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Exercise 1.1 (Ross 34.2). Calculate

(a) limx→0
1
x

∫ x

0
et

2

dt

(b) limh→0
1
h

∫ 3+h

3
et

2

dt

Proof.

(a) First, note that et
2

is integrable since f(t) = t2 is integrable and g(t) = et

is continuous so g(f(t)) = et
2

is integrable. Let F (x) =
∫ x

0
et

2

dt and
observe that

F ′(0) = lim
x→0

F (x)− F (0)

x− 0

= lim
x→0

∫ x

0
et

2

dt−
∫ 0

0
et

2

dt

x

= lim
x→0

∫ x

0
et

2

dt

x

= lim
x→0

1

x

∫ x

0

et
2

dt

Thus, since f is integrable and continuous at 0, F ′(0) = f(0) = 1 so

limx→0
1
x

∫ x

0
et

2

dt = 1
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(b) As above, we note that et
2

is integrable and let F (x) =
∫ x

3
et

2

dt.

F ′(3) = lim
h→0

F (3 + h)− F (3)

h

= lim
h→0

∫ 3+h

3
et

2

dt−
∫ 3

3
et

2

dt

h

= lim
h→0

∫ 3+h

3
et

2

dt

h

= lim
h→0

1

h

∫ 3+h

3

et
2

dt

Thus, since f is integrable and continuous at 3, F ′(3) = f(3) = e9 so

limh→0
1
h

∫ 3+h

3
et

2

dt = e9.

Exercise 1.2 (Ross 34.5). Let f be a continuous function on R and define

F (x) =

∫ x+1

x−1

f(t)dt forx ∈ R

Show F is differentiable on R and compute F ′.

Proof. Note that since f is continuous on R it is integrable. Observe that

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

∫ x+1+h

x−1+h
f(t)dt−

∫ x+1

x−1
f(t)dt

h

= lim
h→0

∫ x+1+h

x+1
f(t)dt−

∫ x−1+h

x−1
f(t)dt

h

= lim
h→0

∫ x+1+h

x+1
f(t)dt

h
− lim

h→0

∫ x−1+h

x−1
f(t)dt

h

= f(x+ 1)− f(x− 1)

Here the last equality follows from applying the second fundamental theorem of
calculus to F1(y) =

∫ y

x+1
f(t)dt and F2(y) =

∫ y

x−1
f(t)dt.

Exercise 1.3 (Ross 34.7). Use change of variables to integrate
∫ 1

0
x
√
1− x2dx.

Proof. Let u = 1 − x2, then du = −2x so
∫ 1

0
x
√
1− x2dx =

∫ 0

1
− 1

2

√
udu =∫ 1

0
1
2

√
udu = 1

3u
3/2|10 = 1

3 .
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Exercise 1.4 (Rudin 6.15). Suppose that f is a real, continuously differentiable
function on [a, b], f(a) = f(b) = 0, and∫ b

a

f2(x)dx = 1.

Prove that ∫ b

a

xf ′(x)f(x)dx = − 1
2

and that ∫ b

a

[f ′(x)]2dx ·
∫ b

a

x2f2(x)d(x) > 1
4 .

Proof. First, applying integration by parts with u(x) = x and v(x) = f2(x), we
see that u′(x) = 1 and v′(x) = 2f ′(x)f(x) so∫ b

a

xf ′(x)f(x)dx = 1
2

∫ b

a

x(2f ′(x)f(x))dx

= 1
2

(
b(f2(b))− a(f2(a))−

∫ b

a

f2(x)dx
)

= 1
2 (0− 0− 1)

= − 1
2

For the second inequality, applying 10 (c), we see that∣∣∣ ∫ b

a

(f ′(x))(xf(x))dx
∣∣∣ ≤ (∫ b

a

|f ′(x)|2dx
)1/2

·
(∫ b

a

|xf(x)|2dx
)1/2

so

| − 1
2 | ≤

(∫ b

a

[f ′(x)]2dx
)1/2

·
(∫ b

a

x2f2(x)dx
)1/2

so squaring both sides, we see

1
4 ≤

(∫ b

a

[f ′(x)]2dx
)
·
(∫ b

a

x2f2(x)dx
)

Now, we note that by 10(a), the inequality is an equality iff (f ′(x))2 = (xf(x))2.
So to show the inequality is strict, we suppose for contradiction it is an equality
and consider two cases:
Case 1 - 0 ̸∈ [a, b]: First note that f(x) must be nonzero at some point in
c ∈ (a, b) since the its integral is nonzero. Let a′ and b′ be such that a′ < c < b′,
f(a′) = f(b′) = 0, and f has no other zeros between a′ and b′. Then, applying
the mean value theorem on [a′, b′], there must be some c′ such that f ′(c′) = 0 but
then since (f ′(x))2 = (xf(x))2 and x ̸= 0 we must have f(x) = 0 contradicting
our choice of a′ and b′. Hence, there can be no such a′ and b′ which implies f
is the zero function, contradicting our assumption.
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Case 2- 0 ∈ [a, b]: By the above discussion, since f(a) = f(b) = 0, we can
assume WLOG f has no positive zeros other than b and no positive zeros other
than a since if it did the function would be identically zero between them. Also,
we not that in order to satisfy the mean value theorem f ′(0) = 0. Further,
x = 0 is the only critical point of f , otherwise f would have another 0.
Now, we can assume f has a maximum at 0 (the case for minimum is analogous).
This implies that f(x) > 0 for x ∈ (a, b). Since f has no other critical points,
it is strictly decreasing on (0, b] and strictly increasing on [a, 0). So on (0, b) we
see that f ′(x) = −xf(x) so we can consider f(x)− f ′(x) = f(x)+xf(x) = (1+
x)f(x). This equals zero only when x−1 or f(x) = 0. Now since f(0) > 0 (since
it has a maximum at 0 and is not the zero function), we see that f(x)−f ′(x) > 0
on (0, b) which implies |f(x)| > |f ′(x)|. Similarly, on (a, 0) using f ′(x) = xf(x)
and f(x) − f ′(x) = f(x) − xf(x) we see that |f(x)| > |f ′(x)|. Finally, since
either a < 0 or b > 0, there exists a point x ∈ (−1, 1) such that x ̸= 0. By above,
at this x, |f(x)| > |f ′(x)| and since |x| < 1 it follows |f(x)| > |xf ′(x)| = |f(x)|
which is a contradiction.
Thus, in both cases we get a contradiction so it cannot be an equality.

Exercise 1.5 (Rudin 6.16). For 1 < s < ∞, define

ζ(s) =

∞∑
n=1

1

ns
.

Prove that

(a) ζ(s) = s
∫∞
1

[x]
xs+1 dx

and that

(b) ζ(s) = s
s−1 − s

∫∞
1

x−[x]
xs+1 dx,

where [x] denotes the greatest integer ≤ x.
Prove that the integral in (b) converges for all s > 0.

Proof.

(a) To show that ζ(s) = s
∫∞
1

[x]
xs+1 dx we consider ss

∫ N

1
[x]

xs+1 dx for integers
N as N → ∞. Observe that

s

∫ N

1

[x]

xs+1
dx = s

∫ 2

1

1

xs+1
dx+ s

∫ 3

2

2

xs+1
dx+ · · ·+ s

∫ N

N−1

N − 1

xs+1
dx

)
= 1(

1

1s
− 1

2s
) + 2(

1

2s
− 1

3s
) + · · ·+ (N − 1)(

1

(N − 1)s
− 1

Ns
)

=

N−1∑
n=1

1

ns
− (N − 1)

1

Ns

=

N∑
n=1

1

ns
− 1

Ns−1
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This implies that∣∣∣ N∑
n=1

1

ns
− s

∫ N

1

[x]

xs+1
dx

∣∣∣ = ∞∑
n=N+1

1

ns
+

1

Ns−1

As N → ∞, both of these terms approach 0 which gives the desired
equality.

(b) Next, observe that

s

s− 1
− s

∫ ∞

1

x− [x]

xs+1
dx =

s

s− 1
− s

∫ ∞

1

x

xs+1
+ s

∫ ∞

1

[x]

xs+1
dx

=
s

s− 1
− s

∫ ∞

1

1

xs
+ ζ(s)

=
s

s− 1
− s

∫ ∞

1

1

xs
+ ζ(s)

=
s

s− 1
− s

s− 1
+ ζ(s)

= ζ(s)

The above integral converges for all s > 0 since 0 ≤ x − [x] ≤ 1 so

0 ≤
∫∞
1

x−[x]
xs+1 dx ≤

∫∞
1

1
xs+1 and

∫∞
1

1
xs+1 converges.

Exercise 1.6. Let f : [0, 1] → R be given by

f(x) =

{
0 if x = 0

sin(1/x) if x ∈ (0, 1]
.

And let α : [0, 1] → R be given by

α(x) =

{
0 if x = 0∑

n∈N,1/n<x 2
−n if x ∈ (0, 1]

.

Prove that f is integrable with respect to α on [0, 1].

Proof. Observe that since f is bounded, and has finitely many discontinuities,
it suffices to show that α(x) is continuous when f is not. Since f is only
discontinuous at x = 0, we will show α(x) is continuous at x = 0.
Since α(x) = 0, for ε > 0 we will show there is a δ > 0 such that if y ∈ [0, 1]
and |x− y| < δ, |α(y)| < ε.
Let ε > 0 be arbitrary. First, note that since

∑∞
i=n 2

−i = ( 12 )
n+1, there is some

N such that for all m > N ,
∑∞

i=m 2−i = ( 12 )
m+1 < ε. So taking δ = 1

N , we see
that if |x−y| < δ, y ∈ [0, δ) so if 1

m < y for m ∈ N we have 1
m < 1

N so N < m so
the sum of all such m is ( 12 )

m+1 < ε by choice of N . Thus, α(x) is continuous
at 0, as desired.
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