f(X) is continous.

Proof.

(a) For any open V ⊂ Y , (f |E)−1(V ) = F−1(V ) ∩ E is open in E so f |E is continuous.

(b) For any F ⊂ f(X) open, ∃F̃ ⊂ Y open such that F = F̃ ∩ f(X), then g−1(F ) = f−1(F̃ ), hence is
open in X.

Proposition 2.7.5. If f : X → Y is continuous and X is connected, f(X) is connected.

Proof. let g : X → f(X) be the restriction of f , then g is continuous. If f(X) = U ⊔ V of 2 nonzero open
sets in f(X), then X = g−1(U) ⊔ g−1(V ), nonempty and open. Hence X is not connected, contradicting
our premise. Thus, f(X) is connected.

Theorem 2.7.6 (Intermediate Value Theorem). Suppose f : [a, b]→ R continuous. if f(a) = α, f(b) = β
and γ ∈ (α, β) then ∃x ∈ (a, b) such that f(x) = γ.

Proof. Since [a, b] connected, then f([a, b]) connected. Since α, β ∈ f([a, b]) then [α, β] ⊂ f([α, β]) so
γ ∈ f([α, β]) so ∃x ∈ (a, b) such that f(x) = γ.

If f continuous

• f does not preserve openness. f : {0} → R, {0} open in X but not in R.
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• f does not preserve boundedness. f : (0, 1)→ R by f(x) = 1
x . (If X is compact, then f(X) is bounded)

2.7.2 Uniformly Continuous Maps Between Metric Spaces

Definition 2.7.7. f : X → Y is a uniform continuous if ∀ε > 0, ∃δ > 0 such that if x1, x2 ∈ X satisfy
d(x1, x2) < δ, then d(f(x1), f(x2)) < ε.

Example 2.7.8.

(1) f : R→ R by f(x) = x2 is not uniformly continuous.

Proof. Suppose that for all ε > 0, ∃δ > 0 such that |x1 − x2| < δ → |x2
1 − x2

2| < ε. Then let x1 = n,
x2 = n+ δ

2 , we have

|n2 − (n+
δ

2
)2| ≥ |nδ + (

δ

2
)2| > nδ > ε

for large enough n.

(2) f : R→ R by f(x) = sinx is uniformly continuous.

(3) f : [0, 1]→ R by x 7→
√
x is uniformly continuous even though the slope is unbounded at x = 0.

Theorem 2.7.9. If f : X → Y is continuous and X is compact, then f is uniformly continuous.

Proof. Let ε > 0 be given, we need to find δ > 0 such that ∀x1, x2 ∈ X, d(x1, x2) < δ, we have
d(f(x1), f(x)2) < ε. Since f is continuous X → Y , ∀x ∈ X, ∀ry > 0, ∃rx > 0 such that if x1, x2 ∈
Brx(x), then d(f(x1), f(x2)) < 2ry. ∀x ∈ X, choose rx > 0 such that f(B2rx(x)) ⊂ Bε/2(f(x)). Then
X ⊂

⋃
x∈X Brx(X). By compactness of X, pick a finite open cover such that X =

⋃N
i=1 Bri(xi), where

ri = xi. Let δ = min{r1, . . . , rN}. ∀p1, p2 ∈ X, p1 ∈ Bri(xi) for some i. Since d(p2, p1) < δ < ri,
d(p2, xi) ≤ d(p2, p1) + d(p1, xi) < ri + ri = 2ri. Since f(p1), f(p2) ∈ f(B2ri(xi)) ⊂ Bε/2(f(xi)), we have
d(f(p1), f(p2)) < ε.

2.7.3 Discontinuity

Definition 2.7.10 (Limit of a Function at a Point). Let E ⊂ X and f : E → Y be a map. Let p ∈ E, then
we say limx→p f(x) = y ∈ Y , if for all sequences of points xn → p, xn ∈ E, we have limn→∞ f(xn) = y.

• For f : (a, b) → R, ∀x ∈ (a, b) we let f(x−) and f(x+) denote the ”left” and ”right” limits. lim(x−) =
lim t→x

t∈(a,x)
f(x) = limt→x− f(x) and lim(x+) = lim t→x

t∈(x,b)
f(x) = limt→x+ f(x). (They need not exist)

• f is continuous at f ↔ f(x) = f(x−) = f(x+)

• Discontinuity of the first kind: f(x+) and f(x−) exists but f is discontinuous at x.

• else discontinuity of the second kind.

Example 2.7.11.
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(1) f(x) =

{
x x ≤ 0

sin( 1x ) x > 0
has a discontinuity of the second kind at 0.

(2) f(x) =

{
0 x ∈ R \Q ∪ {0}
1
q x ∈ Q \ {0}, x = p

q p, q coprime
Claim: f(x) is continuous on all R \Q and 0.

(3) f(x) =

{
1 x ∈ R \Q
0 x ∈ Q

is discontinuous at all points in R.

Theorem 2.7.12. If f(x) is a monotonic increasing function on (a, b) (if x1 < x2, f(x1) ≤ f(x2)), then
f(x) can have at most countably many discontinuities, all of the first kind.

2.8 March 17

2.8.1 Sequences and Series of Functions
Sequence: f1(x), f2(x), f3(x), . . .
Series:

∑∞
n=1 fn(x)

Example 2.8.1. fn(x) = x2

(1+x2)n , f(x) =
∑∞

n=0 fn(x) =
∑∞

n=0
1+x2

(1+x2)n

fix an x, forms a geometric series: x2
∑

( 1
1+x2 )

n = x2 1
1− 1

x2+1

= x2 1+x2

x2 = 1 + x2.

so f(x) =

{
1 + x2 x ̸= 0

0 x = 0

Example 2.8.2. fm(x) = limn→∞[cos(m!πx)]2n, f(x) = limm→∞ fm(x).
if m!πx = nπx, m!x is an integer then cos(m!πx) = ±1. This happens if x is a rational number, x = p

q and

q|m!. fm(x) =

{
1 if x ∈ Q, m!x ∈ Z
0 else

so

f(x) = limm→∞ f(x) =

{
1 if x ∈ Q
0 else

Example 2.8.3. Suppose there is f such that
∫ 1

0
f(x)dx = 1.

0 1

h
fn(x) = nf(nx) so

∫
R nf(nx)dx =

∫
f(u)du = 1.

for any x ∈ R, lim fn(x) =

{
0 x ̸∈ (0, 1)

0 x ∈ (0, 1)

so
∫
(lim fn(x))dx = 0 ̸= limn→∞

∫
fn(x)dx = 1

2.8.2 Uniform Convergence
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Definition 2.8.4. Let fn : (a, b) → R be a sequence of functions and f : (a, b) → R. We say fn → f
uniformly if for any ε > 0 there exists N > 0 such that

∀n > N, ∀x ∈ (a, v) |fn(x)− f(x)| ≤ ε

Remark 2.8.5. Uniform convergence means N does not depend on x.
Alternatively, we define distances between 2 functions f, g : X → Y , X,Y metric spaces by d∞(f, g) =
supx∈X dY (f(x), g(x)). We say fn → f uniformly if limn→∞ d∞(fn, f) = 0.
Example 2.8.6. With f as in Ex 3, d∞(f, 0) = sup |f(x)−0| = h, and d∞(fn, 0) = n ·h so fn does not converge
uniformly.
g, f : R→ R, d2(f, g) = [

∫
|f(x)− g(x)|2dx] 12

(Warning: only makes sense for “nice enough” f, g)
Define d1(f, g), d∞(f, g) similarly.

Theorem 2.8.7. Let fn : X → Y be a sequence of continuous functions between 2 metric spaces. If
fn → f uniformly, then f is continuous.

Proof. To show f is continuous, WTS ∀x ∈ X, ∀ε > 0, ∃δ > 0 such that if d(x′, x) < δ, then
dY (f(x

′), f(x)) < ε. Fix x0 ∈ X, we will show f is continuous at x0.

• By uniform convergence of fn → f , we know ∃N such that ∀n ≥ N , ∀x ∈ X d(fn(x), f(x)) <
ε
3 . Fix

n0 = N .

• Since fn0(x) continuous at x0, we know ∃δ > 0 such that d(x, x0) < δ → dY (fn0(x0), fn0(x)) <
ε
3 .

Thus, if d(x, x0) < δ,

d(f(x), f(x0)) ≤ d(f(x), fn0(x)) + d(fn0(x), fn0(x0)) + d(fn0(x0), f(x0))

<
ε

3
+

ε

3
+

ε

3
= ε

Definition 2.8.8. A sequence of functions fn if uniformly Cauchy if ∀ε > 0, ∃N > 0 such that ∀n,m > N ,
d∞(fn, fm) < ε, ie. ∀x ∈ R, |fn(x)− fm(x)| < ε.

Proposition 2.8.9. If fn : R→ R satisfies the uniform Cauchy condition then fn is uniformly convergent
to some f : R→ R.

Proof. For each x ∈ R, fn(x) from a sequence of numbers in R and is Cauchy in R, hence it is convergent.
Let f(x) := limn→∞ fn(x). WTS fn → f uniformly.
To show fn → f uniformly, fix ε > 0, WTS ∃N > 0 such that ∀x ∈ R, ∀n > N , |fn(x)− f(x)| < ε. Choose
N large enough such that ∀n,m > N , |fm(x) − fm(x)| < ε. Fix n, let m → ∞, then limm → ∞, then
lim fm(x) = f(x), |fn(x)− f(x)| = limm→∞ |fn(x)− fm(x)| < ε.
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Chapter 3

Differentiation and Integration
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3.1.1 Differentiation
Given a nice function, f ′(p) = the slope of the tangent line of p.

Definition 3.1.1. A function f : [a, b]→ R is differentiable at a point p ∈ [a, b] if the limit limt→p
f(t)−f(p)

t−p

exists. If so, we call it f ′(p).

Proposition 3.1.2. If f(x) is differentiable at p, then f(x) is continuous at p, ie. limx→p f(x) = f(p).

Proof. f(x)−f(p) = f(x)−f(p)
x−p ·(x−p) so limx→p[f(x)−f(p)] = limx→p[

f(x)−f(p)
x−p ·(x−p)] = limx→p(

f(x)−f(p)
x−p) )·

limx→p(x− p) = f ′(0) · 0 = 0.

Example 3.1.3. f(x) =

{
x2 x ∈ Q
−x2 x ̸∈ Q

. Claim: f ′(0) = 0.

Proof. f ′(0) = limx→p
f(x)−f(0)

x−0 . limx→0 | f(x)−f(0)
x−0 | − limz→0

|±x2|
|x| = limx→ 0|x| = 0.

Theorem 3.1.4. If f, g : [a.b]→ R, differentiable at a point x0 ∈ [a, b].

(1) ∀c, (c · f)′(x0) = c · (f ′(x0))

(2) (f + g)′(x0) = f ′(x0) + g′(x0)

(3) (fg)′(x0) = f ′(x0)g(x0) + g′(x0)f(x0)

Theorem 3.1.5 (Chain Rule). If f : R → R is differentiable at x0, ie. f(x0) = y0, f ′(x0) exists and if
g : R→ R, is differentiable at y0, ie. g(y0) = z0, g′(y0) exists. The composition h = g ◦f , ie h(x) = g(f(x))
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is differentiable at x0, h′(x0) = g′(y0) · f ′(x0).

Proof. Use ”baby taylor expansion”.
f(x) = f(x0) + f ′(x0) · (x− x0) + (x− x0) · rf (x) limx→x0

rf (x) = 0
g(x) = g(x0) + g′(x0) · (x− x0) + (x− x0) · rg(x) limx→x0

rg(x) = 0
Then

h(x)− h(0) = g(f(x))− g(f(x0))

= (f(x)− f(x0))(g
′(f(x0)) + rg(f(x)))

= (x− x0)(f
′(x0) + rf (x))(g

′(f(x0)) + rg(f(x)))

Dividing both sides by (x − x0) and taking the limit as x → x0 but x ̸= x0, we see that h′(x0) =
f ′(x0)g

′(f(x0)), as desired.

Example 3.1.6. h(x) = sin2 x
f(x) = x2, f ′(x) = 2x g(x) = sinx, g′(x) = cosx
h′(x) = f ′(x)g′(f(x)) = 2x cos(x2)

Definition 3.1.7. f : [a, b]→ R, we say p ∈ [a, b] is a local maximum if ∃δ > 0 such that ∀x ∈ [a, b]∩ (p−
δ, p+ δ), f(p) ≥ f(x).

Proposition 3.1.8. If p is a local maximum of f and f ′(p) exists, then f ′(p) = 0.

Proof. If f ′(p) exists, limx→p+
f(x)−f(p)

x−p = limx→p−
f(x)−f(p)

x−p . For x > p, f(x)−f(p)
x−p ≥ 0, for x < p,

f(x)−f(p)
x−p ≤ 0 so we must have limx→p

f(x)−f(p)
x−p = 0.

Theorem 3.1.9 (Rolle). If f : [a, b] → R is continuous and if f is differentiable on (a, b), if f(a) = f(b),
then ∃c ∈ (a, b) with f ′(c) = 0.

Proof. Suffices to find a local max or local min of f on (a, b). If constant then f ′(x) = 0 for all x ∈ (a, b)
otherwise must either increase so must have local max or min.

3.2 March 31

3.2.1 Differentiation

Theorem 3.2.1 (Generalized Mean Value Theorem). Let f, g : [a, b] → R be differentiable on (a, b)

and continuous on [a, b] then ∃c ∈ (a, b), [f(b) − f(a)]g′(c) = [g(b) − g(a)]f ′(c) ie. f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) if
g(a)− g(b), g(c) ̸= 0.

• For simple case take g(x) = x.
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Proof. Define h(x) = [f(b) − f(a)][g(x) − g(a)] − [f(x) − f(a)][g(b) − g(a)]. Then h(a) = 0, h(b) = 0, so
by Rolle’s Theorem ∃c such that h′(c) = 0 = [f(b)− f(a)]g′(c)− f ′(c)[g(b)− g(a)].

Remark 3.2.2. If f(b)− f(a) = g(b)− g(a) = 1, then ∃c such that f ′(c) = g′(c).

Corollary 3.2.3. Suppose f : R → R differentiable ∀x ∈ R, |f ′(x)| ≤ M for some constant M , then f is
uniformly continuous.

Proof. To show f is uniformly continuous we need to show that ∀ε > 0, ∃δ > 0 such that if |x − y| < δ
then |f(x) − f(x)| < ε. Hence we can take δ = ε

M , then by MVT, f(x) − f(y) = f ′(c)(x − y) for some
c ∈ (x, y). Thus |f(x)− f(y)| = |f ′(c)| · |x− y| < M · δ < ε.

Corollary 3.2.4. If f ′(x) ≥ 0 ∀x ∈ [a, b] then y > x→ f(y) ≥ f(x). (monotonic increasing)

Proof. f(y)− f(x) = f ′(c) · (y − x) ≥ 0.

Theorem 3.2.5 (Intermediate Value Theorem). Let f : [a, b] → R be differentiable, f(a) ≤ f(b). For µ
such that f ′(a) < µ < f ′(b), ∃c ∈ (a, b) such that f ′(c) = µ.

Remark 3.2.6. Since f ′(x) as a function on [a, b] may not be continuous so cannot use mean value theorem
for f ′(x).

Proof. Let h(x) = f(x) − µ · x, h′(x) = f ′(x) − µ then h′(a) < 0 < h′(b). Consider h : [a, b] → R, let
c ∈ [a, b] such that h(c) = minh(x), x ∈ [a, b]. Want to show c ̸= a, c ̸= b. By definition of h′(a), we
know h(t)−h(a)

t−a < 0 then for t close enough to a, t > a, h(t) < h(a). Thus h(a) ̸= minh(b). Similarly,
h(b) ̸= min(h).

3.2.2 L’Hopital’s Rule
Example 3.2.7.

(1) limx→0
sin x
x = limx→0

(sin x)′

(x)′ = limx→0
cos x
1 = 1.

(2) limx→0
log x
x = limx→0

1/x
x = limx→0

1
x = 0.

Theorem 3.2.8 (L’Hopital’s Rule). Assume f, g : (a, b) → R differentiable, g(x) > 0 over (a, b). If
limx→a+

f ′(x)
g′(x) = A ∈ R ∪ {+∞,−∞} and one of the following are true:

(1) limx→a f(x) = 0, limx→a g(x) = 0

(2) limx→a g(x) =∞.
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Then, limx→a
f(x)
g(x) = A.

Proof. Assume for simplicity, A ∈ R. The cases where A = ±∞ are similar.
Case 1: limx→a g(x) = 0, limx→a f(x) = 0.
Since limx→a

f ′(x)
g′(x) = A, ∀ε > 0, ∃δ > 0 such that if x ∈ (a, a+ δ), then | f

′(x)
g′(x) −A| < ε. Then for α, β such

that a < α < β < a+ δ, f(β)−f(α)
g(β)−g(α) = f ′(γ)

g′(γ) ∈ (A− ε,A+ ε) for some γ ∈ (α, β). Take the limit α→ a, then

f(α), g(α)→ 0 so f(β)
g(β) = limα→a(

f(β)−f(α)
g(β)−g(α) ∈ [A−ε,A+ε]. Then ∀ε > 0, ∃δ > 0 such that ∀β ∈ (α, α+δ),

f(β)
g(β) ∈ [A− ve,A+ ε]. Thus lim f(β)

f(α) = A.
Case 2: lim g(x) =∞
Consider a < α < β < b, f(β)−f(α)

g(β)−g(α) as above. Then (A − ε)( g(aα)−g(β)
g(α) < f(α)−f(β)

g(α) · g(α)−g(β)
g(α) < (A +

ε)( g(α)−g(β)
g(α) ). Then as α → a, A − ε ≤ lim infα→a

f(α)−f(β)
g(α) = lim infα→a

f(α)
g(α) ≤ lim supα→a

f(a)
g(a) =

lim supα→a
f(a)−f(β)

g(α) ≤ (A+ ε). Since ε > 0 was arbitrary lim f(α)
g(α) = A.

3.3 April 7

3.3.1 Higher Derivatives

• If f : R→ R continuous, if f ′(x) exists fro all x ∈ R and f ′(x) is continuous, we say f ∈ C1(R)

• If f ′(x) is also differentiable, (f ′)′(x) = limε→0
f ′(x+ε)−f ′(x)

ε , and if f ′′(x) = f (2)(x) exists for all x and is
continuous, then f ∈ C2(R).

• If f (k)(x) exists and is continuous, f ∈ Ck(R)

• If f ∈ Ck(R) ∀k = 1, 2, 3, . . . then f ∈ C∞(R) is called a smooth function.

Example 3.3.1.

1. if f(x) = a0 +
a1

1 x+ a2

1·2x
2 + a3

1·2·3x
3 + · · ·+ an

n! x
n, then f ′(x) = annx

n−1 + an−1(n− 1)xn−1 + an−2(n−
2)xn−2 + · · ·+ a1.
f (k)(x) exists and is a polynomial. Thus, f ∈ C∞(R).

2. f(x) =

{
0 x ≤ 0

x2 x > 0
, f ∈ C1(R) but f ′′(x) =


0 x < 0

DNE x = 0

x2 x > 0

3.3.2 Taylor Approximation of Smooth Functions

Remark 3.3.2. P (x) = a0 +
a1

1 x = a2

1·2x
2 + a3

1·2·3x
3 + · · ·+ an

n! x
n

P ′(x) = a1 + a2x+ a3

1·2x
2 + · · ·+ an

(n−1)!x
n−1

P ′(0) = a1, P
′′(0) = a2, · · · , P (k)(0) = ak

There exists a nice function such that its value at the kth derivative (k = 1, . . . , n) can be specified.
Px0

(x) = P (x − x0) = a0 + a1(x − x0) +
a2

2! (x − x0)
2 + · · · + an

n! (x − x0)
n. Then, Px0

(x0) = P (0) = a1,
P ′
x0
(x0) = a1, . . . ,

nth Taylor Expansion Centered at a point:
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• Assume f : R→ R is a Ck functions. Then we can use f(x0), f
′(x0), . . . , f

(k)(x0) to cook up a polynomial.
Px0

(x) = f(x0) + f ′(x0)
x−x0

1 + f ′′(x0)
(x−x0)

2

2! + · · ·+ fn(x0)
(x−x0)

n

n! .
Note: P

(k)
x0 (x0) = f (k)(x0)

Theorem 3.3.3 (Taylor’s Theorem). Suppose f : R→ R is Cn(R) and f (n+1) exists (may not be contin-
uous)

• Let P (x) be the nth order taylor approximation of f at x0.
P (x) =

∑n
k=0 f

(k)(x0)
(x−x0)

k

k!

• Then ∀x ∈ R, ∃θ ∈ [0, 1] such that if xθ = x0(1− θ) + xθ

f(x)− Px0(x) = f (n+1)(xθ)
(x−x0)

n+1

n! .

Sanity Check: for the n = 0 case, Px0
(x) = f(x0) then ∃θ such that

f(x)− f(x0) = f ′(xθ)
(
x−x0

1

)
, ie. f ′(xθ) =

f(x)−f(x0)
x−x0

(mean value theorem)

Proof. Fix x0 and x1 ∈ R, WTS there is xθ such that f(x1)− Px0(x1) = f (n+1)(xθ) · (x−x0)
n+1

(n+1)!

• Define M ∈ R such that f(x1)− Px0(x1) = (x1 − x0)
n+1 ·M

• Let g(x) := f(x)− Px0
(x)−M(x− x0)

n+1.

Then g(x0) = f(x0)− Px0
(x0)− 0 = 0 and

g(x1) = f(x1)− Px0
(x1)−M(x1 − x0)

n+1 = 0

Moreover, g(k)(x0) = f (k)(x0)− P
(k)
x0 (x0)− 0 = 0 0 ≤ k ≤ n

Step 1: Use g(x0) = 0, g(x1) = 0 → a1 ∈ (x0, x1) such that g′(a1) = 0
Step 2: Use g′(x0) = 0, g′(a1) = 0 → a2 ∈ (x0, a1) such that g′′(a2) = 0
...
Step k: Use g(n)(x) = 0, g(n)(an) = 0 → an+1 ∈ (x0, an) such that g(n+1)(an+1) = 0
0 = g(n+1)(an+1) = f (n+1)(an+1)− 0−M(n+ 1)!

Thus, f(x1)− Px0(x1) = (x1 − x0)
n+1 f(n+1)(an+1)

(n+1)!

3.4 April 12

3.4.1 Taylor Expansions/Power Series

• Taylor expansion: Let f : R → R, C∞ (smooth) functions. Let x0 ∈ R, let N be a positive integer. The
Nth order taylor expansion of f centered at x0 is the polynomial P (x), such that{
P (k)(x0)− f (k)(x0) ∀k = 0, 1, . . . , N

and deg p ≤ N

Concretely: Px0,N (x) =
∑N

k=0 f
(k)(x0)

(x−x0)
k

k!

Remainder: f(x)− P (x) = Rx0,N (x) has the property that R
(k)
x0,N

(x0) = 0 for k = 0, 1, . . . , N .
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Definition 3.4.1 (Analytic Function). We say a smooth function us analytic at a point x0 if ∃R > 0 such
that f(x) =

∑∞
k=0 an(x− x0)

n for all |x− x0| < R. If f is analytic at x0, then an = f(n)(x0)
n! .

Remark 3.4.2. There exists a smooth function such that f(0) = 0, f ′(0) = 0, . . . , f (n)(0) = 0, . . . but f(x) is

not identically 0. f(x) =

{
0 x ≤ 0

e−1/x x > 0

Lemma 3.4.3.

lim
x→0+

e−x

xn
= 0 (*)

Proof. Let u = 1
x , then (∗) equivalent to limn→∞

e−u

(1/u)n = limn→∞
un

eu = limn→∞
n!
eu = 0 by L’Hopitals.

Thus f is smooth but not analytic at x = 0

Example 3.4.4. For f(x) = 1
1+x , if f analytic?

We need to study
∑∞

n=0
f(n)(0)

n! (x− 0)n.
f ′(x) = (−1) 1

(1+x)2 , f ′(x) = (−1)(−2) 1
(1+x)3 , f (n)(x) = (−1)···(−n)

(1+x)n+1

f (n)(0) = (−1)nn!,
∑∞

n=1(−1)nxn, a sufficient and necessary condition to converge is |x| < 1.
We know:

(1) ∀0 < r < 1,
∑∞

n=0 r
n = 1

1−r

(2) If
∑
|an| <∞,

∑
an converges

1
1+x =

∑∞
n=0

1
1+x when |x| < 1

Theorem 3.4.5. Let
∑∞

n=0 an(x−x0)
n be a power series centered at x0, then let α = lim supn→∞ |an|1/n,

R = 1
α , then if |x − x0| < R, the series converges. If |x − x0| > R, the series diverges. If |x − x0| = R, it

depends. (if α = 0, R =∞ so the series is always convergent)

Example 3.4.6.
∑

1
n2 · xn, α = lim sup( 1

n2 )
1/n, R = 1

If |x− x0| < R = 1, it converges
If |x− x0| > R = 1, it diverges
If |x− x0| = r it still converges. (Not always true, consider

∑
1
n · x

n)
Remark 3.4.7. Taylor Expression is just one way to approximate a function

• If only cares about 1 point

• Suppose you wanted a polynomial p(x) such that P (xi) = f(xi) for x1, . . . , xn ∈ R. We can use interpo-
lation.

3.4.2 Integration

What is Integration?

• Can be thought of as signed area bounded between a graph and the x-axis
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• Want to know when our method of approximating area converges (eg. when the integral is defined)

• Let f : [a, b]→ R be a bounded function (may not be continuous)

• Let P = {a = x0 ≤ x1 ≤ · · · ≤ xN = b} be a partion. Let ∆xi = xi − xi−1: the i-th segment.

• Mi = sup[xi−1:xi] f(x), mi = inf [xi−1,xi] f(x). For a partition P , U(P, f) =
∑n

i=1 mi∆xi, L(P, f) =∑N
i=1 mi∆xi

• We say a partition Q refines P if Q ⊃ P as a set of “cut” points.

Lemma 3.4.8. If Q refines P , then L(Q, f) ≥ L(P, f) and U(Q, f) ≤ U(P, f).

Definition 3.4.9. L(f)(=
∫ b

a
fdx) := supL(P, f) over all partitions.

U(f)(=
∫ b

a
fdx) := inf U(P, f) over all partitions.

• We say that f is Riemann integrable if
∫ b

a
fdx =

∫ b

a
fdx and denote the common value by

∫ b

a
fdx.

Example 3.4.10 (Non-Integrable). f(x) =

{
0 x ∈ Q ∩ [0, 1]

1 x ∈ Q ∩ [0, 1]∫ b

a
fdx = 0,

∫ b

a
fdx = 1

Theorem 3.4.11. If f : [a, b] → R is a continuous (hence bounded, and uniformly continuous) then f is
Reimann Integrable.

Proof. WTS, ∀ε > 0, ∃P partition such that
∫ b

a
fdx−

∫ b

a
fdx < ε.

Let ε̃ = ε
b−a , by uniform continuity ∃δ such that if |x− y| < δ, then |f(x)− f(y)| < ε̃. Choose a partition

P such ∆xi < δ (eg. take N = ⌈ b−a
δ ⌉) then even partition works. Then Mi = sup[xi−1, xi]f(x) = f(si) for

some si ∈ [xi−1, xi], mi = inf[xi−1, xi], f(x) = f(ti) for some ti ∈ [xi−1, xi] so |mi−mi| = |f(si)−f(ti)| < ε̃.
Thus, U(P, f)− L(P, f) =

∑
(Mi −mi)∆xi ≤

∑
ε̃∆xi = ε̃(b− a) = ε.

Corollary 3.4.12. If f(x) is piecewise continuous on [a, b] ie. discontinuous on finitely many points, then
f is integrable.
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3.5.1 Integration

Example 3.5.1. f : [0, 1]→ R, bounded by f(x) =

{
0 x = 0

sin( 1x ) x ∈ (0, 1]
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Proof. Yes, ∀ε > 0, consider the partition of the form [0, ε
4 ], some partition of [ ε4 , 1]. Let P ′ be a partition

such that U(P ′, f, [ ε4 , 1]) − L(P ′, f, [ ε4 , 1]) < ε
2 . Let P = [0, ε

4 ] ∪ P ′. Then, U(P, f, [0, 1]) − L(P, f, [0, 1]) ≤
(1− (−1))( ε4 ) + [U(P ′, f)− L(p′, f)] < ε

2 + ε
2 = ε

Proposition 3.5.2. If f : [a, b] → R is a bounded function with finitely many discontinuities, then f is
integrable.

Theorem 3.5.3. If f is a monotonic function over [a, b], then f is integrable.

Proof. WLOG f is increasing. Let ε > 0, ∀m > 0 integer, consider the partition Pn with n segments such
that each segment has length b−a

n = δ then U(Pn, f)−L(Pn, f) =
∑n

i=1(Mi−mi)δ = δ
∑

f(xi)−f(xi−1) =

δ(f(b)− f(a)). By making n large enough, (f(b)−f(a))(b−a)
n < ε.

3.5.2 Reimann - Stieltjes Integral (density included)

• Want to assign a ”density” function ρ(x) that assigned a different weight to different parts of a function -
mass of a small segment

• One general way is to replace ρ(x)dx by d(α(x)), α(x) called the “cumulative mass” function. α(x)= mass
of the interval [a, x] =

∫ x

a
ρ(x)dx.

• Want: α(x) to be monotone increasing.

Example 3.5.4. [a, b] = [0, 1]

• α(x) = x, then d(α(x)) = dx so ρ(x) = 1

•

α(x) = 0

3

1
2

1

d(α(x))“=”ρ(x) =

1
2

area = 3

• α(x) =

{
0 x ≤ 1

2

3 1
2 < x ≤ 1

then d(α(x)) = 3δ(x− 1
2 )dx

(Here δ is the function with infinite value at 1 but area of 1)

42



3.5. APRIL 14 104: Real Analysis

Example 3.5.5. Suppose we ant to compute the center of mass of two points.

0 x1 x2 1

m1 m2

cm = x1m1+x2m2

m1+m2
=

∫ 1
0
xd(α(x))∫ 1

0
d(α(x)

)

α(x) = m1

m1 +m2

x1 x2

◦
•

m1

m2

Definition 3.5.6 (Reimann - Stieltjes Integral).

• Let α : [a, b]→ R be monotone increasing.
Let f : [a, b]→ R be bounded.
Let P be a partition of [a, b], a = x0 < x1 < · · · < xn = b.
Let Ii = [xi−1, xi], ∆α(Ii) = α(xi)− α(xi−1), Mi = supIi f , mi = infIi f

• U(P, f, α) =
∑

mi∆α(Ii), L(P, f, α) =
∑

mi∆α(Ii)
U(f, α) = infP U(P, f, α), L(f, α) = supP L(P, f, α)

• if U(f, α) = L(f, α), we say f is “Reimann integrable with respect to α” denoted as f ∈ R(a).

Theorem 3.5.7. Suppose f is continuous, then
∫ b

a
fdα exists.

Theorem 3.5.8. Suppose f is montonic, α is continuous and monotonic then
∫ b

a
fdα exists.

Remark 3.5.9. If f =

{
0 x ∈ [0, 1/2)

1 x ∈ [1/2, 1]
then U(P, f, α)− L(P, f, α) = 1.

• If P has a segment containing 1/2 in the interior, U − L = (1− 0) · 1 = 1

• If P = (0, 1
2 ], (

1
2 , 1], then U − L = (1− 0) · 1 + (1− 1) · 0 = 1

Proof. Since α is continuous and monotonic on [a, b]

• For each n integer, let y0, y1, . . . , yn be an even partition of [α(a), α(b)]. Let xi be chosen such that
d(xi) = yi.
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• then α(xi)− α(xi−1) = yi − yi−1 = α(a)−α(b)
n = δ

U(P, f, α)− L(P, f, α) =

n∑
i=1

[f(xi)− f(xi−1+)] · δ

≤
m∑
i=1

[f(xi)− f(xi−1)] · δ

= (f(b)− f(a)) · δ

3.6 April 19

3.6.1 Reimann Steiltjes Itegral
Example 3.6.1.

(1) If α(x) is smooth, [a, b] = [0, 1], α(x) = 2x+ 3, f(x) = 1.∫ 1

0
f(x)α(x) = limP partition

∑
f(xi)α(∆xi) = α(1)− α(0) = 3

• If α is a smooth function (or at least differentiable), say α(x) = ρ(x), d(α(x)) = ρ(x)dx.

• Applying this to above integral,
∫ 1

0
1d(2 + 3x) =

∫ 1

0
1 · 3dx = 3

(2) If f has finitely many jumps α(x) =


x x ∈ [0, 1]

x+ 1 x ∈ (1, 2]

x+ 2 x ∈ (2, 3]

, then

∫ 3

0

1d(α(x)) =

∫ 1−

0+

1 · d(α(x)) +
∫ 2−

1+

1 · d(α(x)) +
∫ 3−

2+

1 · d(α(x)) +
∑

p:jumps of α

(α(p+)− α(p−))

= 1 + 1 + 1 + 1 + 1 = 5

Theorem 3.6.2. If f continuous on [a, b], α monotonically increasing, then
∫ b

a
fd(α(x)) exists.

Theorem 3.6.3. If f is monotonic on [a, b] and α is continuous and monotonically increasing on [a, b] then∫ b

a
fdα exists.

Theorem 3.6.4. If f : [a, b]→ R is bounded and has finitely many discontinuities. If α is continuous when
f is discontinuous, then

∫ b

a
fdα exists.

Remark 3.6.5. If α(x) = x, the usual Reimann Integral, we show this by contstructing partitions areound the
jump points of f .

Proof. Let ε > 0 be given, let M = sup |f(x)|. Let E = {c1, . . . , cn} be the points where f is discontinuous.
Step 1: Choose a small enough interval [uj , vj ] containing cj such that

∑
α(vj)−α(uj)

< ε and the intervals
are disjoint. By continuity of α at cj we can have this.
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Step 2: Let K = [a, b] \
⋃m

i=1(uj , vj), still compact.
Choose a partition P of K fine enough such that U(P, f, α)− L(P, f, α) < ε. Then P̃ = P ∪

⋃m
i=1[uj , vj ],

U(P̃ )− L(P̃ ) < ε+

m∑
i=1

(M − (−M)) ·∆αi < ε+ 2Mε = (1 + 2M)ε

By making α small enough, we can make the difference small.

Theorem 3.6.6.

• Let f : [a, b]→ R be integrable with respect to α(x), assume f([a, b]) ⊂ [m,M ]

• if φ : [m,M ]→ R continuous, then h(x) = φ(f(x)) is integrable with respect to α(x)

Example 3.6.7. α(x) = x, f(x) =some monotonic function. [a, b]
f→ [M,m]

φ=exp | |→ R if
∫ b

a
f(x)dx exist, then∫

e|f(x)|dx exists.

Proof. Fix an ε > 0 since φ is continuous on [M,m], it is uniformly continuous. Then ∃δ > 0 such that if
|y1 − y2| < δ, then |φ(y1)− φ(y2)| < ε

• Since f is integrable, ∃ a partition P of [a, b] such that U(P, f, α)− L(P, f, α) < δ2

• For interval Ii = [xi−1, xi], let Mi = supIi f , mi = infIi f . Let M∗
i supx∈Ii φ(f(x)), m

∗
i = infx∈Ii f(x)

• We say Ii is of the “short” type, i ∈ A, if Mi −mi < δ. Then M∗
i −m∗

i < ε.
Note: M∗

i −m∗
i = supx1,x2∈I |h(x1)−h(x2)| since if x1, x2 ∈ I, then f(x1), f(x2) ∈ [mi,Mi] < δ, thus

by uniform continuity of φ, |φ(f(x1))− φ(f(x2))| < ε

• Otherwise, say Ii is of the “long” type, i ∈ B, M∗
i −m∗

i ≤ sup |φ(x)| = 2K.

Also,
δ ·

∑
i∈B

δαi ≤
∑
i∈B

(Mi −mi)∆αi ≤ U(P, f, α)− L(P, f, α) ≤ δ2 so
∑
i∈B

∆αi < δ.

Thus,

U(P, h, α)− L(P, h, α) =

m∑
i=1

(M∗
i −m∗

i )∆αi

=
∑
i∈A

(M∗
i −m∗

i )∆αi +
∑
i∈B

(M∗
i −m∗

i )∆αi

≤
∑
i∈A

ε ·∆αi +
∑
i∈B

2K ·∆αi

≤ ε · (
n∑
i

∆αi) + 2K ·
∑

∆αi

= ε[α(b)− α(a)] + 2K · δ
≤ ε(α(b)− α(a) + 2K) (since we can assume WLOG δ < ε)
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Theorem 3.6.8. “
∫

is linear in both f and α”

(1) If f, g are integrable with respect to α, then

•
∫
cfdα = c

∫
fdα exists ∀c ∈ R

•
∫
f + gdα =

∫
fdα+

∫
gdα exists

(2) If f is integrable with respect to α1 and α2, then

• f is integrable with respect to c · α1) (c ≥ 0) and
∫
fd(cα1) = c

∫
fdα)

• f is integrable with respect to a1 + a2 then
∫
fd(α1 + α2) =

∫
fdα1 +

∫
fdα2

Theorem 3.6.9.

1. if f and g are integrable with respect to α then
∫
fgdα is integrable with respect to α.

2. If f is integrable, then |f | is integrable.
(follows by taking φ(x) = |x|, continuous then φ(f(x)) = |f(x)|)
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3.7.1 Properties of Integrals

Lemma 3.7.1 (Sampling Lemma). Given a partition a = x0 < x1 < . . . < xn = b, f : [a, b]→ R bounded,
α : [a, b]→ R monotone increasing.

• ∀i = 1, . . . , n pick si ∈ Ii. Then L(P, f, α) ≤
∑

f(si)∆α)i ≤ U(P, f, α)

• If U − L < ε, then for any si, ti ∈ Ii,∑
i

|f(si)− f(ti)|∆αi ≤
n∑

i=1

(Mi −mi)∆αi = U − L < ε

Theorem 3.7.2. if f is bounded, α increasing, if α′ exists and is integrable. Then

(1) f ∈ R(α)↔ fα′ ∈ R

(2) If f ∈ R(α), then
∫ b

a
fdα =

∫ a

b
fα′dx.

Proof. Need to prove
∫ b

a
fdα =

∫ b

a
fα′dx and

∫ b

a
fdα =

∫ b

a
fα′dx.

We are going to show ∀ε > 0, ∃P partition such that |U(P, f, α) − U(P, fα′)| < ε. α′ is integrable so ∃
partition P , a = x0 < . . . < xn = b such that U(P, α′)− L(P, α′) < ε.
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• By Mean Value theorem, ∃ti ∈ (xi−1, xi) such that ∆αi = α(xi)− α(xi−1) = α′(ti)∆xi.

• By Sampling lemma, ∀si ∈ [xi−1, xi],
∑
|α′(si)− α′(ti)|∆xi < ε.

Thus, ∀si ∈ I,
∑

f(si)∆αi −
∑

f(si)α
′(si)∆xi| = |

∑
f(si)α

′(ti)∆xi − f(si)α
′(si)∆xi|.

Let M = sup[a,b] |f |, then above sum

≤
∑
|f(si)||α′(ti)− α′(si)|∆xi

≤M ·
∑
|α′(fi)− α′(si)|∆xi

≤Mε

Thus, ∀si ∈ I, |
∑

f(si)∆αi −
∑

f(si)α
′(si)∆xi| < Mε so

∑
f(si)∆αi ≤

∑
f(si)α

′(si)∆xi + Mε ≤
U(P, f, α′) + Mε so taking the sup over all partitions, we get U(P, f, α) ≤ U(P, fα′) + Mε. Similarly,∑

f(si)∆αi ≤
∑

f(si)α
′(si)∆xi +Mε so U(P, fα′) ≤ U(P, f, α)+Mε. Thus, |U(P, fα′)−U(P, f, α) < ε.

For any refinement Q of P all previous statements still hold. Thus, limP |U(P, fα′) − U(P, f, α)| ≤ ε ·M
hence |U(P, fα′)− U(P, f, α)| = 0. Similarly, |L(P, fα′)− L(P, f, α)| = 0. Thus, (1), (2) hold.

Theorem 3.7.3 (Change of Variable). Let α be increasing on [a, b], f ∈ R(α), elet φ : [A,B] → [a, b]
be a strictly increasing function. Define g : [A,B] → R, g(y) = f(φ(y)). Define β : [A,B] → R by
β(y) = α(φ(y)). Then

∫ B

A
fdα =

∫ B

A
gdβ.

Theorem 3.7.4. Let f ∈ R on [a, b]. For any a ≤ x ≤ b, define F (x) =
∫ x

a
f(t)dt. Then

1. F (x) is a continuous function.

2. if f(x) is continuous at a point x0 ∈ [a, b], then F (x) is differentiable at x0, F ′(x0) = f(x0)

Example 3.7.5. Consider f(x) =

{
0 x ∈ [0, 1

2 ]

1 x ∈ ( 12 , 1]

f

0

1

1
2

◦

•

F

0
1
2

slope=1

Proof.

(1) Let M = sup[a,b] |f(x)|, for any a ≤ x ≤ y ≤ b, we have

|F (x)− F (y)| = |
∫ x

a

f(t)dt−
∫ y

a

f(t)dt| = |
∫ y

x

f(t)dt| ≤
∫ y

x

|f(t)|dt ≤
∫ y

x

Mdt = M · |y − x|

Thus, F is lipschitz continous with constant M .
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(2) If f is continuous at x0, then ∀ε > 0, ∃δ > 0 such that if |x − x0| < δ, then |f(x) − f(x0)| < ε.
Then, for any s, t ∈ [a, b] such that x0 − δ < s < x0 < t < x0 + δ, F (t)−F (s)

t−s = 1
t−s

∫ t

s
f(u)du. Also,

f(x0) =
1

t−s

∫ t

s
f(x0)du. So

∣∣∣F (t)− F (s)

t− s
− f(x0)

∣∣∣ = ∣∣∣ 1

t− s

∫ t

s

(f(u)− f(x0))du
∣∣∣

≤ 1

t− s

∫ t

s

|f(u)− f(x0)|du

≤ 1

t− s

∫ t

s

ε · du =
1

t− s
(t− s) · ε = ε

This implies limh→0
F (x0+h)−F (x0)

h = f(x0)

Theorem 3.7.6. Let F be a differentiable function on [a, b], F ′(x) = f(x). If f(x) is integrable, then∫ b

a
f(x)dx = F (b)− F (a).

Proof. Fix ε > 0,

1. ∃P partition of [a, b] such that U(P, f)− L(P, f) < ε.

2. F (b) − F (a) −
∑n

i=1 F (xi) − F (xi−1) =
∑n

i=1 F
′(si)∆xi for si ∈ (xi−1, xi) =

∑n
i=1 f(si)∆xi ∈

[L(P, f), U(P, f)]. Also,
∫ b

a
fdx ∈ [L(P, f), U(P, f)]. Thus, |F (b) − F (a) −

∫ b

a
fdx| < U − L < ε.

Since LHS is independent of ε, and ε > 0 is arbitrary, LHS=0.

Theorem 3.7.7. Suppose f and g are differentiable and their derivatives are integrable, then∫ b

a

fg′dx =

∫ b

a

fdg =

∫ b

a

d(fg)− gdf = fg|ba −
∫ b

a

gdf

Proof. Let h = f · g, then h is differentiable, h′ = f ′g + fg′ so∫ b

a

f ′gdx+

∫ b

a

fg′dx =

∫ b

a

h′dx = h(b)− h(a)
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3.8.1 Uniform Convergence with Integration

Recall:

• A sequence of functions fn : [a, b]→ R is uniformly convergent to f : [a, b]→ R if for any ε > 0, ∃N > 0
such that ∀n > N , ∀x ∈ [a, b] |fn(x)− f(x)| < ε.

• Equivalently, define d∞(fn, f) = supx∈[a,b] |fn(x)−f(x)|, then fn → f uniformly iff limn→∞ d∞(fn, f) = 0.
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• If fn → f uniformly, and {fn} is continuous, then f is cotinuous.

Q:

(1) If fn → f uniformly and fn(x) are integrable (with resepct to some weight function α(x)) is f(x) ∈ R(α)?
(yes)

(2) If fn → f uniformly and f ′n exists and is continuous, does f ′ exist? (No)

Theorem 3.8.1. If fn → f uniformly, fn ∈ R(α), then f ∈ R(α) and
∫ b

a
fdα = limn→∞

∫ b

a
fndα.

Proof. For any given ε > 0, ∃N such that sup |fn(x)−f(x)| < ε, ∀n > N . Thus ∀n > N , fn−ε < f < fn+ε.
Thus ∀P parition, we have

L(P, fn, α)−ε(α(b)−α(b)) = L(P, fn−ε, α) ≤ L(P, f, α) ≤ U(P, f, α) ≤ U(P, fn+ε, α) = U(P, fn, α)+ε(α(b)−α(a))

Fix an n > N , we can choose a partition P such that U(P, fn, α)− L(P, fn, α) < ε · (aα(b)− α(a)). Thus,

U(P, f, α)− L(P, f, α) ≤ U(P, fn, α)− L(P, fn, α) + 2ε(α(b)− α(a))

= 3 · ε(α(b)− α(a))

Thus, ∀ε > 0, ∃ parition P that makes U(P, f, α)− L(P, f, α) small enough. Hence, f ∈ R(a).

Corollary 3.8.2. Let fn(x) ∈ R(α), over [a, b], assume F (x) =
∑∞

n=1 fn(x) is a uniformly convergent
series, then ∫ b

a

F (x)dx =

∞∑
n=1

∫ b

a

fn(x)dx

Proof. Define FN (x) =
∑N

n=1 fn(x). This is a finite sum of R(α) functions, hence FN (x) ∈ R(α). By
previous theorem, since FN → F uniformly, and fn is integrable, F (x) ∈ R(α) and∫ b

a

F (x) = lim
N→∞

Fn(x)dx

= lim
N→∞

∫ b

a

( N∑
n=1

fn(x)dx)

= lim
N→∞

N∑
n=1

∫ b

a

fn(x)dx

=

∞∑
n=1

∫ b

a

fn(x)dx

3.8.2 Uniform Convergence with Differentiation
Example 3.8.3. fn → 0 uniformly , f ′

n exists and is continuous but f ′
n(x) ̸→ 0

fn(x) =
1
n sin(n2x), f ′

n(x) = n · cos(n2x)
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Despite this, we still have a theorem

Theorem 3.8.4. If fn(x) is a sequence of differentiable functions on [a, b] such that

(a) f ′
n(x)→ g(x) uniformly on [a, b]

(b) ∃x0 ∈ [a, b] such that fn(x0)→ c

Then we have

(1) ∃f such that fn → f , uniformly

(2) f is differentiable and f ′(x) = g(x) = lim f ′
n(x)

Remark 3.8.5. (b) is necessary otherwise we can have fn(x) = n, f ′
n(x) = 0 but f is not uniformly continous.

Proof.

(1) ∀ε > 0, choose N large enough such that

(1) |fn(x0)− fm(x0)| < ε
2 ∀n,m > N

(2) d∞(f ′
n, f

′
m) < ε

2 ·
1

b−a ∀n,m > N

Apply MVT to fn − fm over the interval [x, t],

|fn(x)− fm(x)− (fn(t)− fm(t))| = |f ′
n(s)− f ′

m(s)| · |x− t|

<
ε

2
· 1

b− a
(b− a)

=
ε

2

Thus, ∀x ∈ [a, b],

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0)) + (fn(x0)− fm(x0))|

<
ε

2
+

ε

2
= ε

Thus, fn is uniformly Cauchy, and henec uniformly convergent. Thus, ∃ function f such that fn → f
uniformly.

(2) To prove f(x) is differentiable in [a, b], we fix x ∈ [a, b]

• Define ϕ(t) = f(t)−f(x)
t−x Goal: Show limt→x ϕ(t) = g(x)

• Define ϕn(t) =
fn(t)−fn(x)

t−x

Sine

{
limn→∞ ϕn(t) = ϕ(t)

limt→x ϕn(t) = f ′
n(x)

, it suffices to show

lim
t→x

lim
n→∞

ϕn(t) = lim
n→∞

lim
t→x

ϕn(t) (*)
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Since by above we have, ∀ε > 0, ∃N > 0 such that ∀n,m > N

|fn(x)− fm(x)− (fn(t)− fm(t))| < ε

2(b− a)
· |t− x|

so dividing both sides by |t − x|, we see ϕn(t) − ϕm(t)| < ε
2(b−a) so ϕ uniformly convergent over

[a, b] \ {x}. Thus (∗) holds.

51


	Sequences and Series
	January 18
	Natural Numbers
	Integers
	Rational Numbers
	What's lacking in Q?

	January 20
	Rational Zeros Theorem
	Historical Construction of R from Q
	Properties (Axioms) of R
	+ , - 
	Sequences and Limits

	January 25
	Sequences and Limits
	Operations on Convergent Sequences

	January 27
	Monotone Sequences
	Lim inf and sup of a sequence

	February 1
	Cauchy Sequences
	Subsequences

	February 3
	Subsequences

	February 8
	liminf and limsup (cont.)
	Series

	February 10
	Series
	Summation by Parts
	Power Series


	Topology and Metric Spaces
	February 22
	Topology and Metric Spaces

	February 24
	Metric Spaces
	Topology

	March 1
	Metric Spaces
	Continuous functions

	March 3
	Compact Sets

	March 8
	More Topology
	Completness

	March 10
	Connectedness

	March 15
	Completeness and Compactness are Preserved by Continuous Maps
	Uniformly Continuous Maps Between Metric Spaces
	Discontinuity

	March 17
	Sequences and Series of Functions
	Uniform Convergence


	Differentiation and Integration
	March 29
	Differentiation

	March 31
	Differentiation
	L'Hopital's Rule

	April 7
	Higher Derivatives
	Taylor Approximation of Smooth Functions

	April 12
	Taylor Expansions/Power Series
	Integration

	April 14
	Integration
	Reimann - Stieltjes Integral (density included)

	April 19
	Reimann Steiltjes Itegral

	April 21
	Properties of Integrals

	April 26
	Uniform Convergence with Integration
	Uniform Convergence with Differentiation



