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1 1/18/2022

1.1 Natural Numbers

• N = {0, 1, 2, 3, . . . , }

• successor construction: 2 is the successor of 1, 3 is the successor of 2. So
starting from 0 one can reach all rational numbers (for any given natural
number, it can be reached from 0 in finitely many steps)

• Peano Axioms for natural Numbers (see Tao 1)

– Mathematical Induction Property (Axiom 5): let n be a natural num-
ber and let P (n) be a statement depending on n, if the following two
conditions hold:

∗ P (0) is true

∗ If P (k) is true, then P (k + 1) is true

then P (n) is true for all n ∈ N

• operations allowed for N : +,×

– if n,m ∈ N, then n+m ∈ N and n×m ∈ N
– −, / are not always defined

1.2 Integers

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}

• allowed operations: +,−,× (formally, Z is a ring)

1.3 Rational Numbers

• Q = {mn |m,n ∈ Z, n ̸= 0}

• We have all four operations +,−, ·, /

• Q is now a field

Theorem 1.1 (Field Axioms(Ross 3)).
Addition:

• a+ (b+ c) = (a+ b) + c for all a, b, c

• a+ b = b+ a for all a, b

• a+ 0 = a for all a

• For each a, there is an element −a such that a+ (−a) = 0

Multiplication:
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• a(bc) = (ab) = c for all a, b, c

• ab = ba for all a, b

• a · 1 = a for all a

• For each a ̸= 0, there is an element a−1 such that aa−1 = 1

Distributive Law:

• a(b+ c) = ab+ ac for all a, b, c

Theorem 1.2 (Useful Properties of Fields(Ross 3)).

• a+ c = b+ c implies a = b

• (−a)b = −ab for all a, b

• (−a)(−b) = ab for all a, b

• ac = bc and c ̸= 0 imply a = b

• ab = 0 implies either a = 0 or b = 0

for a, b, c ∈ Q
Q is an ordered field, there is a “relation” ≤
Definition 1.3. A relation S is a subset of Q×Q, if (a, b) ∈ S we say “a and
b have relation S” or “aSb”

The relation “≤” has 3 properties:

• if a ≤ b and b ≤ a, then a = b

• if a ≤ b and b ≤ c, then a ≤ c (transitivity)

• for any a, b ∈ Q, at least one of the following is true: a ≤ b or b ≤ a

Since Q is an ordered field, the field structure (+,−, ·, /) is compatible with (≤)

• If a ≤ b, then a+ c ≤ b+ c for all c ∈ Q

• If a ≥ 0 and b ≥ 0, then ab ≥ 0

Theorem 1.4 (Useful Properties of Ordered Fields(Ross 3)).

• If a ≤ b, then −b ≤ a

• If a ≤ b and c ≥ 0, then ac ≤ bc

• If a ≤ b and c ≤ 0, then bc ≤ ac

• 0 ≤ a2 for all a

• 0 < 1

• If 0 < a, then 0 < a−1

• If 0 < a < b, then 0 < b−1 < a−1

for a, b, c ∈ Q
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1.4 What’s lacking in Q?

1. There are certain gaps in Q. For example, the equation x2 − 2 cannot be
solved in Q

2. For a bounded set in Q, E, it may not have a “most economical” or
“sharpest” upper bound in Q
Ex: E = {x ∈ Q|x2 < 2} there is no least upper bound(sup) of E in Q
(we want to take

√
2 as sup(E) but

√
2 is not a rational number)

2 1/20/2022

2.1 Rational Zeros Theorem

Definition 2.1. An integer coefficient polynomial in x is of the form: cnx
2 +

cn−1x
n−1 + · · ·+ c1x+ c0 c1, . . . , cn ∈ Z, cn ̸= 0.

1. A Z-coefficient equation is f(x) = 0

2. One can ask: when does a Z−coefficient equation have roots in Q

Fact 2.2. A degree n polynomial has n roots in C, ie. ∃z1, . . . , zn ∈ C such
that f(x) = cn(x− z1) · · · (x− zn)

Theorem 2.3. If a rational number r satisfies the equation xnx
n + · · ·+ c1x+

c0 = 0, with ci ∈ Z, cn, c0 ̸= 0 and r = c
d (where c and d are coprime integers).

Then c divides c0 and d divides cn.

Proof. Plug in x = c
d into the equation to get cn(

c
d )

n+cn−1(
c
d )

n−1+· · ·+c1(
c
d )+

cn = 0 multiply both sides by dn to get cnc
n+cn−1c

n−1d+· · ·+c1cd
n−1+c0d = 0

Since cnc
n = −d(cn−1c

n−1 + · · · + c1d
n−1), d divides cnc

n. Since d and c are
coprimes, d does not divide cn so d has to divide cn
Also, since c0d

n = −c(cncn−1 + cn−1c
n−2d+ · · ·+ c1d

n−1) by similar reasoning
c|c0

Using the rational zeros theorem, we can answer questions about rationality

Example 2.4. Show 3
√
6 is irrational.

3
√
6 is rational↔ x3−6 has rational roots. The only possible rational roots such

that r = c
d need c|6, d|1. Taking d = 1, c = ±1,±2,±3,±6. Once can check all

of these do not satisfy the equation so there is no solution in Q

2.2 Historical Construction of R from Q
1. Dedekind Cut: (Q: if

√
2 ̸∈ Q, how can we save the information of

√
2?)

A: the subset of Q C√
2 = {r ∈ Q|r > x}

For every x ∈ R, consider Cx = {x ∈ Q|r < x}. We can define addition,
multiplication on the subsets Cx
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2. Sequences in Q
ie. Use a sequence of rational numbers to “aproximate” a real number
eg.
√
2 can be approximated by 1, 1.4, 1.41.1.414, . . .

Problems:

(a) Given any real number, how do you get such a sequence?

(b) How do you determine if 2 different sequences approximate the same
real number
(eg. 1 ← 1.1, 1.01, 1.001, . . . or 1 ← 0.9, 0.99, 0.999, . . . or 1 ←
1, 1, 1, . . .) all have the same limit

2.3 Properties (Axioms) of R
Given the existence of R, we have certain properties (axoims) of R

Definition 2.5. A subset of R is said to be bounded above if ∃a ∈ R such that
for any x ∈ E, we have x ≤ a

Theorem 2.6 (Completeness Axiom of R). Given a set E ⊂ R, bounded above,
there exists a unique r such that:

1. r is an upper bound of E

2. for any other upper bound of α, we have r ≤ α

r is called the least upper bound of E, r = supE
(ie. supE is well defined for subsets that are bounded above)

Example 2.7. sup([0, 1]) = 1, sup((0, 1)) = 1, sup({r ∈ Q|r2 < 2}) =
√
2

Theorem 2.8 (Archimedean Property). For any r ∈ R, r > 0 ∃n ∈ N such
that nr > 1 or equivalently, r > 1

n

2.4 +∞,−∞
• With these symbols, we can say sup(N) = +∞↔ N is not bounded above

• +∞,−∞ are not real numbers. They have part of the defined operations
R has
ie. 3 ·+∞ = +∞, (−3) ·+∞ = −∞ but (+∞)+(−∞) =NAN, 0 ·(+∞) =
undefined.

2.5 Sequences and Limits

• A sequence of real numbers is: a0, a1, a2, . . . denoted (an)
∞
n=0 or shortened

(an)

• We care about the “eventual behavior” of a sequence

Definition 2.9. A sequence (an) converges to a ∈ R if ∀ε > 0, ∃N ∈ N such
that ∀n > N, |an − a| < ε.
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3 1/25/2022

3.1 Sequences and Limits

Definition 3.1. A sequence (an) is bounded if ∃M > 0, |an| ≤M for all n.

Theorem 3.2. Convergent sequences are bounded.

Proof. Let (an) be a convergent sequence that converges to a.
Let ε = 1, then by definition of convergence, there exists N > 0 such that
∀n > n

|an − a| < 1 ⇐⇒ a− 1 < an < a+ 1 ∀n > N.

LetM = max{a1, a2, . . . , aN},M2 = max{|a−1|, |a+1|} andM = max{M1,M2}.
Thus if n ≤ N we have |an| ≤< M , and if n ≥ N we have |an| ≤M2 so

∀n, |an| ≤ max{M1,M2} = M

Remark 3.3. One can deal with the first few terms of a sequence easily, it is
the “tail of the sequence” that matters.

3.2 Operations on Convergent Sequences

Theorem 3.4. c ∈ R, ∀ convergent sequences an → a, we have c · an → c · a.

Proof. If c = 0, the result is obvious.
If c ̸= 0, we want to show for all ε > 0, ∃N such that ∀n > N

|c · an − c · a| < ε ⇐⇒ |c| · |an − a| ≤ ε ⇐⇒ |an − a| ≤ ε
|c| .

Now let ε′ = ε
|c| . By definition of an → a, we have N > 0 such that |an − a| ≤

ε′ = ε
|c| . This gives the desired N .

Theorem 3.5. If an → a, bn → b, then an + bn → a+ b.

Proof. We want to show ∀ε > 0, ∃N such that ∀n > N

|an + bn − (a+ b)| ≤ ε ⇐⇒ |(an − a) + (bn − b)| ≤ ε. (*)

|(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| by the triangle inequality so

(∗)← |an − a| < ε (**)

←

{
|an − a| ≤ ε/2

|bn − b| ≤ ε/2
(***)

By the convergence of an and bn, ∃N1, N2 such that ∀n > N1, |an−a| ≤ ε
2 , and

∀n > N , |bn − b| ≤ ε
2 . Take N = max{N1, N2}, then ∀n > N (∗ ∗ ∗) is satisfied

hence (∗) is satsified.
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Corollary 3.6. If an → a, bn → b, then an − bn → a− b.

Proof. Let cn = (−1) · bn. Then cn → −b so an + cn → a− b.

Theorem 3.7. If an → a, bn → b, then an · bn → ab.

Proof. Want to show: ∀ε > 0, ∃N such that ∀n > N

|an − ab| ≤ ε. (*)

Since an is convergent, it is bounded by some M > 0 which yields the following
inequalities.

|anbn − ab| = |an(b− b) + anb− ab|
= |an(bn − b) + (an − a)b|
≤ |an(bn − b)|+ |(an − a)b|
≤ |an| · |bn − b|+ |an − a| · |b|
≤M |bn − b|+ |b||an − a|

So

(∗)←

{
M |bn − b| ≤ ε/2

|b||an − a| ≤ ε/2
. (**)

Since an → a, let ε1 = ε
2|b| , then ∃N such that ∀n > N ,

|an − a| < ε1 ⇐⇒ |b||an − a| ≤ ε

2
.

Also, since bn → b, let ε2 = ε
2M , then ∃N such that ∀n > N ,

|bn − b| ≤ ε2 ⇐⇒ M |bn − b| ≤ ε

2
.

. Let N = max{N1, N2}, then for n > N , (∗∗) holds so (∗) holds.

Theorem 3.8. If an → a, and an ̸= 0∀n and a ̸= 0, then 1
an
→ 1

a .

Remark 3.9. an ̸= 0 does not imply a ̸= 0. For example consider the sequence
an = 1

n

Proof. Want to show ∀ε > 0, ∃N such that ∀n > N ,

|1
a
− 1

an
| ≤ ε. (*)

Observe that

|1
a
− 1

an
| = |a− an

a · an
| = |an − a|
|a| · |an|

.

Claim: ∃c > 0 such that |an| > c∀n.
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Proof. Let ε′ = ε
2 , then ∃N

′ such that ∀n ≥ N ′

|an − a| ≤ ε′ =
ε

2
⇐⇒ −|a|/2 < an − a < |a|/2

⇐⇒ a+
|a|
2

< an < a+
|a|
2
→ |an| ≥

|a|
2

Let c1 = min{|a1|, |a2|, . . . , |aN ′ |} ≥ 0. Let c = min{c1, |a|/2}.

Thus, |an−a|
|a|·|an| ≤

|an−a|
|a|·c . Hence

(∗)← |an · a|
|a| · c

≤ ε (**)

and (∗∗) can be satisfied since an → a.

Corollary 3.10. If an → a, bn → b and bn ̸= 0, b ̸= 0, then an

bn
→ a

b .

Proof. an

bn
= an · 1

bn
. Since by Thm 8, 1

bn
→ 1

b , an · a
bn
→ a · 1b by Thm 7.

Theorem 3.11 (Useful Results).

(1) limn→∞
1
np = 0 ∀p > 0.

(2) limn→∞ an = 0 ∀|a| < 1.

(3) limn→∞ n1/n = 1.

(4) limn→∞ a1/n = 1 for all n > 0.

Proof of (3). Let Sn = n1/n − 1, then sn ≥ 0 ∀n positive integers.

1 + sn = n1/n ⇐⇒ (1 + sn)
n = n.

Using to binomial theorem we see

1 + nsn +
n(n− 1)

2
s2n + · · · = n

→ n(n− 1)

2
s2n ≤ n

→ s2n ≤
2

n− 1

Thus, sn → 0 as n→∞.
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4 1/27/2022

4.1 Monotone Sequences

Definition 4.1 (lim sn = +∞). A sequence (sn) is said to “diverge to +∞”, if
for every M ∈ R there exists N such that sn > M ∀n > N .

Definition 4.2 (Values of a Sequence). If (sn)
∞)n=1 is a sequence, then {sn}∞n=1,

the subset of R consisting of the values of (sn), is called the value set.

Example 4.3.

• (sn) = 1, 2, 1, 2, . . . {sn}∞n=1 = {1, 2}

• (sn) = 1, 1, 2, 2, 1, 1, 2, 2, . . . {sn}∞n=1 = {1, 2}

• (sn) = 1, 2, 3, 4, . . . {sn}∞n=1 = {1, 2, 3, 4, . . .}

Definition 4.4 (Monotone Sequences).

• A sequence (sn) is monotonically increasing if an+1 ≥ an ∀n

• A sequence (sn) is monotonically increasing if an+1 ≤ an ∀n

Example 4.5.

• (an) = a, a constant sequence is monotonically increasing and decreasing

• (an) = 1, 2, 3, . . ., is increasing

• (an) = − 1
n , is increasing and bounded above (also below)

Theorem 4.6. A bounded monotone sequence is convergent.

Proof. (We will show for increasing, the proof for decreasing is similar.)
Let (an) be a bounded monotone increasing sequence and let γ = sup{an}∞n=1

(= sup an). Then an ≤ γ ∀n and for any ε > 0, ∃an0
such that an0

> γ − ε.
Thus for every ε > 0, let N = n0(as defined above), then for every n > N , we
have γ − ε < an0

≤ an ≤ γ thus |an − γ| < ε then lim an = γ

Example 4.7 (Recursive Definition of Sequences). Let sn be any positive num-
ber and let

sn+1 =
s2n + 5

2sn
∀n ≥ 1. (*)

We want to show lim sn exists and find it.

Remark 4.8. If we assume lim sn exists, call it s, then s satisfies

s =
s2 + 5

2s
(**)

since we can apply limn→∞ to both sides.
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(∗∗)→ 2s2 = s2 + 5→ s = ±
√
5. Since sn is a positive sequence lim sn can

only be ≥ 0, thus s can only by
√
5

• To show lim sn exists, we can only need to show sn is bounded and mono-
tone

• Here is a trick: let f(x) = x2+5
2x , then sn+1 = f(sn)

– Consider the graph of f , ie. y = f(x)

– Consider the diagonal, ie. y = x

s1
s2

t1

t2

• If s1 >
√
5, we should try to prove

√
5 < · · · s3 < s2 < s1

• If 0 < s1 <
√
5, then we show that s2 >

√
5, we can consider (sn)

∞
n=1,

which reduces to case 1

• If (sn) is unbounded and increasing, then lim sn = +∞

• If (sn) is unbounded and decreasing, then lim sn = −∞

4.2 Lim inf and sup of a sequence

Definition 4.9 (limsup). Let (sn)
∞
n=1 be a sequence,

lim sup
n→∞

sn := lim
n→∞

(sup{sn}∞m=1)

• (sn)
∞
n=N is called a “tail of the sequence (sn)” starting at N

• AN = sup{sn}∞n=N = supn≥N sn

10



• lim sup sn = limAn = +∞

Example 4.10.

(1) (sn) = 1, 2, 3, 4, 5, . . .
A1 = supn≥1 sn = +∞, A2 = supn≥2 sn = +∞
lim sup sn = limAn = +∞

(2) (sn) = 1− 1
n

A1 = supn≥1 sn = 1, A2 = supn≥2 sn = 1
lim sup sn = limAn = 1 (for any monotonic increasing sequence lim sup sn =
sup s1 = A1)

(3) sn = 1 + 1
n (sn) = 2, 1 + 1

2 , 1 +
1
3 , . . .

A1 = sup{2, 1 + 1
2 , 1 +

1
3 , . . .} = 2

A2 = sup{1 + 1
2 , 1 +

1
3 , 1 +

1
4 , . . .} = 1 + 1

2
An = sn so lim sup sn = lim(1 + 1

n ) = 1

Lemma 4.11. An = supm≥n sm forms a decreasing sequence.

Proof. Since {sn}∞m=n ⊃ {sn}∞m=n+1, sup{sn}∞m=n ≥ sup{sm}∞m=n+1, ie. An ≥
An+1

Corollary 4.12. limn→∞ An = inf An
∞
n=1 (= infn An)

Example 4.13. sn = (−1)n · 1n (sn) = (−1, 1
2 ,−

1
3 , . . .)

A1 = supn≥1 sn = s2 = 1
2 , A2 = 1

2 , A3 = 1
4 , so

(An) =
1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
6 ,

1
6 , . . . lim sup sn = limAn = 0

An is like the “upper envelope.”

5 2/1/2022

5.1 Cauchy Sequences

Definition 5.1 (Cauchy Sequence). A sequence (an) is cauchy if ∀ε > 0, ∃N >
0, such that ∀n,m > N we have |an − am| < ε.

Lemma 5.2. If (an) converges to a, then (an) is cauchy.

Proof. Let ε1 = ε
2 , then since an → a, ∃N1 > 0 such that ∀n,m < N , |an−a| <

ε1 and |am − a| < ε1. Thus,

|an − am| = |(an − a)− (am − a)| ≤ |an − a|+ |am − a| < ε1 + ε1 = ε.

Remark 5.3. This is also for true in Q

Lemma 5.4 (Squeze Lemma). Given sequences (An), (Bn), (an) such thatAn ≥
an ≥ Bn ∀n, if An → a, Bn → a, then an → a.

11



Proof. ∀ε > 0, we have N > 0 such that ∀n > N , |An−a| < ε and |Bn−a| < ε.
Then an ≤ An < a+ ε and an ≥ Bn > a− ε so

a− ε < an < a+ ε↔ |an − a| < ε.

Lemma 5.5. Cauchy Sequences are bounded.

Proof. Let ε = 1. Then ∃N > 0 such that ∀n,m > N , |sn − sm| < ε. Consider
the term sN+1. Observe that ∀n < N , |sN+1−sm| < 1 so ∀n < N , |sn| < sN+1+
1. Taking M = max{|s1|, |s2|, . . . , |sN+1|, |sN+1|+ 1}, we see that M ≥ |sn| for
all n.

Theorem 5.6. If (an) is cauchy in R, then (an) is convergent.

Proof. Since (an) is cauchy, (an) is bounded so lim sup an and lim inf an exist.
Let An = supm≥n am, Bn = infm≥n am, then An ≥ an ≥ Bn. Let A = limAn

and Bn limBn. By the Squeeze Lemma, we only need to show A = B. Since
An ≥ Bn, we know A ≥ B, hence we only have to rule out A < B.

Assume A < B. Let ε = (A−B)
3 . By Cauchy criterion ∃N > 0 such that

∀n,m > N , |an − am| < ε. By the previous lemma, since A = lim sup an and
B = lim inf an, given ε,N above, we have n > N such that |an − A| < ε and
m > N such that |am −B| ≤ ε. Then

|A−B| ≤ |A− an|+ |an − am|+ |am −B| < ε+ ε+ ε = A−B = |A−B|,

which is a contradiction.

5.2 Subsequences

Let (an) be a sequence. If we pick an infinite subset of N, n1 < n2 < n3 < · · · ,
then we can have a new sequence bk = ank

, (bk) = an1
, an2

, an3
, . . ..

Example 5.7. For (an) = (−1)n, a1 = −1, a2 = +1, . . . does not converge
but subsequence consisting of odd terms converges to −1 and subsequence con-
sisting of even terms converges to 1.

Definition 5.8. Let (an) be a sequence. Then a ∈ R is a subsequential limit if
there exists (ank

) such that limk→∞ ak = a.

Theorem 5.9. Let (an) be a sequence. Then:

(1) ais a subsequential limit of (an)

(2) ↔ ∀ε > 0, ∀N > 0, ∃n > N such that |an − a| ≤ ε

(3) ↔ ∀ε > 0, the set Aε = {n||an − a| < ε} is infinite

12



Proof. 2↔ 3) follows from definitions.
1 → 3) If ank

→ a, then for a given ε > 0, ∃K > 0 such that |ank
− a| ≤ ε.

Thus {nk|k > K} ⊂ Aε. So Aε is infinite.
3→ 1) Cantor’s Diagonal Trick: Let A 1

k
= {n||an − a| ≤ 1

k}.
A1 : n1,1 < n1,2 < n1,3 < · · ·
A2 : n2,1 < n2,2 < n2,3 < · · ·
Observe that A 1

k+1
⊂ A 1

k
, thus nk,i ≤ nk+1,i.

Claim: (ank,k
)→ a.

First observe that this is a valid subsequence since ank,k
< ank,k+1

≤ ank+1,k+1

for all k. Also for ε > 0, ∃K such that 1
K < ε so for all k > K, |an−a| < 1

K < ε
so it converges to a.

6 2/3/2022

6.1 Subsequences

Proposition 6.1. If sn → s, then all subsequences of sn converge to s.

Proof. Any tail of a subsequence belongs to a tail of the original sequence to
they must converge to the same limit.

Proposition 6.2. Any sequence has a monotone subsequence.

Proof. We say that sn is a dominant term if sn > sm for all m > n.
Case 1: Suppose there are infinitely many dominant terms. Then the subse-
quence if dominant terms forms a monotone decreasing sequence.
Case 2: There are finitely many dominant terms. Then we can choose N > 0
such that for all n > N , sn is not dominant. We can construct an increasing
sequence as follows :

• pick n1 > N , and get sn1

• pick n2 > n1 such that sn2 ≥ sn1 . This is posible since otherwise sn1

would be a dominant term.

• continue in this fashion to achieve a sequence such that sn1
≤ sn2

≤ sn3
≤

· · ·

Theorem 6.3 (Bolzano - Weierstrass). Every bounded sequence has a conver-
gent subsequence.

Proof 1. Assume WLOG, that the sequence is bounded in [0, 1]. We may write
[0, 1] = [0, 1

2 ] ∪ [ 12 , 1]. Then (sn) must visit one of the intervals infinitely many
times. We can then subdivide that interval and continue in a similar fashion to
obtain a decreasing sequence of closed intervals I0 = [0, 1] ⊃ I1 ⊃ I2 ⊃ · · · with
|In| = 2−n. Let An = {n|n ∈ In}. Then Ak ⊂ Ak−1. The sequence (ak,k)k is a
cauchy sequence since ∀ε > 0, ∃k0 such that 1

2k0
≤ ε for kn > k0.
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Proof 2. Every sequence contains a monotone sequence so since the sequence is
bounded the given monotone sequence converges.

Proposition 6.4. Let (sn) be a sequence, the lim sup sn is a subsequential
limit.

Proof. We know that for ε > 0, N > 0, ∃n0 > N such that |sn0
−lim sup sn| < ε.

Thus by the alternative of a subsequential limit, lim sup sn is a subsequential
limit.

Remark 6.5. This sequence can be refined to a montone sequence by consid-
ering the monotone subsequence of the generated sequence.

Theorem 6.6. Let (sn) be a bounded sequence and let S by the set of subse-
quential limits of (sn). Then:

(a) supS = lim sup sn, inf S = lim inf sn and lim sup sn, lim inf sn ∈ S.

(b) lim sn exists iff S contains only one element.

(c) S is closed under taking limits. ie. if there is a convergent sequence tn → t
with tn ∈ S, we will have t ∈ S.

Proof.

1. For t ∈ S suppose snk
→ t. Then lim sup snk

= lim inf snk
. Since

{snk
: k > N} ⊆ {sn : n > N}, lim inf sn ≤ lim inf snk

= lim sup snk
≤

lim sup sn. Thus, lim inf sn ≤ inf S ≤ supS ≤ lim sup sn. Since by the
previous proposition lim sup sn, lim inf sn ∈ S, supS = lim sup sn and
inf S = lim inf sn.

2. This follows since sn → s iff lim sup sn = lim inf sn.

3. We will show t is a subsequential limit of (sn). We want to show, ∀ε > 0,
∀N > 0, ∃n0 > N such that |sn0

− t| ≤ ε.
Since tn → t, ∃N such that ∀n > N , |tn − t| ≤ ε

2 . For n1 < N , there are
infinitely many sn with |sn−tn1

| ≤ ε
2 . Thus, ∃n0 such that |sn0

−tn1
| ≤ ε

2 .
Thus, |sn0

− t| ≤ |sn0
− tn1

|+ |tn1
− t| < ε

2 + ε
2 = ε
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