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Exercise 1.1. Ross 1.10

Proof. Observe that 4n — 1 = 2n + (2n — 1) so the sum can be rewritten as

Cn+1)+2n+3)+---+(2n+ (2n—1))

2(1)—1=1soforn=1(2(1)+1) =3 =3(1?)

Assume P(n) is true. Consider the sum (2(n 4+ 1) +1) + (2(n +3) + 1) +
F+ 2+ +2n+1)-1) =CCn+3)+2n+5)+---+2n—-1)+

(2n+ (2n + 1)) + (2n + (2n + 3)). Using the IH, this can be rewritten as

3?2 —(2n+1)+ (dn+1)+ (4n+3) = 3n?> +6n+3 = 3(n+ 1)?, as desired. 0O

Exercise 1.2. Ross 1.12

Proof. a. (a+b)'=a+b=(})a+ ;)b
(a+b)?=a’+ab+ba+b*=a’+2ab+b* = (;)a® = (3)ab+ (5)b

(a+0b)3 = a® + a®b+ aba + ab® + ba® + bab + b%a + b* = a® + 3a®b + 3b%a + b* =
(o)a® + ()ab® + (5)ab? + ()¥°

7 ! n! _ n! n! _

b (0)+ (") = o Bl 1 e Bl o 7 e R ¢ ) e o e
(B)n!+(n—k+L)n! _  (n+1)! _ /nt1
Bt = wmam = (%)

c. the case where n = 1 follows from part a
Assume P(n) is true. Consider (a + b)"*1. By the IH, this is equivalent to
(a+b)(a+b) = (a+b)((g)a" + (a" "o+ -+ (,7y)ab"" ! + ()b") =

n—1
(©)a™ !+ ((6) + (Damb+ (1) + (5))a" 1o+ -+ ((," 1) + (7))ad™ + () b"
Since (8) =1= ("3‘1) and (Z) =1= (ZE), this is equivalent to
(n-gl)anJrl + (n—l‘rl)anb+ (71-21-1)(1717217Jr R ("zl)ab” + (Zii)bn+1 0

Exercise 1.3. Ross 2.1

Proof. Observe that for any positive integer ¢, v/c solves the equation 22 —c = 0
so we can apply the rational roots test to this polynomial to determine if ¢ is
rational.

V/3 solves 2 — 3 = 0 so the possible rational roots are +1,+3. Since 1 = /1 <
V3 < Vih= 2, none of these roots work so /3 is irrational.

Similarly since 5,7, and 31 are all prime, using the bounds 2 = V4 < /5 <



\/§:9,2:\/1<\ﬁ<\/329,and5:\/%<\/ﬁ<\/%:6wecansee
that \/5, \ﬁ, and /31 are irrational.

For \/ﬂ, observe that v/24 = 2v/6 so it suffices to show /6 is irrational. The
polynomial equation z? — 6 = 0 has possible roots 1,42, +3, £6. Observing
2=v4<+v6<+9= 3, gives the desired result. O

Exercise 1.4. Ross 2.2

Proof. Using the inequalities 1 = 1< ¥2< 8= 2, 1= V1< V5 < /128 =
2,1= V1 < V13 < v/16 = 2 and similar reasoning as 2.1 we can conclude all
are irrational. O

Exercise 1.5. Ross 2.7

Proof. a. Suppose V44 23 — /3 = x. Rearranging yields this yields 22 +
2v3z — 1 — 2¢/3 = 0 which implies the sum is rational. So if we assume z is
rational, x2 is rational so we can subtract out 2 — 1 and still have a rational
number. Thus 2v/3(x — 1) is rational. Since we assumed z to be rational, z — 1
is rational. So since 24/3 is irrational in order for the product to be rational we
must have 2v/3(z — 1) = 0 so = 1. Plugging this in, we see it satisfies the
original relation so z = 1.

b. Suppose V6 4+ 4v/2—+/2 = z. Rearranging yields this yields 2 +2v/2z —4 —
44/2 = 0. Applying similar reasoning as part a we see 2v/2x —4v/2 = 2\/§(x —2)
is rational so x = 2. O

Exercise 1.6. Ross 3.6

Proof. a. Applying the triangle inequality twice we see |[a+b+c| = |(a+b)+¢| <
la+ b + [c] < |a] + [b] + |c].

b. For n =1, observe |a;| < |a1] is true.

Suppose P(n) is true and consider |ay + - - -+ an + an+1|. Applying the triangle
inequality then the IH we see, |a1 +- -+ an +anp1]| = |(a1 + -+ an) +ang1] <
lar 4 -+ an| + |ans1| < lar] + -+ + |an| + |any1], as desired. O

Exercise 1.7. Ross 4.11

Proof. For a,b € R, suppose there finitely many rationals q1, ..., g, such that
a < q < - < q, <b. Viewing ¢, as a real number we see that by the
denseness of Q, there exists a rational number g,41 such that ¢, < ¢,+1 < b.
This contradicts our original assumption, thus there cannot be infinitely many
rational between a and b. O

Exercise 1.8. Ross 4.14

Proof. a. It is evident sup A + sup B is an upper bound since for a + b €
A+B,a+b<supA+b<supA-+supB. To prove that sup A + sup B is the
supremum, it suffices to show that for each € > 0 there exists ¢ € A + B such
that sup A +sup B —e < ¢ < sup A 4 sup B.

Let € > 0 be arbitrary. By properties of sup, we can choose a’ and o’ such



that supA — 5 < o’ < supA and supB — § < V' < supB. Since o' + ¥V
is an element of A + B, we see that combining theses two inequalities yields
supA+supB —e<a +b <supA+supB.

b. It is evident inf A + inf B is a lower bound since fora+be€ A+ B, a+b >
inf A+ b > inf A + inf B. To prove that inf A 4 inf B is the infimum, it suffices
to show that for each € > 0 there exists ¢ € A+ B such that inf A+inf B < ¢ <
inf A+ inf B+ ¢.

Let € > 0 be arbitrary. By properties of inf, we can choose @’ and b’ such that
infA <a <infA+ 5 and inf B <V <inf B + 5. Since a’ + b is an element
of A+ B, we see that combining theses two inequalities yields inf A + inf B <
a +b <inf A+inf B + €. O

Exercise 1.9. Ross 7.5
Proof. a. s, =vVn2 +1—n=(Vn24+1—n)¥etdn — L lims, =0

vVn2+14n Vn2 3
b. sp = VnZ+n—n= (VnZ+n—n)(Yrtnin n =G

n2+n+n n2+n+n LVnZ+n+n

% so lims,, = %
1+141

_ o _ T o, VA in+2n _ n = ()n =
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