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Exercise 1.1. Ross 1.10

Proof. Observe that 4n − 1 = 2n + (2n − 1) so the sum can be rewritten as
(2n+ 1) + (2n+ 3) + · · ·+ (2n+ (2n− 1))
2(1)− 1 = 1 so for n = 1 (2(1) + 1) = 3 = 3(12)
Assume P (n) is true. Consider the sum (2(n + 1) + 1) + (2(n + 3) + 1) +
· · · + (2(n + 1) + (2(n + 1) − 1) = (2n + 3) + (2n + 5) + · · · + (2n − 1) +
(2n + (2n + 1)) + (2n + (2n + 3)). Using the IH, this can be rewritten as
3n2 − (2n+1)+ (4n+1)+ (4n+3) = 3n2 +6n+3 = 3(n+1)2, as desired.

Exercise 1.2. Ross 1.12

Proof. a. (a+ b)1 = a+ b =
(
1
0

)
a+

(
1
1

)
b

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + 2ab+ b2 =
(
2
0

)
a2 =

(
2
1

)
ab+

(
2
2

)
b2

(a+ b)3 = a3 + a2b+ aba+ ab2 + ba2 + bab+ b2a+ b3 = a3 +3a2b+3b2a+ b3 =(
3
0

)
a3 +

(
3
1

)
ab2 +

(
3
2

)
ab2 +

(
3
3

)
b3

b.
(
n
k

)
+
(

n
k−1

)
= n!

k!(n−k)!+
n!

(k−1)!(n−k+1)! =
n!

k(k−1)!(n−k)!+
n!

(k−1)!(n−k)!(n−k+1) =
(k)n!+(n−k+1)n!

(k)!(n−k+1)! = (n+1)!
k!(n+1−k)! =

(
n+1
k

)
c. the case where n = 1 follows from part a
Assume P (n) is true. Consider (a + b)n+1. By the IH, this is equivalent to
(a + b)(a + b)n = (a + b)(

(
n
0

)
an +

(
n
1

)
an−1b + · · · +

(
n

n−1

)
abn−1 +

(
n
n

)
bn) =(

n
0

)
an+1 + (

(
n
0

)
+
(
n
1

)
)anb+ (

(
n
1

)
+
(
n
2

)
)an−1b2 + · · ·+ (

(
n

n−1

)
+
(
n
n

)
)abn +

(
n
n

)
bn.

Since
(
n
0

)
= 1 =

(
n+1
0

)
and

(
n
n

)
= 1 =

(
n+1
n+1

)
, this is equivalent to(

n+1
0

)
an+1 +

(
n+1
1

)
anb+

(
n+1
2

)
an−2b+ · · ·+

(
n+1
n

)
abn +

(
n+1
n+1

)
bn+1

Exercise 1.3. Ross 2.1

Proof. Observe that for any positive integer c,
√
c solves the equation x2−c = 0

so we can apply the rational roots test to this polynomial to determine if c is
rational.√
3 solves x2 − 3 = 0 so the possible rational roots are ±1,±3. Since 1 =

√
1 <√

3 <
√
4 = 2, none of these roots work so

√
3 is irrational.

Similarly since 5, 7, and 31 are all prime, using the bounds 2 =
√
4 <

√
5 <

1



√
3 = 9, 2 =

√
4 <

√
7 <

√
3 = 9, and 5 =

√
25 <

√
31 <

√
36 = 6 we can see

that
√
5,
√
7, and

√
31 are irrational.

For
√
24, observe that

√
24 = 2

√
6 so it suffices to show

√
6 is irrational. The

polynomial equation x2 − 6 = 0 has possible roots ±1,±2,±3,±6. Observing
2 =

√
4 <

√
6 <

√
9 = 3, gives the desired result.

Exercise 1.4. Ross 2.2

Proof. Since 2, 5, and 13 are all prime, using the inequalities 1 = 3
√
1 < 3

√
2 <

3
√
8 = 2, 1 = 7

√
1 < 7

√
5 < 7

√
128 = 2, 1 = 4

√
1 < 4

√
13 < 4

√
16 = 2 and similar

reasoning as 2.1 we can conclude all are irrational.

Exercise 1.5. Ross 2.7

Proof. a. Suppose
√
4 + 2

√
3 −

√
3 = x. Rearranging yields this yields x2 +

2
√
3x − 1 − 2

√
3 = 0 which implies the sum is rational. So if we assume x is

rational, x2 is rational so we can subtract out x2 − 1 and still have a rational
number. Thus 2

√
3(x− 1) is rational. Since we assumed x to be rational, x− 1

is rational. So since 2
√
3 is irrational in order for the product to be rational we

must have 2
√
3(x − 1) = 0 so x = 1. Plugging this in, we see it satisfies the

original relation so x = 1.

b. Suppose
√

6 + 4
√
2−

√
2 = x. Rearranging yields this yields x2+2

√
2x−4−

4
√
2 = 0. Applying similar reasoning as part a we see 2

√
2x−4

√
2 = 2

√
2(x−2)

is rational so x = 2.

Exercise 1.6. Ross Theorem 3.1

Proof. (i). If a+ c = b+ c, then adding (−c) to both sides yields a+ c+(−c) =
b+ c+ (−c) so a+ 0 = b+ 0 so a = b
(ii). Observe a · 0 = a · (0 + 0) = a · 0 + a · 0 so by part (i) a · 0 = 0
(iii). Observe that (−a)b + ab = (−a + a)b = (0)b = 0 so (−a)b is an additive
inverse of ab. Since inverses are unique it follows that (−ab) = −ab.
(iv). By part (iii), (−a)(−b) = −(−ab) which is that additive inverse of −ab.
Since ab is also an additive inverse of −ab, it follows −(−ab) = ab.
(v). If ac = bc with c ̸= 0 then c has a multiplicative inverse c−1. Multiplying
both sides by c−1 yields acc−1 = bcc−1 so a(1) = b(1) so a = b.
(vi). Suppose ab = 0 and assume WLOG a ̸= 0. Observe that ab = 0 = a(0) so
by part (v), it follows that b = 0.

Exercise 1.7. Ross Theorem 3.2

Proof. (i). If a ≤ b observe that a+ (−a− b) ≤ b+ (−a− b) so −b ≤ −a
(ii). If a ≤ b and c ≤ 0, then by part (i), −c ≥ 0 so −ac ≤ −bc so by part (i)
bc ≤ ac
(iii). Follows since 0b = 0 ≤ ab by axiom.
(iv). Either 0 ≤ a or a ≤ 0. If 0 ≤ a, then by part (iii) 0 ≤ a2. If a ≤ 0 then
0 ≤ −a so 0 ≤ (−a)(−a) = a2.
(v). Observe that 1 = 12 so by part (iv), 0 ≤ 12. Also by definition of a field,
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since 0 and 1 are distinct we have 0 ̸= 1 so 0 < 1.
(vi). If 0 < a observe that 0 < a−1a−1 since a−1 ̸= 0 for any a. So multiplying
both sides by a−2 yields 0a−2 = 0 < aa−2 = a−1.
(vii). If 0 < a < b observe that a, b ̸= 0 so they have defined inverses with 0 <
a−1, b−1 by part (vi) so 0 < a−1b−1. Multiplying by a−1b−1 yields 0a−1b−1 <
aa−1b−1 < ba−1b−1 so 0 < b−1 < a−1.
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