MATH 104 HW10

Jad Damaj

April 22, 2022

1 Hw 10

Exercise 1.1 (Ross 33.4). Give an example of a function f on [0, 1] that is not integrable for which |f| is integrable.

 $\begin{array}{l} \textit{Proof. Consider the function } f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0,1] \\ -1 & x \notin \mathbb{Q} \cap [0,1] \end{cases} & \text{Observe that for all partitions } P, U(P,f) = 1 \text{ but } L(P,f) = -1 \text{ so the function is not integrable.} \\ \text{Now, observe that } |f(x)| = 1 \text{ for all } x \in [0,1] \text{ so } |f| \text{ is integrable and } U(P,f) = L(P,f) = 1. \end{cases} \end{array}$

Exercise 1.2 (Ross 33.7). Let f be a bounded function on [a, b], so that there exists B > 0 such that |f(x)| < B for all $x \in [a, b]$

(a) Show

$$U(f^{2}, P) - L(f^{2}, P) \le 2B[U(f, P) - L(f, P)]$$

for all partitions P of [a,b].

(b) Show that if f is integrable on [a, b], then f^2 is also integrable on [a, b].

Proof.

(a) Suppose f is bounded on [a, b] and |f(x)| < B and let P be an arbitrary partition. First, observe that on each closed interval in the partition $[t_{i-1}, t_i]$, there is some x_i , y_i such that $f^2(x_i) = \sup_{[t_{i-1}, t_i]} f^2$ and $f^2(y_i) = \inf_{[t_{i-1}, t_i]} f^2$. Now, since $f(x_i) + f(y_i) \leq 2B$ and

$$\begin{aligned} (f(x_i) - f(y_i)) &\leq \sup_{[t_{i-1}, t_i]} f - \inf_{[t_{i-1}, t_i]} f, \text{ it follows that} \\ U(f^2, P) - L(f^2, P) &= \sum_{i=1}^n (f(x_i)^2 - f(y_i)^2)(t_i - t_{i-1}) \\ &= \sum_{i=1}^n ((f(x_i) + f(y_i))(f(x_i) - f(y_i))(t_i - t_{i-1})) \\ &\leq 2B \sum_{i=1}^n (f(x_i) - f(y_i))(t_i - t_{i-1}) \\ &\leq 2B(\sum_{i=1}^n \sup_{[t_{i-1}, t_i]} f - \inf_{[t_{i-1}, t_i]} f)(t_i - t_{i-1}) \\ &= 2B[U(f, P) - L(f, P)] \end{aligned}$$

as desired.

(b) Next, if f is integrable on [a, b], then for arbitrary $\varepsilon > 0$ there exists a partition P such that $U(f, P) - L(f, P) \leq \frac{\varepsilon}{2B}$. Now, for this same partition, $U(f^2, P) - L(f^2, P) \leq 2B[U(f, P) - L(f, P)] \leq 2B\frac{\varepsilon}{2B} = \varepsilon$. Hence, since ε was arbitrary, it follows that $U(f^2) = L(f^2)$ so f^2 is integrable on [a, b].

Exercise 1.3 (Ross 33.13). Suppose f and g are continuous functions on [a, b] such that $\int_a^b f = \int_a^b g$. Prove there exists x in (a, b) such that f(x) = g(x).

Proof. First, observe that since f and g are integrable, so is f - g and $\int_b^a (f - g) = 0$. Further, since f and g are continuous, f - g is as well so by the intermediate value theorem for integrals, there is some x in (a, b) such that $(f - g)(x) = \frac{1}{b-a} \int_a^b (f - g) = 0$. Thus, for this same x, f(x) - g(x) = 0 so f(x) = g(x), as desired.

Exercise 1.4 (Ross 35.4). Let $F(t) \sin t$ for $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Calculate

(a) $\int_0^{\pi/2} x dF(x)$ (b) $\int_{-\pi/2}^{\pi/2} x dF(x)$

Proof.

1. First, observe that applying integration by parts, with $F_1(x) = x$, $F_2(x) = \sin x$ we see that

$$\int_0^{\pi/2} x dF_2(x) = \frac{\pi}{2} \sin(\frac{\pi}{2}) - 0 \sin(0) - \int_0^{\pi/2} \sin x dx$$
$$= \frac{\pi}{2} - 0 - 1 = \frac{\pi}{2} - 1$$

2. As above, observe that

$$\int_{-\pi/2}^{\pi/2} x dF_2(x) = \frac{\pi}{2} \sin(\frac{\pi}{2}) - \frac{-\pi}{2} \sin(\frac{-\pi}{2}) - \int_{-\pi/2}^{\pi/2} \sin x dx$$
$$= \frac{\pi}{2} - \frac{\pi}{2} - 0 = 0$$

Exercise 1.5 (Ross 35.9). Let f by continuous on [a,b]. Show, $\int_a^b f dF = f(x)[F(a) - F(b)]$ for some x in [a,b].

Proof. Let $M = \sup_{[a,b]} f$ and $m = \inf_{[a,b]} f$. Then for $x \in [a,b]$, $m \leq f(x) \leq M$. This implies that $\int_a^b m dF \leq \int_a^b f dF \leq \int_a^b M dF$ so $m[F(a) - F(b)] \leq \int_a^b f dF \leq M[F(a) - F(b)]$ so $m \leq \frac{1}{F(a) - F(b)} \int_a^b f dF \leq M$. Now, since f is continuous and [a,b] is closed f attains both m and M at points $x_0, y_0 \in [a,b]$. Thus, by the intermediate value theorem there is some x such that $x_0 \leq x \leq y_0 \in [a,b]$ and $f(x) = \frac{1}{F(a) - F(b)} \int_a^b f dF$, or equivalently, $[F(a) - F(b)]f(x) = \int_a^b f dF$.