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1 1/18/2022

1.1 Natural Numbers
e N=1{0,1,2,3,...,}

e successor construction: 2 is the successor of 1, 3 is the successor of 2. So
starting from 0 one can reach all rational numbers (for any given natural
number, it can be reached from 0 in finitely many steps)

e Peano Axioms for natural Numbers (see Tao 1)

— Mathematical Induction Property (Axiom 5): let n be a natural num-
ber and let P(n) be a statement depending on n, if the following two
conditions hold:

x P(0) is true
x If P(k) is true, then P(k + 1) is true
then P(n) is true for all n € N

e operations allowed for N : 4 x

—ifn,meN thenn+meNandnxmeN

— —,/ are not always defined

1.2 Integers
e Z={..,-2,-1,01,2..}

e allowed operations: +,—, x  (formally, Z is a ring)

1.3 Rational Numbers
e Q={%|m,n € Z,n # 0}
e We have all four operations +, —, -, /

e Q is now a field

Theorem 1.1 (Field Axioms(Ross 3)).
Addition:

e a+ (b+c)=(a+b)+cforalla,bc

e a+b=>b+a forall a,b

ea+0=aforalla

e For each a, there is an element —a such that a + (—a) =0

Multiplication:



e a(bc) = (ab) = c for all a,b, ¢
e ab = ba for all a,b
e a-1=aforalla
e For each a # 0, there is an element a~! such that aa™! =1
Distributive Law:
e a(b+c¢) =ab+ ac for all a,b,c
Theorem 1.2 (Useful Properties of Fields(Ross 3)).
e a+c=>b+cimpliesa =5
e (—a)b=—ab for all a,b
e (—a)(—=b) = ab for all a,b
e ac=bcand ¢ # 0 imply a =b
e ab = 0 implies either a =0 0or b =0
for a,b,c € Q
Q is an ordered field, there is a “relation” <

Definition 1.3. A relation S is a subset of Q x Q, if (a,b) € S we say “a and
b have relation S” or “aSb”

The relation “<” has 3 properties:
e ifa<band b<a,thena=10
e ifa<band b<c then a <c (transitivity)
e for any a,b € QQ, at least one of the following is true: a < bor b<a
Since Q is an ordered field, the field structure (+, —, -, /) is compatible with (<)
e [fa<b thena+c<b+cforallceQ
e Ifa>0and b >0, then ab> 0
Theorem 1.4 (Useful Properties of Ordered Fields(Ross 3)).
e If a <b, then —b<a
e If a <bandc>0, then ac < be
e If a <band c <0, then bc < ac
e 0<a?foralla
e 0«1
e If0 < a, then 0 < a™!

e If0<a<b then0<b !t <qg?!
for a,b,c € Q



1.4 What’s lacking in Q7

1. There are certain gaps in Q. For example, the equation z? — 2 cannot be
solved in Q

2. For a bounded set in Q, E, it may not have a “most economical” or
“sharpest” upper bound in Q
Ex: E = {z € Q|z? < 2} there is no least upper bound(sup) of E in Q
(we want to take v/2 as sup(E) but v/2 is not a rational number)

2 1/20/2022

2.1 Rational Zeros Theorem

Definition 2.1. An integer coefficient polynomial in x is of the form: ¢,2? +
Ch1Z" '+ ez Feger,... cn €7, cp # 0.

1. A Z-coefficient equation is f(z) =0

2. One can ask: when does a Z—coefficient equation have roots in Q

Fact 2.2. A degree n polynomial has n roots in C, ie. Jz1,...,z, € C such
that f(x) =cp(z —21) - (x — 2p)

Theorem 2.3. If a rational number r satisfies the equation x,x" + -4+ c1x +
co = 0, with ¢; € Z,c,,co # 0 and r = §(where ¢ and d are coprime integers).
Then ¢ divides ¢ and d divides c¢,,.

Proof. Plugin z = < into the equation to get ¢, (5)"+cp_1(5)" =+ +c1(5)+
¢n = 0 multiply both sides by d™ to get ¢, c”+c—1¢” 1d+- - +cied” 4cod =0

Since c,c" = —d(c,_1c" L+ - + c1d™ 1), d divides ¢,c™. Since d and c are
coprimes, d does not divide ¢" so d has to divide ¢,

Also, since cpd™ = —c(c 1 + ¢y 1¢"2d + -+ + c1d" 1) by similar reasoning
cleo O

Using the rational zeros theorem, we can answer questions about rationality

Example 2.4. Show /6 is irrational.

/6 is rational <> x — 6 has rational roots. The only possible rational roots such
that » = ¢ need c[6,d|1. Taking d = 1, ¢ = +1,42,43,46. Once can check all
of these do not satisfy the equation so there is no solution in Q

2.2 Historical Construction of R from Q

1. Dedekind Cut: (Q: if V2 ¢ Q, how can we save the information of \/57)
A: the subset of Q C 5 = {r € Q|r > x}
For every x € R, consider C, = {z € Q|r < z}. We can define addition,
multiplication on the subsets C,



2. Sequences in Q
ie. Use a sequence of rational numbers to “aproximate” a real number
eg. \/2 can be approximated by 1,1.4,1.41.1.414, . ..
Problems:

(a) Given any real number, how do you get such a sequence?

(b) How do you determine if 2 different sequences approximate the same

real number
(eg. 1 + 1.1,1.01,1.001,... or 1 <« 0.9,0.99,0.999,... or 1 «
1,1,1,...) all have the same limit

2.3 Properties (Axioms) of R
Given the existence of R, we have certain properties (axoims) of R

Definition 2.5. A subset of R is said to be bounded above if da € R such that
for any x € F, we have x < a

Theorem 2.6 (Completeness Axiom of R). Given a set E C R, bounded above,
there exists a unique r such that:

1. r is an upper bound of F
2. for any other upper bound of «, we have r < «

r is called the least upper bound of F, r =sup F
(ie. sup E is well defined for subsets that are bounded above)

Example 2.7. sup([0,1]) = 1, sup((0,1)) = 1, sup({r € Qr? < 2}) =2

Theorem 2.8 (Archimedean Property). For any » € R, » > 0 In € N such
that nr > 1 or equivalently, r > %

24 Ho00,—0
e With these symbols, we can say sup(N) = +00 + N is not bounded above

e +00, —00 are not real numbers. They have part of the defined operations
R has
ie. 3-4+00 = 400, (—3) 400 = —oo but (+00) + (—o00) =NAN, 0- (+00) =
undefined.

2.5 Sequences and Limits

e A sequence of real numbers is: ag, ay, ag, . .. denoted (a,, )22, or shortened
(an)

e We care about the “eventual behavior” of a sequence

Definition 2.9. A sequence (a,) converges to a € R if Ve > 0, IN € N such
that Vn > N, |a, —a| <e.



3 1/25/2022

3.1 Sequences and Limits
Definition 3.1. A sequence (ay) is bounded if IM > 0, |a,| < M for all n.
Theorem 3.2. Convergent sequences are bounded.

Proof. Let (a,) be a convergent sequence that converges to a.
Let ¢ = 1, then by definition of convergence, there exists N > 0 such that
Vn >n

lap, —a| <1 <= a—1<a,<a+1 ¥n>N.

Let M = max{ay, as,...,an}, My = max{|a—1|, |a+1|} and M = max{My, Ms}.
Thus if n < N we have |a,| << M, and if n > N we have |a,| < M3 so

Vn, lan| < max{M;, Ms} = M
O
Remark 3.3. One can deal with the first few terms of a sequence easily, it is

the “tail of the sequence” that matters.

3.2 Operations on Convergent Sequences
Theorem 3.4. ¢ € R, V convergent sequences a,, — a, we have c-a,, — ¢ a.

Proof. If ¢ = 0, the result is obvious.
If ¢ # 0, we want to show for all ¢ > 0, 3N such that Vn > N

[cran —c-al <e < |c]-|an —a| < <= fan —a] < 3.

Now let &’ = rer- By definition of a, — a, we have N > 0 such that lan, —al <
¢’ = &. This gives the desired N. O

c|”
Theorem 3.5. If a,, — a, b, — b, then a,, + b, — a +b.
Proof. We want to show Ve > 0, 3N such that Vn > N
|an + b, — (a+ )| <e <= |(an —a)+ (b, —b)| <e. *)

[(an —a) + (b, — b)| < |an — a| + |by, — b] by the triangle inequality so

(%) ¢ lan —a| <e (**)
lan, —al <e/2 o
- {|bn—b| <e/2 9

By the convergence of a,, and by, N1, N3 such that Vn > Ny, |a, —a| < 5, and
Vn > N, |b, —b] < 5. Take N = max{Ny, Na}, then Vn > N ( * *) is satisfied
hence (x) is satsified. O



Corollary 3.6. If a,, — a, b, — b, then a,, — b,, — a — .
Proof. Let ¢, = (—1) - b,. Then ¢,, - —bso a, + ¢, — a—b. O
Theorem 3.7. If a,, — a, b, — b, then a,, - b,, — ab.

Proof. Want to show: Ve > 0, 3N such that Vn > N
|an, — ab| <e. (*)

Since a,, is convergent, it is bounded by some M > 0 which yields the following
inequalities.

|anb, — ab| = |an (b — b) + anb — ab)
= |an (b — b) + (an — a)b|
< Jan(bn — )| + |(an — a8
< lan| - |bn — bl + |an — al - [b]
< M|by, — b + |b]|an — al

) {M|bn bl <e/2

X ) $—
O bllan — af < /2

Since a,, — a, let 1 = ﬁ, then dN such that Vn > N,

lan —a| < &1 <= |b|lan — a| < g
Also, since b, — b, let €3 = 55;, then IN such that vn > N,
b — b < &3 = Mlb, —b| < %
. Let N = max{Ny, Ny}, then for n > N, (*x) holds so (x) holds. O

Theorem 3.8. If a,, — a, and a,, # 0Vn and a # 0, then i — %

Remark 3.9. a, # 0 does not imply a # 0. For example consider the sequence

an—ﬁ

Proof. Want to show Ve > 0, 4N such that Vn > N,

1 1
- | <= *
2- i< Q
Observe that
‘1 1|_|a—an|_|an—a|
a ap a- ay la] - |an|

Claim: 3¢ > 0 such that |a,| > ¢Vn.



Proof. Let ¢ = 5, then 3N’ such that ¥n > N’

la, — al Sa'zg — —la|/2 < a, —a<]a|/2

= a—f—m<an<a+M—>|an|>M
2 2 -2

Let ¢; = min{lay|, |az],...,|an’|} > 0. Let ¢ = min{cy, |a|/2}.

Thus, 122~ < lan=al pepce
> lal-lan] = Jaf-c -

lan - al

(%) «

la] - ¢
and (xx) can be satisfied since a,, — a.

Corollary 3.10. If a,, — a, b,, — b and b,, # 0, b # 0, then ‘g—: — .

Proof. %:an-bi. Since by Thm 8, l%—)%, an'bi—>a~%byThm7.

Theorem 3.11 (Useful Results).

1) limy—e0 = =0 Vp > 0.

) 75
2) lim,, oo a™ =0 V|a| < 1.
) limy, 00 nt/n =1,

)

(
(
(3
(

4) lim,_ o0 a?/™ =1 for all n > 0.
Proof of (3). Let S,, =n'/™ — 1, then s, > 0 Vn positive integers.
14 s, =n'" <= (1+s,)" =n.

Using to binomial theorem we see

1+ ns, + 5 24 =n
e=lo
2
2
-2 <
=1

Thus, s,, — 0 as n — oo.

(**)

O



4 1/27/2022

4.1 Monotone Sequences

Definition 4.1 (lim s,, = +00). A sequence (s,) is said to “diverge to +00”, if
for every M € R there exists IV such that s, > M Vn > N.

Definition 4.2 (Values of a Sequence). If (s,,)°),=1 is a sequence, then {s,, }>2 ;,
the subset of R consisting of the values of (s, ), is called the value set.

Example 4.3.
o (s,)=1,2,1,2,... {sp}>2,={1,2}
o (s,)=1,1,2,2,1,1,2,2,... {s,}>2,={1,2}
o (s,)=1,2,3,4,... {sp}>2,={1,2,3,4,...}

Definition 4.4 (Monotone Sequences).
e A sequence (s,) is monotonically increasing if a,41 > a, Vn
e A sequence (s,) is monotonically increasing if a,41 < a, Vn
Example 4.5.
e (a,) = a, a constant sequence is monotonically increasing and decreasing
e (a,)=1,2,3,..., is increasing
e (a,) = —1, is increasing and bounded above (also below)
Theorem 4.6. A bounded monotone sequence is convergent.

Proof. (We will show for increasing, the proof for decreasing is similar.)

Let (ay,) be a bounded monotone increasing sequence and let v = sup{a, }52
(= supay). Then a, < vV¥n and for any € > 0, Ja,, such that a,, > v —e.
Thus for every € > 0, let N = ng(as defined above), then for every n > N, we
have v — € < ap, < a, <~ thus |a, — | < ¢ then lima, = O

Example 4.7 (Recursive Definition of Sequences). Let s,, be any positive num-

ber and let

s2+5
28,

Sni1 = vn > 1. (*)
We want to show lim s,, exists and find it.

Remark 4.8. If we assume lim s,, exists, call it s, then s satisfies

245
2s

(**)

since we can apply lim,, _,~, to both sides.



(x%) — 252 = s2 + 5 — s = ++/5. Since s,, is a positive sequence lim s,, can
only be > 0, thus s can only by v/5

e To show lim s,, exists, we can only need to show s,, is bounded and mono-
tone

e Here is a trick: let f(z) = “"215, then s,11 = f(sn)

— Consider the graph of f, ie. y = f(x)
— Consider the diagonal, ie. y =«

t2 51

ty

If 51 > \/5, we should try to prove VB <83 < 89 < 8

If 0 < s1 < /5, then we show that ss > /5, we can consider (8n)224,
which reduces to case 1

e If (s,,) is unbounded and increasing, then lims,, = +o0

e If (s,,) is unbounded and decreasing, then lim s,, = —oco

4.2 Lim inf and sup of a sequence

Definition 4.9 (limsup). Let (s,,)22; be a sequence,

limsup s, := lim (sup{s,}oc_1)
n—00 n—00

o (5,)5° y is called a “tail of the sequence (s,,)” starting at N

o AN =sup{s,}ply =SUpP,>p Sn

10



e limsups, =limA, = +oc0
Example 4.10.

(1) (sn) =1,2,3,4,5,...
Ay =8up,,>q Sp = +00, Az = sup,, 5 5 = +00
limsup s, = lim A4,, = 400

1
(2) (sn)=1-15
Ay =sup,>q8p =1, A2 =sup,,5o 8, =1
limsup s, = lim A,, = 1 (for any monotonic increasing sequence lim sup s,, =

sup s; = Ap)

(3) sp=1+1 (sp)=2,1+211+1,
A =sup{2,1+3,143,...} =2
Ag:sup{l—f—%,l—i—%,l—&—%,...}

Ay, = s, 50 limsup s, = lim(1 + )
Lemma 4.11. A, = sup,,>, sm forms a decreasing sequence.

Proof. Since {s,}v_, D {Sn}m—ni1s SUP{Sn ey = SUP{Sm fon—pi1,s i€ Ay >
Aptq O

Corollary 4.12. lim,,_, 4, = inf 4,02 ; (= inf,, 4,,)

Example 4.13. s, = (-1)" -1 (s,)=(-1,1,-1,..)

RS
1 1 1
Ay =8up, > 8p = 82 = 5, Ao = 3, A3 = 7, 50

111111 P T —
(A) =351 66 - limsups, =limA, =0

A, is like the “upper envelope.”

5 2/1/2022

5.1 Cauchy Sequences

Definition 5.1 (Cauchy Sequence). A sequence (a,,) is cauchy if Ve > 0, IN >
0, such that Vn,m > N we have |a,, — a,,| < €.

Lemma 5.2. If (a,) converges to a, then (a,,) is cauchy.

Proof. Let €1 = §, then since a,, — a, 3N} > 0 such that Vn,m < N, |a, —a| <
ey and |a,;, — a| < e1. Thus,

lan, — am| = |(an — a) = (am — a)| < |an —al + |lam —al] <e1+e1 =¢.

Remark 5.3. This is also for true in Q

Lemma 5.4 (Squeze Lemma). Given sequences (A, ), (By), (a,) such that A, >
a, > B, Vn, if A, — a, B, — a, then a,, — a.

11



Proof. e > 0, we have N > 0 such that ¥n > N, |A,, —a| < ¢ and |B,, —a| < ¢.
Then a, <A, <a+¢e¢anda, > B, >a—¢ so

a—e<ap<ate|a, —al <e.

Lemma 5.5. Cauchy Sequences are bounded.

Proof. Let e = 1. Then AN > 0 such that Vn,m > N, |s,, — s;n| < €. Consider
the term sy41. Observe that Vn < N, |sy41—8m| < 1soVn < N, |s,| < sy+1+
1. Taking M = max{|s1|, |s2|,- .., [sSn+1l, [Sn+1] + 1}, we see that M > |s,| for
all n. O

Theorem 5.6. If (a,) is cauchy in R, then (a, ) is convergent.

Proof. Since (ay,) is cauchy, (a,) is bounded so limsup a,, and lim inf a,, exist.
Let A, = sup,,>,, Gm, Bn = infy,>, ap,, then A, > a, > B,,. Let A =1im A4,
and B, lim B,,. By the Squeeze Lemma, we only need to show A = B. Since
A, > B,,, we know A > B, hence we only have to rule out A < B.

Assume A < B. Let ¢ = (A;B). By Cauchy criterion 3N > 0 such that
Yn,m > N, |a, — ap| < €. By the previous lemma, since A = limsup a,, and
B = liminf a,, given ¢, N above, we have n > N such that |a, — A| < € and
m > N such that |a,, — B| <e. Then

|A—B|<|A—ay|+|an —am|+|am — Bl <e+e+e=A—B=|A- B,

which is a contradiction. O

5.2 Subsequences

Let (a,) be a sequence. If we pick an infinite subset of N, ny < ng <mnz < ---,
then we can have a new sequence by, = an,., (b)) = Any,s Gnys Angs - - -

Example 5.7. For (a,) = (=1)", a1 = —1,a3 = +1,... does not converge
but subsequence consisting of odd terms converges to —1 and subsequence con-
sisting of even terms converges to 1.

Definition 5.8. Let (a,) be a sequence. Then a € R is a subsequential limit if
there exists (ay, ) such that limy_,c ar = a.

Theorem 5.9. Let (a,) be a sequence. Then:
(1) ais a subsequential limit of (ay,)
(2) ¢ Ve >0,VYN >0, In > N such that |a, —a| <e

(3) « Ve > 0, the set A, = {nl||a, — a| < €} is infinite

12



Proof. 2 + 3) follows from definitions.

1 — 3) If a,, — a, then for a given ¢ > 0, 3K > 0 such that |a,, —a| < e.
Thus {ng|k > K} C A.. So A, is infinite.

3 — 1) Cantor’s Diagonal Trick: Let A1 = {n||a, —a| < i}
A1:7’L1’1<77,112<TL173<"' ’

Ay ng1 <mngg <ngz < :--

Observe that Aﬁl C A%, thus ng; < Ngt1,-

Claim: (ap, ) — a.

First observe that this is a valid subsequence since gy < Qg s < Qg g o
for all k. Also for e > 0, 3K such that = < esoforallk > K, |a,—a| < & <&
so it converges to a.

6 2/3/2022

6.1 Subsequences
Proposition 6.1. If s,, — s, then all subsequences of s,, converge to s.

Proof. Any tail of a subsequence belongs to a tail of the original sequence to
they must converge to the same limit. O

Proposition 6.2. Any sequence has a monotone subsequence.

Proof. We say that s, is a dominant term if s,, > sm for all m > n.

Case 1: Suppose there are infinitely many dominant terms. Then the subse-
quence if dominant terms forms a monotone decreasing sequence.

Case 2: There are finitely many dominant terms. Then we can choose N > 0
such that for all n > N, s, is not dominant. We can construct an increasing
sequence as follows :

e pick n; > N, and get sy,

e pick no > my such that s,, > s,,. This is posible since otherwise s,
would be a dominant term.

e continue in this fashion to achieve a sequence such that s, < s, < 85, <

O

Theorem 6.3 (Bolzano - Weierstrass). Every bounded sequence has a conver-
gent subsequence.

Proof 1. Assume WLOG, that the sequence is bounded in [0, 1]. We may write
[0,1] = [0, 3] U [$,1]. Then (s,) must visit one of the intervals infinitely many
times. We can then subdivide that interval and continue in a similar fashion to
obtain a decreasing sequence of closed intervals Iy = [0,1] D Iy D I D --- with
[I,| =27™. Let A, = {n|n € I,}. Then A; C Ax_1. The sequence (ag )k is a
cauchy sequence since Ve > 0, 3ko such that 55 < e for k,, > ko. O

13



Proof 2. Every sequence contains a monotone sequence so since the sequence is
bounded the given monotone sequence converges. O

Proposition 6.4. Let (s,) be a sequence, the limsup s, is a subsequential
limit.

Proof. We know that for e > 0, N > 0, 3ng > N such that |s,,—limsup s,| < €.
Thus by the alternative of a subsequential limit, lim sup s,, is a subsequential
limit.

Remark 6.5. This sequence can be refined to a montone sequence by consid-
ering the monotone subsequence of the generated sequence.

O

Theorem 6.6. Let (s,,) be a bounded sequence and let S by the set of subse-
quential limits of (s,). Then:

(a) sup S = limsup s, inf S = liminf s,, and limsup s, liminf s, € S.
(b) lim s, exists iff S contains only one element.

(c) Sis closed under taking limits. ie. if there is a convergent sequence ¢,, — ¢
with t,, € S, we will have t € S.

Proof.

1. For t € S suppose s,, — t. Then limsups,, = liminfs,,. Since
{sn, : k> N} C {sy, : n > N}, liminfs, < liminfs,, = limsups,, <
limsup s,. Thus, liminfs, < infS < supS < limsups,. Since by the
previous proposition limsup s,,liminfs, € S, supS = limsups, and
inf S = liminf s,,.

2. This follows since s,, — s iff limsup s,, = liminf s,,.

3. We will show t is a subsequential limit of (s,). We want to show, Ve > 0,
VYN > 0, 3ng > N such that |s,, —t| <e.
Since t,, — t, 3N such that Vn > N, [t, —t| < §. For ny < N, there are
infinitely many s,, with |s,, —t,,,| < §. Thus, Ing such that [s,, —t,,| < §.
Thus, [sn, =t < [Sny = tn, |+ |th, —t| <5+ 5 =¢

O

14
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