MATH 104 Notes

Jad Damaj

Spring 2022

Contents

1 1/18/2022 2
1.1 Natural Numbers 2
1.2 Integers 2
1.3 Rational Numbers 2
1.4 What's lacking in \mathbb{Q} ? 4
2 1/20/2022 4
2.1 Rational Zeros Theorem 4
2.2 Historical Construction of \mathbb{R} from \mathbb{Q} 4
2.3 Properties (Axioms) of \mathbb{R} 5
$2.4+\infty,-\infty$ 5
2.5 Sequences and Limits 5
3 1/25/2022 6
3.1 Sequences and Limits 6
3.2 Operations on Convergent Sequences 6
4 1/27/2022 9
4.1 Monotone Sequences 9
4.2 Lim inf and sup of a sequence 10
5 2/1/2022 11
5.1 Cauchy Sequences 11
5.2 Subsequences 12
6 2/3/2022 13
6.1 Subsequences 13

1 1/18/2022

1.1 Natural Numbers

- $\mathbb{N}=\{0,1,2,3, \ldots$,
- successor construction: 2 is the successor of 1,3 is the successor of 2 . So starting from 0 one can reach all rational numbers (for any given natural number, it can be reached from 0 in finitely many steps)
- Peano Axioms for natural Numbers (see Tao 1)
- Mathematical Induction Property (Axiom 5): let n be a natural number and let $P(n)$ be a statement depending on n, if the following two conditions hold:
* $P(0)$ is true
* If $P(k)$ is true, then $P(k+1)$ is true
then $P(n)$ is true for all $n \in \mathbb{N}$
- operations allowed for $\mathbb{N}:+, \times$
- if $n, m \in \mathbb{N}$, then $n+m \in \mathbb{N}$ and $n \times m \in \mathbb{N}$
,$-- /$ are not always defined

1.2 Integers

- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- allowed operations:,,$+- \times$ (formally, \mathbb{Z} is a ring)

1.3 Rational Numbers

- $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, n \neq 0\right\}$
- We have all four operations $+,-, \cdot, /$
- \mathbb{Q} is now a field

Theorem 1.1 (Field Axioms(Ross 3)).
Addition:

- $a+(b+c)=(a+b)+c$ for all a, b, c
- $a+b=b+a$ for all a, b
- $a+0=a$ for all a
- For each a, there is an element $-a$ such that $a+(-a)=0$

Multiplication:

- $a(b c)=(a b)=c$ for all a, b, c
- $a b=b a$ for all a, b
- $a \cdot 1=a$ for all a
- For each $a \neq 0$, there is an element a^{-1} such that $a a^{-1}=1$

Distributive Law:

- $a(b+c)=a b+a c$ for all a, b, c

Theorem 1.2 (Useful Properties of Fields(Ross 3)).

- $a+c=b+c$ implies $a=b$
- $(-a) b=-a b$ for all a, b
- $(-a)(-b)=a b$ for all a, b
- $a c=b c$ and $c \neq 0$ imply $a=b$
- $a b=0$ implies either $a=0$ or $b=0$
for $a, b, c \in \mathbb{Q}$
\mathbb{Q} is an ordered field, there is a "relation" \leq
Definition 1.3. A relation S is a subset of $\mathbb{Q} \times \mathbb{Q}$, if $(a, b) \in S$ we say " a and b have relation S " or " $a S b$ "

The relation " \leq " has 3 properties:

- if $a \leq b$ and $b \leq a$, then $a=b$
- if $a \leq b$ and $b \leq c$, then $a \leq c \quad$ (transitivity)
- for any $a, b \in \mathbb{Q}$, at least one of the following is true: $a \leq b$ or $b \leq a$

Since \mathbb{Q} is an ordered field, the field structure $(+,-, \cdot, /)$ is compatible with (\leq)

- If $a \leq b$, then $a+c \leq b+c$ for all $c \in \mathbb{Q}$
- If $a \geq 0$ and $b \geq 0$, then $a b \geq 0$

Theorem 1.4 (Useful Properties of Ordered Fields(Ross 3)).

- If $a \leq b$, then $-b \leq a$
- If $a \leq b$ and $c \geq 0$, then $a c \leq b c$
- If $a \leq b$ and $c \leq 0$, then $b c \leq a c$
- $0 \leq a^{2}$ for all a
- $0<1$
- If $0<a$, then $0<a^{-1}$
- If $0<a<b$, then $0<b^{-1}<a^{-1}$
for $a, b, c \in \mathbb{Q}$

1.4 What's lacking in \mathbb{Q} ?

1. There are certain gaps in \mathbb{Q}. For example, the equation $x^{2}-2$ cannot be solved in \mathbb{Q}
2. For a bounded set in \mathbb{Q}, E, it may not have a "most economical" or "sharpest" upper bound in \mathbb{Q}
Ex: $E=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}$ there is no least upper bound(sup) of E in \mathbb{Q} (we want to take $\sqrt{2}$ as $\sup (E)$ but $\sqrt{2}$ is not a rational number)

2 1/20/2022

2.1 Rational Zeros Theorem

Definition 2.1. An integer coefficient polynomial in x is of the form: $c_{n} x^{2}+$ $c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} c_{1}, \ldots, c_{n} \in \mathbb{Z}, c_{n} \neq 0$.

1. A \mathbb{Z}-coefficient equation is $f(x)=0$
2. One can ask: when does a \mathbb{Z}-coefficient equation have roots in \mathbb{Q}

Fact 2.2. A degree n polynomial has n roots in \mathbb{C}, ie. $\exists z_{1}, \ldots, z_{n} \in \mathbb{C}$ such that $f(x)=c_{n}\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$

Theorem 2.3. If a rational number r satisfies the equation $x_{n} x^{n}+\cdots+c_{1} x+$ $c_{0}=0$, with $c_{i} \in \mathbb{Z}, c_{n}, c_{0} \neq 0$ and $r=\frac{c}{d}$ (where c and d are coprime integers). Then c divides c_{0} and d divides c_{n}.

Proof. Plug in $x=\frac{c}{d}$ into the equation to get $c_{n}\left(\frac{c}{d}\right)^{n}+c_{n-1}\left(\frac{c}{d}\right)^{n-1}+\cdots+c_{1}\left(\frac{c}{d}\right)+$ $c_{n}=0$ multiply both sides by d^{n} to get $c_{n} c^{n}+c_{n-1} c^{n-1} d+\cdots+c_{1} c d^{n-1}+c_{0} d=0$ Since $c_{n} c^{n}=-d\left(c_{n-1} c^{n-1}+\cdots+c_{1} d^{n-1}\right), d$ divides $c_{n} c^{n}$. Since d and c are coprimes, d does not divide c^{n} so d has to divide c_{n}
Also, since $c_{0} d^{n}=-c\left(c_{n} c^{n-1}+c_{n-1} c^{n-2} d+\cdots+c_{1} d^{n-1}\right)$ by similar reasoning $c \mid c_{0}$

Using the rational zeros theorem, we can answer questions about rationality
Example 2.4. Show $\sqrt[3]{6}$ is irrational.
$\sqrt[3]{6}$ is rational $\leftrightarrow x^{3}-6$ has rational roots. The only possible rational roots such that $r=\frac{c}{d}$ need $c|6, d| 1$. Taking $d=1, c= \pm 1, \pm 2, \pm 3, \pm 6$. Once can check all of these do not satisfy the equation so there is no solution in \mathbb{Q}

2.2 Historical Construction of \mathbb{R} from \mathbb{Q}

1. Dedekind Cut: ($\mathrm{Q}:$ if $\sqrt{2} \notin \mathbb{Q}$, how can we save the information of $\sqrt{2}$?)

A: the subset of $\mathbb{Q} C_{\sqrt{2}}=\{r \in \mathbb{Q} \mid r>x\}$
For every $x \in \mathbb{R}$, consider $C_{x}=\{x \in \mathbb{Q} \mid r<x\}$. We can define addition, multiplication on the subsets C_{x}
2. Sequences in \mathbb{Q}
ie. Use a sequence of rational numbers to "aproximate" a real number eg. $\sqrt{2}$ can be approximated by $1,1.4,1.41 .1 .414, \ldots$
Problems:
(a) Given any real number, how do you get such a sequence?
(b) How do you determine if 2 different sequences approximate the same real number
(eg. $1 \leftarrow 1.1,1.01,1.001, \ldots$ or $1 \leftarrow 0.9,0.99,0.999, \ldots$ or $1 \leftarrow$ $1,1,1, \ldots$) all have the same limit

2.3 Properties (Axioms) of \mathbb{R}

Given the existence of \mathbb{R}, we have certain properties (axoims) of \mathbb{R}
Definition 2.5. A subset of \mathbb{R} is said to be bounded above if $\exists a \in \mathbb{R}$ such that for any $x \in E$, we have $x \leq a$
Theorem 2.6 (Completeness Axiom of \mathbb{R}). Given a set $E \subset \mathbb{R}$, bounded above, there exists a unique r such that:

1. r is an upper bound of E
2. for any other upper bound of α, we have $r \leq \alpha$
r is called the least upper bound of $E, r=\sup E$
(ie. $\sup E$ is well defined for subsets that are bounded above)
Example 2.7. $\sup ([0,1])=1, \sup ((0,1))=1, \sup \left(\left\{r \in \mathbb{Q} \mid r^{2}<2\right\}\right)=\sqrt{2}$
Theorem 2.8 (Archimedean Property). For any $r \in \mathbb{R}, r>0 \exists n \in \mathbb{N}$ such that $n r>1$ or equivalently, $r>\frac{1}{n}$
$2.4+\infty,-\infty$

- With these symbols, we can say $\sup (\mathbb{N})=+\infty \leftrightarrow \mathbb{N}$ is not bounded above
- $+\infty,-\infty$ are not real numbers. They have part of the defined operations \mathbb{R} has
ie. $3 \cdot+\infty=+\infty,(-3) \cdot+\infty=-\infty$ but $(+\infty)+(-\infty)=$ NAN, $0 \cdot(+\infty)=$ undefined.

2.5 Sequences and Limits

- A sequence of real numbers is: $a_{0}, a_{1}, a_{2}, \ldots$ denoted $\left(a_{n}\right)_{n=0}^{\infty}$ or shortened (a_{n})
- We care about the "eventual behavior" of a sequence

Definition 2.9. A sequence $\left(a_{n}\right)$ converges to $a \in \mathbb{R}$ if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall n>\mathbb{N},\left|a_{n}-a\right|<\varepsilon$.

3 1/25/2022

3.1 Sequences and Limits

Definition 3.1. A sequence $\left(a_{n}\right)$ is bounded if $\exists M>0,\left|a_{n}\right| \leq M$ for all n.
Theorem 3.2. Convergent sequences are bounded.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence that converges to a.
Let $\varepsilon=1$, then by definition of convergence, there exists $N>0$ such that $\forall n>n$

$$
\left|a_{n}-a\right|<1 \Longleftrightarrow a-1<a_{n}<a+1 \quad \forall n>N
$$

Let $M=\max \left\{a_{1}, a_{2}, \ldots, a_{N}\right\}, M_{2}=\max \{|a-1|,|a+1|\}$ and $M=\max \left\{M_{1}, M_{2}\right\}$. Thus if $n \leq N$ we have $\left|a_{n}\right| \leq<M$, and if $n \geq N$ we have $\left|a_{n}\right| \leq M_{2}$ so

$$
\forall n,\left|a_{n}\right| \leq \max \left\{M_{1}, M_{2}\right\}=M
$$

Remark 3.3. One can deal with the first few terms of a sequence easily, it is the "tail of the sequence" that matters.

3.2 Operations on Convergent Sequences

Theorem 3.4. $c \in \mathbb{R}, \forall$ convergent sequences $a_{n} \rightarrow a$, we have $c \cdot a_{n} \rightarrow c \cdot a$.
Proof. If $c=0$, the result is obvious.
If $c \neq 0$, we want to show for all $\varepsilon>0, \exists N$ such that $\forall n>N$

$$
\left|c \cdot a_{n}-c \cdot a\right|<\varepsilon \Longleftrightarrow|c| \cdot\left|a_{n}-a\right| \leq \varepsilon \Longleftrightarrow\left|a_{n}-a\right| \leq \frac{\varepsilon}{|c|} .
$$

Now let $\varepsilon^{\prime}=\frac{\varepsilon}{|c|}$. By definition of $a_{n} \rightarrow a$, we have $N>0$ such that $\left|a_{n}-a\right| \leq$ $\varepsilon^{\prime}=\frac{\varepsilon}{|c|}$. This gives the desired N.
Theorem 3.5. If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n}+b_{n} \rightarrow a+b$.
Proof. We want to show $\forall \varepsilon>0, \exists N$ such that $\forall n>N$

$$
\begin{equation*}
\left|a_{n}+b_{n}-(a+b)\right| \leq \varepsilon \Longleftrightarrow\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq \varepsilon . \tag{*}
\end{equation*}
$$

$\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|$ by the triangle inequality so

$$
\begin{align*}
(*) & \leftarrow\left|a_{n}-a\right|<\varepsilon \tag{**}\\
& \leftarrow\left\{\begin{array}{l}
\left|a_{n}-a\right| \leq \varepsilon / 2 \\
\left|b_{n}-b\right| \leq \varepsilon / 2
\end{array}\right. \tag{***}
\end{align*}
$$

By the convergence of a_{n} and $b_{n}, \exists N_{1}, N_{2}$ such that $\forall n>N_{1},\left|a_{n}-a\right| \leq \frac{\varepsilon}{2}$, and $\forall n>N,\left|b_{n}-b\right| \leq \frac{\varepsilon}{2}$. Take $N=\max \left\{N_{1}, N_{2}\right\}$, then $\forall n>N(* * *)$ is satisfied hence ($*$) is satsified.

Corollary 3.6. If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n}-b_{n} \rightarrow a-b$.
Proof. Let $c_{n}=(-1) \cdot b_{n}$. Then $c_{n} \rightarrow-b$ so $a_{n}+c_{n} \rightarrow a-b$.
Theorem 3.7. If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n} \cdot b_{n} \rightarrow a b$.
Proof. Want to show: $\forall \varepsilon>0, \exists N$ such that $\forall n>N$

$$
\begin{equation*}
\left|a_{n}-a b\right| \leq \varepsilon \tag{*}
\end{equation*}
$$

Since a_{n} is convergent, it is bounded by some $M>0$ which yields the following inequalities.

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n}(b-b)+a_{n} b-a b\right| \\
& =\left|a_{n}\left(b_{n}-b\right)+\left(a_{n}-a\right) b\right| \\
& \leq\left|a_{n}\left(b_{n}-b\right)\right|+\left|\left(a_{n}-a\right) b\right| \\
& \leq\left|a_{n}\right| \cdot\left|b_{n}-b\right|+\left|a_{n}-a\right| \cdot|b| \\
& \leq M\left|b_{n}-b\right|+|b|\left|a_{n}-a\right|
\end{aligned}
$$

So

$$
(*) \leftarrow\left\{\begin{array}{l}
M\left|b_{n}-b\right| \leq \varepsilon / 2 \tag{**}\\
|b|\left|a_{n}-a\right| \leq \varepsilon / 2
\end{array}\right.
$$

Since $a_{n} \rightarrow a$, let $\varepsilon_{1}=\frac{\varepsilon}{2|b|}$, then $\exists N$ such that $\forall n>N$,

$$
\left|a_{n}-a\right|<\varepsilon_{1} \Longleftrightarrow|b|\left|a_{n}-a\right| \leq \frac{\varepsilon}{2}
$$

Also, since $b_{n} \rightarrow b$, let $\varepsilon_{2}=\frac{\varepsilon}{2 M}$, then $\exists N$ such that $\forall n>N$,

$$
\left|b_{n}-b\right| \leq \varepsilon_{2} \Longleftrightarrow M\left|b_{n}-b\right| \leq \frac{\varepsilon}{2}
$$

. Let $N=\max \left\{N_{1}, N_{2}\right\}$, then for $n>N,(* *)$ holds so ($*$) holds.
Theorem 3.8. If $a_{n} \rightarrow a$, and $a_{n} \neq 0 \forall n$ and $a \neq 0$, then $\frac{1}{a_{n}} \rightarrow \frac{1}{a}$.
Remark 3.9. $a_{n} \neq 0$ does not imply $a \neq 0$. For example consider the sequence $a_{n}=\frac{1}{n}$
Proof. Want to show $\forall \varepsilon>0, \exists N$ such that $\forall n>N$,

$$
\begin{equation*}
\left|\frac{1}{a}-\frac{1}{a_{n}}\right| \leq \varepsilon \tag{}
\end{equation*}
$$

Observe that

$$
\left|\frac{1}{a}-\frac{1}{a_{n}}\right|=\left|\frac{a-a_{n}}{a \cdot a_{n}}\right|=\frac{\left|a_{n}-a\right|}{|a| \cdot\left|a_{n}\right|}
$$

Claim: $\exists c>0$ such that $\left|a_{n}\right|>c \forall n$.

Proof. Let $\varepsilon^{\prime}=\frac{\varepsilon}{2}$, then $\exists N^{\prime}$ such that $\forall n \geq N^{\prime}$

$$
\begin{aligned}
\left|a_{n}-a\right| \leq \varepsilon^{\prime}=\frac{\varepsilon}{2} & \Longleftrightarrow-|a| / 2<a_{n}-a<|a| / 2 \\
& \Longleftrightarrow a+\frac{|a|}{2}<a_{n}<a+\frac{|a|}{2} \rightarrow\left|a_{n}\right| \geq \frac{|a|}{2}
\end{aligned}
$$

Let $c_{1}=\min \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N^{\prime}}\right|\right\} \geq 0$. Let $c=\min \left\{c_{1},|a| / 2\right\}$.
Thus, $\frac{\left|a_{n}-a\right|}{|a| \cdot\left|a_{n}\right|} \leq \frac{\left|a_{n}-a\right|}{|a| \cdot c}$. Hence

$$
\begin{equation*}
(*) \leftarrow \frac{\left|a_{n} \cdot a\right|}{|a| \cdot c} \leq \varepsilon \tag{**}
\end{equation*}
$$

and $(* *)$ can be satisfied since $a_{n} \rightarrow a$.
Corollary 3.10. If $a_{n} \rightarrow a, b_{n} \rightarrow b$ and $b_{n} \neq 0, b \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.
Proof. $\frac{a_{n}}{b_{n}}=a_{n} \cdot \frac{1}{b_{n}}$. Since by Thm $8, \frac{1}{b_{n}} \rightarrow \frac{1}{b}, a_{n} \cdot \frac{a}{b_{n}} \rightarrow a \cdot \frac{1}{b}$ by Thm 7 .
Theorem 3.11 (Useful Results).
(1) $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 \forall p>0$.
(2) $\lim _{n \rightarrow \infty} a^{n}=0 \forall|a|<1$.
(3) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.
(4) $\lim _{n \rightarrow \infty} a^{1 / n}=1$ for all $n>0$.

Proof of (3). Let $S_{n}=n^{1 / n}-1$, then $s_{n} \geq 0 \forall n$ positive integers.

$$
1+s_{n}=n^{1 / n} \Longleftrightarrow\left(1+s_{n}\right)^{n}=n
$$

Using to binomial theorem we see

$$
\begin{aligned}
& 1+n s_{n}+\frac{n(n-1)}{2} s_{n}^{2}+\cdots=n \\
& \rightarrow \frac{n(n-1)}{2} s_{n}^{2} \leq n \\
& \rightarrow s_{n}^{2} \leq \frac{2}{n-1}
\end{aligned}
$$

Thus, $s_{n} \rightarrow 0$ as $n \rightarrow \infty$.

$4 \quad 1 / 27 / 2022$

4.1 Monotone Sequences

Definition $4.1\left(\lim s_{n}=+\infty\right)$. A sequence $\left(s_{n}\right)$ is said to "diverge to $+\infty$ ", if for every $M \in \mathbb{R}$ there exists N such that $s_{n}>M \forall n>N$.

Definition 4.2 (Values of a Sequence). If $\left.\left(s_{n}\right)^{\infty}\right)_{n=1}$ is a sequence, then $\left\{s_{n}\right\}_{n=1}^{\infty}$, the subset of \mathbb{R} consisting of the values of $\left(s_{n}\right)$, is called the value set.

Example 4.3.

- $\left(s_{n}\right)=1,2,1,2, \ldots \quad\left\{s_{n}\right\}_{n=1}^{\infty}=\{1,2\}$
- $\left(s_{n}\right)=1,1,2,2,1,1,2,2, \ldots \quad\left\{s_{n}\right\}_{n=1}^{\infty}=\{1,2\}$
- $\left(s_{n}\right)=1,2,3,4, \ldots \quad\left\{s_{n}\right\}_{n=1}^{\infty}=\{1,2,3,4, \ldots\}$

Definition 4.4 (Monotone Sequences).

- A sequence $\left(s_{n}\right)$ is monotonically increasing if $a_{n+1} \geq a_{n} \forall n$
- A sequence $\left(s_{n}\right)$ is monotonically increasing if $a_{n+1} \leq a_{n} \forall n$

Example 4.5.

- $\left(a_{n}\right)=a$, a constant sequence is monotonically increasing and decreasing
- $\left(a_{n}\right)=1,2,3, \ldots$, is increasing
- $\left(a_{n}\right)=-\frac{1}{n}$, is increasing and bounded above (also below)

Theorem 4.6. A bounded monotone sequence is convergent.
Proof. (We will show for increasing, the proof for decreasing is similar.)
Let $\left(a_{n}\right)$ be a bounded monotone increasing sequence and let $\gamma=\sup \left\{a_{n}\right\}_{n=1}^{\infty}$ $\left(=\sup a_{n}\right)$. Then $a_{n} \leq \gamma \forall n$ and for any $\varepsilon>0, \exists a_{n_{0}}$ such that $a_{n_{0}}>\gamma-\varepsilon$. Thus for every $\varepsilon>0$, let $N=n_{0}$ (as defined above), then for every $n>N$, we have $\gamma-\varepsilon<a_{n_{0}} \leq a_{n} \leq \gamma$ thus $\left|a_{n}-\gamma\right|<\varepsilon$ then $\lim a_{n}=\gamma$

Example 4.7 (Recursive Definition of Sequences). Let s_{n} be any positive number and let

$$
\begin{equation*}
s_{n+1}=\frac{s_{n}^{2}+5}{2 s_{n}} \quad \forall n \geq 1 \tag{}
\end{equation*}
$$

We want to show $\lim s_{n}$ exists and find it.
Remark 4.8. If we assume $\lim s_{n}$ exists, call it s, then s satisfies

$$
\begin{equation*}
s=\frac{s^{2}+5}{2 s} \tag{**}
\end{equation*}
$$

since we can apply $\lim _{n \rightarrow \infty}$ to both sides.
$(* *) \rightarrow 2 s^{2}=s^{2}+5 \rightarrow s= \pm \sqrt{5}$. Since s_{n} is a positive sequence $\lim s_{n}$ can only be ≥ 0, thus s can only by $\sqrt{5}$

- To show $\lim s_{n}$ exists, we can only need to show s_{n} is bounded and monotone
- Here is a trick: let $f(x)=\frac{x^{2}+5}{2 x}$, then $s_{n+1}=f\left(s_{n}\right)$
- Consider the graph of f, ie. $y=f(x)$
- Consider the diagonal, ie. $y=x$

- If $s_{1}>\sqrt{5}$, we should try to prove $\sqrt{5}<\cdots s_{3}<s_{2}<s_{1}$
- If $0<s_{1}<\sqrt{5}$, then we show that $s_{2}>\sqrt{5}$, we can consider $\left(s_{n}\right)_{n=1}^{\infty}$, which reduces to case 1
- If $\left(s_{n}\right)$ is unbounded and increasing, then $\lim s_{n}=+\infty$
- If $\left(s_{n}\right)$ is unbounded and decreasing, then $\lim s_{n}=-\infty$

4.2 Lim inf and sup of a sequence

Definition 4.9 (limsup). Let $\left(s_{n}\right)_{n=1}^{\infty}$ be a sequence,

$$
\limsup _{n \rightarrow \infty} s_{n}:=\lim _{n \rightarrow \infty}\left(\sup \left\{s_{n}\right\}_{m=1}^{\infty}\right)
$$

- $\left(s_{n}\right)_{n=N}^{\infty}$ is called a "tail of the sequence $\left(s_{n}\right)$ " starting at N
- $A_{N}=\sup \left\{s_{n}\right\}_{n=N}^{\infty}=\sup _{n \geq N} s_{n}$
- $\lim \sup s_{n}=\lim A_{n}=+\infty$

Example 4.10.

(1) $\left(s_{n}\right)=1,2,3,4,5, \ldots$
$A_{1}=\sup _{n \geq 1} s_{n}=+\infty, A_{2}=\sup _{n \geq 2} s_{n}=+\infty$
$\limsup s_{n}=\lim A_{n}=+\infty$
(2) $\left(s_{n}\right)=1-\frac{1}{n}$
$A_{1}=\sup _{n \geq 1} s_{n}=1, A_{2}=\sup _{n \geq 2} s_{n}=1$
$\limsup s_{n}=\lim A_{n}=1$ (for any monotonic increasing sequence $\lim \sup s_{n}=$ $\left.\sup s_{1}=A_{1}\right)$
(3) $s_{n}=1+\frac{1}{n} \quad\left(s_{n}\right)=2,1+\frac{1}{2}, 1+\frac{1}{3}, \ldots$
$A_{1}=\sup \left\{2,1+\frac{1}{2}, 1+\frac{1}{3}, \ldots\right\}=2$
$A_{2}=\sup \left\{1+\frac{1}{2}, 1+\frac{1}{3}, 1+\frac{1}{4}, \ldots\right\}=1+\frac{1}{2}$
$A_{n}=s_{n}$ so $\limsup s_{n}=\lim \left(1+\frac{1}{n}\right)=1$
Lemma 4.11. $A_{n}=\sup _{m \geq n} s_{m}$ forms a decreasing sequence.
Proof. Since $\left\{s_{n}\right\}_{m=n}^{\infty} \supset\left\{s_{n}\right\}_{m=n+1}^{\infty}, \sup \left\{s_{n}\right\}_{m=n}^{\infty} \geq \sup \left\{s_{m}\right\}_{m=n+1}^{\infty}$, ie. $A_{n} \geq$ A_{n+1}
Corollary 4.12. $\lim _{n \rightarrow \infty} A_{n}=\inf A_{n}{ }_{n=1}^{\infty}\left(=\inf _{n} A_{n}\right)$
Example 4.13. $s_{n}=(-1)^{n} \cdot \frac{1}{n} \quad\left(s_{n}\right)=\left(-1, \frac{1}{2},-\frac{1}{3}, \ldots\right)$
$A_{1}=\sup _{n \geq 1} s_{n}=s_{2}=\frac{1}{2}, A_{2}=\frac{1}{2}, A_{3}=\frac{1}{4}$, so
$\left(A_{n}\right)=\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \ldots \quad \limsup s_{n}=\lim A_{n}=0$
A_{n} is like the "upper envelope."

$5 \quad 2 / 1 / 2022$

5.1 Cauchy Sequences

Definition 5.1 (Cauchy Sequence). A sequence $\left(a_{n}\right)$ is cauchy if $\forall \varepsilon>0, \exists N>$ 0 , such that $\forall n, m>N$ we have $\left|a_{n}-a_{m}\right|<\varepsilon$.

Lemma 5.2. If $\left(a_{n}\right)$ converges to a, then $\left(a_{n}\right)$ is cauchy.
Proof. Let $\varepsilon_{1}=\frac{\varepsilon}{2}$, then since $a_{n} \rightarrow a, \exists N_{1}>0$ such that $\forall n, m<N,\left|a_{n}-a\right|<$ ε_{1} and $\left|a_{m}-a\right|<\varepsilon_{1}$. Thus,

$$
\left|a_{n}-a_{m}\right|=\left|\left(a_{n}-a\right)-\left(a_{m}-a\right)\right| \leq\left|a_{n}-a\right|+\left|a_{m}-a\right|<\varepsilon_{1}+\varepsilon_{1}=\varepsilon
$$

Remark 5.3. This is also for true in \mathbb{Q}
Lemma 5.4 (Squeze Lemma). Given sequences $\left(A_{n}\right),\left(B_{n}\right),\left(a_{n}\right)$ such that $A_{n} \geq$ $a_{n} \geq B_{n} \forall n$, if $A_{n} \rightarrow a, B_{n} \rightarrow a$, then $a_{n} \rightarrow a$.

Proof. $\forall \varepsilon>0$, we have $N>0$ such that $\forall n>N,\left|A_{n}-a\right|<\varepsilon$ and $\left|B_{n}-a\right|<\varepsilon$. Then $a_{n} \leq A_{n}<a+\varepsilon$ and $a_{n} \geq B_{n}>a-\varepsilon$ so

$$
a-\varepsilon<a_{n}<a+\varepsilon \leftrightarrow\left|a_{n}-a\right|<\varepsilon .
$$

Lemma 5.5. Cauchy Sequences are bounded.
Proof. Let $\varepsilon=1$. Then $\exists N>0$ such that $\forall n, m>N,\left|s_{n}-s_{m}\right|<\varepsilon$. Consider the term s_{N+1}. Observe that $\forall n<N,\left|s_{N+1}-s_{m}\right|<1$ so $\forall n<N,\left|s_{n}\right|<s_{N+1}+$ 1. Taking $M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N+1}\right|,\left|s_{N+1}\right|+1\right\}$, we see that $M \geq\left|s_{n}\right|$ for all n.

Theorem 5.6. If $\left(a_{n}\right)$ is cauchy in \mathbb{R}, then $\left(a_{n}\right)$ is convergent.
Proof. Since $\left(a_{n}\right)$ is cauchy, $\left(a_{n}\right)$ is bounded so $\lim \sup a_{n}$ and $\liminf a_{n}$ exist. Let $A_{n}=\sup _{m \geq n} a_{m}, B_{n}=\inf _{m \geq n} a_{m}$, then $A_{n} \geq a_{n} \geq B_{n}$. Let $A=\lim A_{n}$ and $B_{n} \lim B_{n}$. By the Squeeze Lemma, we only need to show $A=B$. Since $A_{n} \geq B_{n}$, we know $A \geq B$, hence we only have to rule out $A<B$.
Assume $A<B$. Let $\varepsilon=\frac{(A-B)}{3}$. By Cauchy criterion $\exists N>0$ such that $\forall n, m>N,\left|a_{n}-a_{m}\right|<\varepsilon$. By the previous lemma, since $A=\limsup a_{n}$ and $B=\liminf a_{n}$, given ε, N above, we have $n>N$ such that $\left|a_{n}-A\right|<\varepsilon$ and $m>N$ such that $\left|a_{m}-B\right| \leq \varepsilon$. Then

$$
|A-B| \leq\left|A-a_{n}\right|+\left|a_{n}-a_{m}\right|+\left|a_{m}-B\right|<\varepsilon+\varepsilon+\varepsilon=A-B=|A-B|
$$

which is a contradiction.

5.2 Subsequences

Let $\left(a_{n}\right)$ be a sequence. If we pick an infinite subset of $\mathbb{N}, n_{1}<n_{2}<n_{3}<\cdots$, then we can have a new sequence $b_{k}=a_{n_{k}},\left(b_{k}\right)=a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots$

Example 5.7. For $\left(a_{n}\right)=(-1)^{n}, a_{1}=-1, a_{2}=+1, \ldots$ does not converge but subsequence consisting of odd terms converges to -1 and subsequence consisting of even terms converges to 1.

Definition 5.8. Let $\left(a_{n}\right)$ be a sequence. Then $a \in \mathbb{R}$ is a subsequential limit if there exists $\left(a_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} a_{k}=a$.

Theorem 5.9. Let $\left(a_{n}\right)$ be a sequence. Then:
(1) a is a subsequential limit of $\left(a_{n}\right)$
(2) $\leftrightarrow \forall \varepsilon>0, \forall N>0, \exists n>N$ such that $\left|a_{n}-a\right| \leq \varepsilon$
(3) $\leftrightarrow \forall \varepsilon>0$, the set $A_{\varepsilon}=\left\{n| | a_{n}-a \mid<\varepsilon\right\}$ is infinite

Proof. $2 \leftrightarrow 3$) follows from definitions.
$1 \rightarrow 3$) If $a_{n_{k}} \rightarrow a$, then for a given $\varepsilon>0, \exists K>0$ such that $\left|a_{n_{k}}-a\right| \leq \varepsilon$. Thus $\left\{n_{k} \mid k>K\right\} \subset A_{\varepsilon}$. So A_{ε} is infinite.
$3 \rightarrow 1$) Cantor's Diagonal Trick: Let $A_{\frac{1}{k}}=\left\{n| | a_{n}-a \left\lvert\, \leq \frac{1}{k}\right.\right\}$.
$A_{1}: n_{1,1}<n_{1,2}<n_{1,3}<\cdots$
$A_{2}: n_{2,1}<n_{2,2}<n_{2,3}<\cdots$
Observe that $A_{\frac{1}{k+1}} \subset A_{\frac{1}{k}}$, thus $n_{k, i} \leq n_{k+1, i}$.
Claim: $\left(a_{n_{k, k}}\right) \rightarrow a$.
First observe that this is a valid subsequence since $a_{n_{k, k}}<a_{n_{k, k+1}} \leq a_{n_{k+1, k+1}}$ for all k. Also for $\varepsilon>0, \exists K$ such that $\frac{1}{K}<\varepsilon$ so for all $k>K,\left|a_{n}-\bar{a}\right|<\frac{1}{K}<\varepsilon$ so it converges to a.

6 2/3/2022

6.1 Subsequences

Proposition 6.1. If $s_{n} \rightarrow s$, then all subsequences of s_{n} converge to s.
Proof. Any tail of a subsequence belongs to a tail of the original sequence to they must converge to the same limit.

Proposition 6.2. Any sequence has a monotone subsequence.
Proof. We say that s_{n} is a dominant term if $s_{n}>s m$ for all $m>n$.
Case 1: Suppose there are infinitely many dominant terms. Then the subsequence if dominant terms forms a monotone decreasing sequence.
Case 2: There are finitely many dominant terms. Then we can choose $N>0$ such that for all $n>N, s_{n}$ is not dominant. We can construct an increasing sequence as follows :

- pick $n_{1}>N$, and get $s_{n_{1}}$
- pick $n_{2}>n_{1}$ such that $s_{n_{2}} \geq s_{n_{1}}$. This is posible since otherwise $s_{n_{1}}$ would be a dominant term.
- continue in this fashion to achieve a sequence such that $s_{n_{1}} \leq s_{n_{2}} \leq s_{n_{3}} \leq$

Theorem 6.3 (Bolzano - Weierstrass). Every bounded sequence has a convergent subsequence.

Proof 1. Assume WLOG, that the sequence is bounded in $[0,1]$. We may write $[0,1]=\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$. Then $\left(s_{n}\right)$ must visit one of the intervals infinitely many times. We can then subdivide that interval and continue in a similar fashion to obtain a decreasing sequence of closed intervals $I_{0}=[0,1] \supset I_{1} \supset I_{2} \supset \cdots$ with $\left|I_{n}\right|=2^{-n}$. Let $A_{n}=\left\{n \mid n \in I_{n}\right\}$. Then $A_{k} \subset A_{k-1}$. The sequence $\left(a_{k, k}\right)_{k}$ is a cauchy sequence since $\forall \varepsilon>0, \exists k_{0}$ such that $\frac{1}{2^{k_{0}}} \leq \varepsilon$ for $k_{n}>k_{0}$.

Proof 2. Every sequence contains a monotone sequence so since the sequence is bounded the given monotone sequence converges.

Proposition 6.4. Let $\left(s_{n}\right)$ be a sequence, the $\lim \sup s_{n}$ is a subsequential limit.

Proof. We know that for $\varepsilon>0, N>0, \exists n_{0}>N$ such that $\left|s_{n_{0}}-\lim \sup s_{n}\right|<\varepsilon$. Thus by the alternative of a subsequential $\operatorname{limit}, \lim \sup s_{n}$ is a subsequential limit.

Remark 6.5. This sequence can be refined to a montone sequence by considering the monotone subsequence of the generated sequence.

Theorem 6.6. Let $\left(s_{n}\right)$ be a bounded sequence and let S by the set of subsequential limits of $\left(s_{n}\right)$. Then:
(a) $\sup S=\limsup s_{n}, \inf S=\liminf s_{n}$ and $\limsup s_{n}, \lim \inf s_{n} \in S$.
(b) $\lim s_{n}$ exists iff S contains only one element.
(c) S is closed under taking limits. ie. if there is a convergent sequence $t_{n} \rightarrow t$ with $t_{n} \in S$, we will have $t \in S$.

Proof.

1. For $t \in S$ suppose $s_{n_{k}} \rightarrow t$. Then $\limsup s_{n_{k}}=\lim \inf s_{n_{k}}$. Since $\left\{s_{n_{k}}: k>N\right\} \subseteq\left\{s_{n}: n>N\right\}, \liminf s_{n} \leq \liminf s_{n_{k}}=\limsup s_{n_{k}} \leq$ $\lim \sup s_{n}$. Thus, $\liminf s_{n} \leq \inf S \leq \sup S \leq \limsup s_{n}$. Since by the previous proposition $\limsup s_{n}, \lim \inf s_{n} \in S$, $\sup S=\limsup s_{n}$ and $\inf S=\liminf s_{n}$.
2. This follows since $s_{n} \rightarrow s$ iff $\limsup s_{n}=\lim \inf s_{n}$.
3. We will show t is a subsequential limit of $\left(s_{n}\right)$. We want to show, $\forall \varepsilon>0$, $\forall N>0, \exists n_{0}>N$ such that $\left|s_{n_{0}}-t\right| \leq \varepsilon$.
Since $t_{n} \rightarrow t, \exists N$ such that $\forall n>N,\left|t_{n}-t\right| \leq \frac{\varepsilon}{2}$. For $n_{1}<N$, there are infinitely many s_{n} with $\left|s_{n}-t_{n_{1}}\right| \leq \frac{\varepsilon}{2}$. Thus, $\exists n_{0}$ such that $\left|s_{n_{0}}-t_{n_{1}}\right| \leq \frac{\varepsilon}{2}$. Thus, $\left|s_{n_{0}}-t\right| \leq\left|s_{n_{0}}-t_{n_{1}}\right|+\left|t_{n_{1}}-t\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
