MATH 104 HW1

Jad Damaj

January 2022

1 Lec 1

Exercise 1.1. Ross 1.10
Proof. Observe that $4 n-1=2 n+(2 n-1)$ so the sum can be rewritten as $(2 n+1)+(2 n+3)+\cdots+(2 n+(2 n-1))$
$2(1)-1=1$ so for $n=1(2(1)+1)=3=3\left(1^{2}\right)$
Assume $P(n)$ is true. Consider the sum $(2(n+1)+1)+(2(n+3)+1)+$ $\cdots+(2(n+1)+(2(n+1)-1)=(2 n+3)+(2 n+5)+\cdots+(2 n-1)+$ $(2 n+(2 n+1))+(2 n+(2 n+3))$. Using the IH, this can be rewritten as $3 n^{2}-(2 n+1)+(4 n+1)+(4 n+3)=3 n^{2}+6 n+3=3(n+1)^{2}$, as desired.

Exercise 1.2. Ross 1.12
Proof. a. $(a+b)^{1}=a+b=\binom{1}{0} a+\binom{1}{1} b$
$(a+b)^{2}=a^{2}+a b+b a+b^{2}=a^{2}+2 a b+b^{2}=\binom{2}{0} a^{2}=\binom{2}{1} a b+\binom{2}{2} b^{2}$
$(a+b)^{3}=a^{3}+a^{2} b+a b a+a b^{2}+b a^{2}+b a b+b^{2} a+b^{3}=a^{3}+3 a^{2} b+3 b^{2} a+b^{3}=$ $\binom{3}{0} a^{3}+\binom{3}{1} a b^{2}+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}$
b. $\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}=\frac{n!}{k(k-1)!(n-k)!}+\frac{n!}{(k-1)!(n-k)!(n-k+1)}=$ $\frac{(k) n!+(n-k+1) n!}{(k)!(n-k+1)!}=\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k}$
c. the case where $n=1$ follows from part a

Assume $P(n)$ is true. Consider $(a+b)^{n+1}$. By the IH, this is equivalent to $(a+b)(a+b)^{n}=(a+b)\left(\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}\right)=$ $\binom{n}{0} a^{n+1}+\left(\binom{n}{0}+\binom{n}{1}\right) a^{n} b+\left(\binom{n}{1}+\binom{n}{2}\right) a^{n-1} b^{2}+\cdots+\left(\binom{n-1}{n-1}+\binom{n}{n}\right) a b^{n}+\binom{n}{n} b^{n}$. Since $\binom{n}{0}=1=\binom{n+1}{0}$ and $\binom{n}{n}=1=\binom{n+1}{n+1}$, this is equivalent to $\binom{n+1}{0} a^{n+1}+\binom{n+1}{1} a^{n} b+\binom{n+1}{2} a^{n-2} b+\cdots+\binom{n+1}{n} a b^{n}+\binom{n+1}{n+1} b^{n+1}$

Exercise 1.3. Ross 2.1
Proof. Observe that for any positive integer c, \sqrt{c} solves the equation $x^{2}-c=0$ so we can apply the rational roots test to this polynomial to determine if c is rational.
$\sqrt{3}$ solves $x^{2}-3=0$ so the possible rational roots are $\pm 1, \pm 3$. Since $1=\sqrt{1}<$ $\sqrt{3}<\sqrt{4}=2$, none of these roots work so $\sqrt{3}$ is irrational.
Similarly since 5,7 , and 31 are all prime, using the bounds $2=\sqrt{4}<\sqrt{5}<$
$\sqrt{3}=9,2=\sqrt{4}<\sqrt{7}<\sqrt{3}=9$, and $5=\sqrt{25}<\sqrt{31}<\sqrt{36}=6$ we can see that $\sqrt{5}, \sqrt{7}$, and $\sqrt{31}$ are irrational.
For $\sqrt{24}$, observe that $\sqrt{24}=2 \sqrt{6}$ so it suffices to show $\sqrt{6}$ is irrational. The polynomial equation $x^{2}-6=0$ has possible roots $\pm 1, \pm 2, \pm 3, \pm 6$. Observing $2=\sqrt{4}<\sqrt{6}<\sqrt{9}=3$, gives the desired result.

Exercise 1.4. Ross 2.2
Proof. Since 2, 5, and 13 are all prime, using the inequalities $1=\sqrt[3]{1}<\sqrt[3]{2}<$ $\sqrt[3]{8}=2,1=\sqrt[7]{1}<\sqrt[7]{5}<\sqrt[7]{128}=2,1=\sqrt[4]{1}<\sqrt[4]{13}<\sqrt[4]{16}=2$ and similar reasoning as 2.1 we can conclude all are irrational.

Exercise 1.5. Ross 2.7
Proof. a. Suppose $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=x$. Rearranging yields this yields $x^{2}+$ $2 \sqrt{3} x-1-2 \sqrt{3}=0$ which implies the sum is rational. So if we assume x is rational, x^{2} is rational so we can subtract out $x^{2}-1$ and still have a rational number. Thus $2 \sqrt{3}(x-1)$ is rational. Since we assumed x to be rational, $x-1$ is rational. So since $2 \sqrt{3}$ is irrational in order for the product to be rational we must have $2 \sqrt{3}(x-1)=0$ so $x=1$. Plugging this in, we see it satisfies the original relation so $x=1$.
b. Suppose $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=x$. Rearranging yields this yields $x^{2}+2 \sqrt{2} x-4-$ $4 \sqrt{2}=0$. Applying similar reasoning as part a we see $2 \sqrt{2} x-4 \sqrt{2}=2 \sqrt{2}(x-2)$ is rational so $x=2$.

Exercise 1.6. Ross Theorem 3.1
Proof. (i). If $a+c=b+c$, then adding $(-c)$ to both sides yields $a+c+(-c)=$ $b+c+(-c)$ so $a+0=b+0$ so $a=b$
(ii). Observe $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0$ so by part (i) $a \cdot 0=0$
(iii). Observe that $(-a) b+a b=(-a+a) b=(0) b=0$ so $(-a) b$ is an additive inverse of $a b$. Since inverses are unique it follows that $(-a b)=-a b$.
(iv). By part (iii), $(-a)(-b)=-(-a b)$ which is that additive inverse of $-a b$. Since $a b$ is also an additive inverse of $-a b$, it follows $-(-a b)=a b$.
(v). If $a c=b c$ with $c \neq 0$ then c has a multiplicative inverse c^{-1}. Multiplying both sides by c^{-1} yields $a c c^{-1}=b c c^{-1}$ so $a(1)=b(1)$ so $a=b$.
(vi). Suppose $a b=0$ and assume WLOG $a \neq 0$. Observe that $a b=0=a(0)$ so by part (v), it follows that $b=0$.

Exercise 1.7. Ross Theorem 3.2
Proof. (i). If $a \leq b$ observe that $a+(-a-b) \leq b+(-a-b)$ so $-b \leq-a$
(ii). If $a \leq b$ and $c \leq 0$, then by part (i), $-c \geq 0$ so $-a c \leq-b c$ so by part (i) $b c \leq a c$
(iii). Follows since $0 b=0 \leq a b$ by axiom.
(iv). Either $0 \leq a$ or $a \leq \overline{0}$. If $0 \leq a$, then by part (iii) $0 \leq a^{2}$. If $a \leq 0$ then $0 \leq-a$ so $0 \leq(-a)(-a)=a^{2}$.
(v). Observe that $1=1^{2}$ so by part (iv), $0 \leq 1^{2}$. Also by definition of a field,
since 0 and 1 are distinct we have $0 \neq 1$ so $0<1$.
(vi). If $0<a$ observe that $0<a^{-1} a^{-1}$ since $a^{-1} \neq 0$ for any a. So multiplying both sides by a^{-2} yields $0 a^{-2}=0<a a^{-2}=a^{-1}$.
(vii). If $0<a<b$ observe that $a, b \neq 0$ so they have defined inverses with $0<$ a^{-1}, b^{-1} by part (vi) so $0<a^{-1} b^{-1}$. Multiplying by $a^{-1} b^{-1}$ yields $0 a^{-1} b^{-1}<$ $a a^{-1} b^{-1}<b a^{-1} b^{-1}$ so $0<b^{-1}<a^{-1}$.

