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Exercise 1.1. Ross 1.10

Proof. Observe that 4n − 1 = 2n + (2n − 1) so the sum can be rewritten as
(2n+ 1) + (2n+ 3) + · · ·+ (2n+ (2n− 1))
2(1)− 1 = 1 so for n = 1 (2(1) + 1) = 3 = 3(12)
Assume P (n) is true. Consider the sum (2(n + 1) + 1) + (2(n + 3) + 1) +
· · · + (2(n + 1) + (2(n + 1) − 1) = (2n + 3) + (2n + 5) + · · · + (2n − 1) +
(2n + (2n + 1)) + (2n + (2n + 3)). Using the IH, this can be rewritten as
3n2 − (2n+1)+ (4n+1)+ (4n+3) = 3n2 +6n+3 = 3(n+1)2, as desired.

Exercise 1.2. Ross 1.12

Proof. a. (a+ b)1 = a+ b =
(
1
0

)
a+

(
1
1

)
b

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + 2ab+ b2 =
(
2
0

)
a2 =

(
2
1

)
ab+

(
2
2

)
b2

(a+ b)3 = a3 + a2b+ aba+ ab2 + ba2 + bab+ b2a+ b3 = a3 +3a2b+3b2a+ b3 =(
3
0

)
a3 +

(
3
1

)
ab2 +

(
3
2

)
ab2 +

(
3
3

)
b3

b.
(
n
k

)
+
(

n
k−1

)
= n!

k!(n−k)!+
n!

(k−1)!(n−k+1)! =
n!

k(k−1)!(n−k)!+
n!

(k−1)!(n−k)!(n−k+1) =
(k)n!+(n−k+1)n!

(k)!(n−k+1)! = (n+1)!
k!(n+1−k)! =

(
n+1
k

)
c. the case where n = 1 follows from part a
Assume P (n) is true. Consider (a + b)n+1. By the IH, this is equivalent to
(a + b)(a + b)n = (a + b)(

(
n
0

)
an +

(
n
1

)
an−1b + · · · +

(
n

n−1

)
abn−1 +

(
n
n

)
bn) =(

n
0

)
an+1 + (

(
n
0

)
+
(
n
1

)
)anb+ (

(
n
1

)
+
(
n
2

)
)an−1b2 + · · ·+ (

(
n

n−1

)
+
(
n
n

)
)abn +

(
n
n

)
bn.

Since
(
n
0

)
= 1 =

(
n+1
0

)
and

(
n
n

)
= 1 =

(
n+1
n+1

)
, this is equivalent to(

n+1
0

)
an+1 +

(
n+1
1

)
anb+

(
n+1
2

)
an−2b+ · · ·+

(
n+1
n

)
abn +

(
n+1
n+1

)
bn+1

Exercise 1.3. Ross 2.1

Proof. Observe that for any positive integer c,
√
c solves the equation x2−c = 0

so we can apply the rational roots test to this polynomial to determine if c is
rational.√
3 solves x2 − 3 = 0 so the possible rational roots are ±1,±3. Since 1 =

√
1 <√

3 <
√
4 = 2, none of these roots work so

√
3 is irrational.

Similarly since 5, 7, and 31 are all prime, using the bounds 2 =
√
4 <

√
5 <

1



√
3 = 9, 2 =

√
4 <

√
7 <

√
3 = 9, and 5 =

√
25 <

√
31 <

√
36 = 6 we can see

that
√
5,
√
7, and

√
31 are irrational.

For
√
24, observe that

√
24 = 2

√
6 so it suffices to show

√
6 is irrational. The

polynomial equation x2 − 6 = 0 has possible roots ±1,±2,±3,±6. Observing
2 =

√
4 <

√
6 <

√
9 = 3, gives the desired result.

Exercise 1.4. Ross 2.2

Proof. Using the inequalities 1 = 3
√
1 < 3

√
2 < 3

√
8 = 2, 1 = 7

√
1 < 7

√
5 < 7

√
128 =

2, 1 = 4
√
1 < 4

√
13 < 4

√
16 = 2 and similar reasoning as 2.1 we can conclude all

are irrational.

Exercise 1.5. Ross 2.7

Proof. a. Suppose
√
4 + 2

√
3 −

√
3 = x. Rearranging yields this yields x2 +

2
√
3x − 1 − 2

√
3 = 0 which implies the sum is rational. So if we assume x is

rational, x2 is rational so we can subtract out x2 − 1 and still have a rational
number. Thus 2

√
3(x− 1) is rational. Since we assumed x to be rational, x− 1

is rational. So since 2
√
3 is irrational in order for the product to be rational we

must have 2
√
3(x − 1) = 0 so x = 1. Plugging this in, we see it satisfies the

original relation so x = 1.

b. Suppose
√

6 + 4
√
2−

√
2 = x. Rearranging yields this yields x2+2

√
2x−4−

4
√
2 = 0. Applying similar reasoning as part a we see 2

√
2x−4

√
2 = 2

√
2(x−2)

is rational so x = 2.

Exercise 1.6. Ross 3.6

Proof. a. Applying the triangle inequality twice we see |a+b+c| = |(a+b)+c| ≤
|a+ b|+ |c| ≤ |a|+ |b|+ |c|.
b. For n = 1, observe |a1| ≤ |a1| is true.
Suppose P (n) is true and consider |a1 + · · ·+ an + an+1|. Applying the triangle
inequality then the IH we see, |a1+ · · ·+an+an+1| = |(a1+ · · ·+an)+an+1| ≤
|a1 + · · ·+ an|+ |an+1| ≤ |a1|+ · · ·+ |an|+ |an+1|, as desired.

Exercise 1.7. Ross 4.11

Proof. For a, b ∈ R, suppose there finitely many rationals q1, . . . , qn such that
a < q1 < · · · < qn < b. Viewing qn as a real number we see that by the
denseness of Q, there exists a rational number qn+1 such that qn < qn+1 < b.
This contradicts our original assumption, thus there cannot be infinitely many
rational between a and b.

Exercise 1.8. Ross 4.14

Proof. a. It is evident supA + supB is an upper bound since for a + b ∈
A+B, a+ b ≤ supA+ b ≤ supA+ supB. To prove that supA+ supB is the
supremum, it suffices to show that for each ε > 0 there exists c ∈ A + B such
that supA+ supB − ε < c < supA+ supB.
Let ε > 0 be arbitrary. By properties of sup, we can choose a′ and b′ such

2



that supA − ε
2 < a′ < supA and supB − ε

2 < b′ < supB. Since a′ + b′

is an element of A + B, we see that combining theses two inequalities yields
supA+ supB − ε < a′ + b′ < supA+ supB.
b. It is evident inf A+ inf B is a lower bound since for a+ b ∈ A+ B, a+ b ≥
inf A+ b ≥ inf A+ inf B. To prove that inf A+ inf B is the infimum, it suffices
to show that for each ε > 0 there exists c ∈ A+B such that inf A+inf B < c <
inf A+ inf B + ε.
Let ε > 0 be arbitrary. By properties of inf, we can choose a′ and b′ such that
inf A < a′ < inf A + ε

2 and inf B < b′ < inf B + ε
2 . Since a′ + b′ is an element

of A + B, we see that combining theses two inequalities yields inf A + inf B <
a′ + b′ < inf A+ inf B + ε.

Exercise 1.9. Ross 7.5

Proof. a. sn =
√
n2 + 1− n = (

√
n2 + 1− n)

√
n2+1+n√
n2+1+n

= 1√
n2

so lim sn = 0

b. sn =
√
n2 + n − n = (

√
n2 + n − n)(

√
n2+n+n√
n2+n+n

= n√
n2+n+n

=
( 1
n )n

1
n

√
n2+n+n

=
1√

1+ 1
n+1

so lim sn = 1
2

c. sn =
√
4n2 + n−2n = (

√
4n2 + n−2n)

√
4n2+n+2n√
4n2+n+2n

= n√
4n2+n+2n

=
( 1
n )n

( 1
n )

√
4n2+n+2n

=
1√

4+ 1
n+2

so lim sn = 1
4
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