MATH 104 HW11

Jad Damaj
May 1, 2022

1 Hw11l

Exercise 1.1 (Ross 34.2). Calculate

(a) limg—o = [ ¢ dt

(b) limy,_0 hf3+h et dt

Proof.

(a) First, note that e’ is mtegrable since f(t) = t? is integrable and g( )=¢!

is continuous so g(f(t)) = e is integrable. Let F(z) = [/ e et’dt and
observe that

F(z) — F(0)
10 —
F(0) }lg%) z—0
[Fetdt — [) et dt
. 0 0
o ilg%) x
T 42
= lim =9 dt
x—0 €T
= lim — . etzdt
z—0 1 0

Thus, since f is integrable and continuous at 0, F'(0) = f(0) = 1 so
lim, o L [V et dt =1



(b) As above, we note that e’ is integrable and let F(z) = Iy e’ dt.

F(3+h) — F(3)

F'(3) =l
(3) hlg%) h
3+h 42 3 42
i Jietdt — [ et dt
h—0 h
3+h +2
[ et dt
= lim 8~
hlg%) h
1 3+h
= lim 7/ et2dt
h—0 h J3

Thus, since f is integrable and continuous at 3, F'(3) = f(3) = € so
limh_w % f33+h €t2 dt = 89.

Exercise 1.2 (Ross 34.5). Let f be a continuous function on R and define
x+1
F(z)= / f)ydt forx € R
r—1
Show F is differentiable on R and compute F”.
Proof. Note that since f is continuous on R it is integrable. Observe that

F(z+h)— F(z)

F’ =1l
(@) = fim, h
z+1+h x+1
N A Ok N (O
= lim
h—0 h
T h xr— h
_ hm fm:11+ f(t)dt - fxfll—i_ f(t)dt
T 0 h
T h r—
. fa:::11+ f(t)dt . fm711+h f(t)dt
= lim —4——— — lim &4 ———
h—0 h h—0 h

=fle+1) = flz-1)

Here the last equality follows from applying the second fundamental theorem of

calculus to Fy(y) = jﬂ f(t)dt and Fy(y) = [Y | f(t)dt. O

Exercise 1.3 (Ross 34.7). Use change of variables to integrate fol xV1 — x2dz.

Proof. Let w = 1 — 22, then du = —2x so fol 21 — 22dx = flo—%\/ﬂdu =
1
Jo 3Vudu = 2u3/2|f = 1. O



Exercise 1.4 (Rudin 6.15). Suppose that f is a real, continuously differentiable
function on [a,b], f(a) = f(b) =0, and

/ab P (a)de = 1.

/a () fa)da =

/ 1 @) / " P(a)d() > 1

Proof. First, applying integration by parts with u(x) = z and v(z) = f%(z), we
see that «/(x) =1 and v'(z) = 2f'(z) f(x) so

Prove that

(SIS

and that

b b
/ (@) f(@)de = § / (2 () () de

= (00 o) - [ Pa)

= 40-0-1)
1

2

For the second inequality, applying 10 (c), we see that

’/ Nz f(x dx‘ < / |f/ (x 2dx) 2-(/; \xf(m)\2dx)l/2
([ rwra)” ([ rwe)”

a a

SO

so squaring both sides, we see

<(f Pds) - ( / 2P (o))

Now, we note that by 10(a), the inequality is an equality iff (f/(x))? = (zf(x))?.
So to show the inequality is strict, we suppose for contradiction it is an equality
and consider two cases:

Case 1 - 0 ¢ [a,b]: First note that f(z) must be nonzero at some point in
¢ € (a,b) since the its integral is nonzero. Let a’ and &’ be such that o’ < ¢ <V,
f(a") = f(b') =0, and f has no other zeros between a’ and b’. Then, applying
the mean value theorem on [a/, b], there must be some ¢’ such that f/'(¢’) = 0 but
then since (f/(x))? = (zf(x))? and = # 0 we must have f(z) = 0 contradicting
our choice of @’ and ¥'. Hence, there can be no such a’ and ¥ which implies f
is the zero function, contradicting our assumption.

=



Case 2- 0 € [a,b]: By the above discussion, since f(a) = f(b) = 0, we can
assume WLOG f has no positive zeros other than b and no positive zeros other
than a since if it did the function would be identically zero between them. Also,
we not that in order to satisfy the mean value theorem f’(0) = 0. Further,
x = 0 is the only critical point of f, otherwise f would have another 0.

Now, we can assume f has a maximum at 0 (the case for minimum is analogous).
This implies that f(x) > 0 for 2 € (a,b). Since f has no other critical points,
it is strictly decreasing on (0, b] and strictly increasing on [a,0). So on (0,b) we
see that f/'(z) = —xf(x) so we can consider f(x)— f'(z) = f(x)+af(z) = (1+
x) f(x). This equals zero only when z—1 or f(z) = 0. Now since f(0) > 0 (since
it has a maximum at 0 and is not the zero function), we see that f(z)— f'(z) > 0
on (0,b) which implies |f(x)| > |f/(x)|. Similarly, on (a,0) using f'(z) = zf(z)
and f(x) — f'(z) = f(z) — zf(x) we see that |f(x)| > |f'(x)|. Finally, since
either a < 0 or b > 0, there exists a point « € (—1,1) such that x # 0. By above,
at this z, |f(x)| > |f'(z)| and since |z| < 1 it follows |f(z)| > |zf'(x)| = |f(z)|
which is a contradiction.

Thus, in both cases we get a contradiction so it cannot be an equality. O

Exercise 1.5 (Rudin 6.16). For 1 < s < oo, define

=1
C(s) = s
n=1
Prove that
(a) ¢(s) =5 [ Lthrdo
and that

(b) ¢(s) = =25 — s [ g,

S

where [z] denotes the greatest integer < x.
Prove that the integral in (b) converges for all s > 0.

Proof.

(a) To show that ((s) = s [ x[jﬂldx we consider ss le x[ﬁll dx for integers
N as N — oco. Observe that

N 2 3 N
[z] 1 2 N-1
8/1 xs+1dx:8 ! ms+1da:+s , Fd@w-..._i_s _1de)

N
1 1 1 1 1 1
= 1(— — — 22— — — N-1(——— —
(f5 = 39) F 2 =50+ (V= D=y ~
N-1
1 1
2 ( T
S
- ns stl
n=1




This implies that

N N [e%S)
1 2] 1 1
e[ = 3

n=N+1

As N — o0, both of these terms approach 0 which gives the desired
equality.

(b) Next, observe that

s ©x — [x] s <z < x]
3—1_5/1 xstl de 8_1—5/1 x5+1+8/1 :c”ldx

The above integral Converges for all s > 0 since 0 < z—[z] < 1 so
0< [ xsﬂ Do < [ =4+ and [° i converges.

O
Exercise 1.6. Let f : [0,1] — R be given by

0 ife=0
J(@) = {sin(l/x) if v € (0,1]

And let «: [0,1] — R be given by

(2) 0 ifxz=0
a(z) = i .
ZnGN,l/n<z 27" ifz € (0,1]

Prove that f is integrable with respect to a on [0, 1].

Proof. Observe that since f is bounded, and has finitely many discontinuities,
it suffices to show that «(x) is continuous when f is not. Since f is only
discontinuous at x = 0, we will show «(z) is continuous at z = 0.

Since a(z) = 0, for e > 0 we will show there is a 6 > 0 such that if y € [0,1]
and |z —y| <0, |a(y)] <e.

Let £ > 0 be arbitrary. First, note that since Y00 27% = (5)"!, there is some
N such that for all m > N, Zl S a2 = (3)m! < e So taking § = %, we see
that if |z —y| < d, y € [0, 5)501fa<yform6Nwehave%< +so N <mso
the sum of all such m is (%)m"’l < & by choice of N. Thus, a(z) is continuous
at 0, as desired. O
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