MATH 104 HW10

Jad Damaj

April 22, 2022

1 Hw 10

Exercise 1.1 (Ross 33.4). Give an example of a function f on $[0,1]$ that is not integrable for which $|f|$ is integrable.

Proof. Consider the function $f(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \cap[0,1] \\ -1 & x \notin \mathbb{Q} \cap[0,1]\end{array}\right.$. Observe that for all partitions $P, U(P, f)=1$ but $L(P, f)=-1$ so the function is not integrable. Now, observe that $|f(x)|=1$ for all $x \in[0,1]$ so $|f|$ is integrable and $U(P, f)=$ $L(P, f)=1$.

Exercise 1.2 (Ross 33.7). Let f be a bounded function on $[a, b]$, so that there exists $B>0$ such that $|f(x)|<B$ for all $x \in[a, b]$
(a) Show

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]
$$

for all partitions P of $[\mathrm{a}, \mathrm{b}]$.
(b) Show that if f is integrable on $[a, b]$, then f^{2} is also integrable on $[a, b]$.

Proof.
(a) Suppose f is bounded on $[a, b]$ and $|f(x)|<B$ and let P be an arbitrary partition. First, observe that on each closed interval in the partition $\left[t_{i-1}, t_{i}\right]$, there is some x_{i}, y_{i} such that $f^{2}\left(x_{i}\right)=\sup _{\left[t_{i-1}, t_{i}\right]} f^{2}$ and $f^{2}\left(y_{i}\right)=\inf _{\left[t_{i-1}, t_{i}\right]} f^{2}$. Now, since $f\left(x_{i}\right)+f\left(y_{i}\right) \leq 2 B$ and

$$
\begin{aligned}
&\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right) \leq \sup _{\left[t_{i-1}, t_{i}\right]} f-\inf _{\left[t_{i-1}, t_{i}\right]} f, \text { it follows that } \\
& U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=1}^{n}\left(f\left(x_{i}\right)^{2}-f\left(y_{i}\right)^{2}\right)\left(t_{i}-t_{i-1}\right) \\
&=\sum_{i=1}^{n}\left(\left(f\left(x_{i}\right)+f\left(y_{i}\right)\right)\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right)\left(t_{i}-t_{i-1}\right)\right. \\
& \leq 2 B \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(y_{i}\right)\right)\left(t_{i}-t_{i-1}\right) \\
& \leq 2 B\left(\sum_{i=1}^{n} \sup _{\left[t_{i-1}, t_{i}\right]} f-\inf _{\left[t_{i-1}, t_{i}\right]} f\right)\left(t_{i}-t_{i-1}\right) \\
&=2 B[U(f, P)-L(f, P)]
\end{aligned}
$$

as desired.
(b) Next, if f is integrable on $[a, b]$, then for arbitrary $\varepsilon>0$ there exists a partition P such that $U(f, P)-L(f, P) \leq \frac{\varepsilon}{2 B}$. Now, for this same partition, $U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)] \leq 2 B \frac{\varepsilon}{2 B}=\varepsilon$. Hence, since ε was arbitrary, it follows that $U\left(f^{2}\right)=L\left(f^{2}\right)$ so f^{2} is integrable on $[a, b]$.

Exercise 1.3 (Ross 33.13). Suppose f and g are continuous functions on $[a, b]$ such that $\int_{a}^{b} f=\int_{a}^{b} g$. Prove there exists x in (a, b) such that $f(x)=g(x)$.

Proof. First, observe that since f and g are integrable, so is $f-g$ and $\int_{b}^{a}(f-$ $g)=0$. Further, since f and g are continuous, $f-g$ is as well so by the intermediate value theorem for integrals, there is some x in (a, b) such that $(f-g)(x)=\frac{1}{b-a} \int_{a}^{b}(f-g)=0$. Thus, for this same $x, f(x)-g(x)=0$ so $f(x)=g(x)$, as desired.

Exercise 1.4 (Ross 35.4). Let $F(t) \sin t$ for $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Calculate
(a) $\int_{0}^{\pi / 2} x d F(x)$
(b) $\int_{-\pi / 2}^{\pi / 2} x d F(x)$

Proof.

1. First, observe that applying integration by parts, with $F_{1}(x)=x, F_{2}(x)=$ $\sin x$ we see that

$$
\begin{aligned}
\int_{0}^{\pi / 2} x d F_{2}(x) & =\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)-0 \sin (0)-\int_{0}^{\pi / 2} \sin x d x \\
& =\frac{\pi}{2}-0-1=\frac{\pi}{2}-1
\end{aligned}
$$

2. As above, observe that

$$
\begin{aligned}
\int_{-\pi / 2}^{\pi / 2} x d F_{2}(x) & =\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)-\frac{-\pi}{2} \sin \left(\frac{-\pi}{2}\right)-\int_{-\pi / 2}^{\pi / 2} \sin x d x \\
& =\frac{\pi}{2}-\frac{\pi}{2}-0=0
\end{aligned}
$$

Exercise 1.5 (Ross 35.9). Let f by continuous on $[a, b]$. Show, $\int_{a}^{b} f d F=$ $f(x)[F(a)-F(b)]$ for some x in $[a, b]$.

Proof. Let $M=\sup _{[a, b]} f$ and $m=\inf _{[a, b]} f$. Then for $x \in[a, b], m \leq f(x) \leq$ M. This implies that $\int_{a}^{b} m d F \leq \int_{a}^{b} f d F \leq \int_{a}^{b} M d F$ so $m[F(a)-F(b)] \leq$ $\int_{a}^{b} f d F \leq M[F(a)-F(b)]$ so $m \leq \frac{1}{F(a)-F(b)} \int_{a}^{b} f d F \leq M$. Now, since f is continuous and $[a, b]$ is closed f attains both m and M at points $x_{0}, y_{0} \in[a, b]$. Thus, by the intermediate value theorem there is some x such that $x_{0} \leq x \leq$ $y_{0} \in[a, b]$ and $f(x)=\frac{1}{F(a)-F(b)} \int_{a}^{b} f d F$, or equivalently, $[F(a)-F(b)] f(x)=$ $\int_{a}^{b} f d F$.

