MATH 104 HW1

Jad Damaj

January 2022

1 Hw 1

Exercise 1.1. Ross 1.10
Proof. Observe that $4 n-1=2 n+(2 n-1)$ so the sum can be rewritten as $(2 n+1)+(2 n+3)+\cdots+(2 n+(2 n-1))$
$2(1)-1=1$ so for $n=1(2(1)+1)=3=3\left(1^{2}\right)$
Assume $P(n)$ is true. Consider the sum $(2(n+1)+1)+(2(n+3)+1)+$ $\cdots+(2(n+1)+(2(n+1)-1)=(2 n+3)+(2 n+5)+\cdots+(2 n-1)+$ $(2 n+(2 n+1))+(2 n+(2 n+3))$. Using the IH, this can be rewritten as $3 n^{2}-(2 n+1)+(4 n+1)+(4 n+3)=3 n^{2}+6 n+3=3(n+1)^{2}$, as desired.

Exercise 1.2. Ross 1.12
Proof. a. $(a+b)^{1}=a+b=\binom{1}{0} a+\binom{1}{1} b$
$(a+b)^{2}=a^{2}+a b+b a+b^{2}=a^{2}+2 a b+b^{2}=\binom{2}{0} a^{2}=\binom{2}{1} a b+\binom{2}{2} b^{2}$
$(a+b)^{3}=a^{3}+a^{2} b+a b a+a b^{2}+b a^{2}+b a b+b^{2} a+b^{3}=a^{3}+3 a^{2} b+3 b^{2} a+b^{3}=$ $\binom{3}{0} a^{3}+\binom{3}{1} a b^{2}+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}$
b. $\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}=\frac{n!}{k(k-1)!(n-k)!}+\frac{n!}{(k-1)!(n-k)!(n-k+1)}=$ $\frac{(k) n!+(n-k+1) n!}{(k)!(n-k+1)!}=\frac{(n+1)!}{k!(n+1-k)!}=\binom{n+1}{k}$
c. the case where $n=1$ follows from part a

Assume $P(n)$ is true. Consider $(a+b)^{n+1}$. By the IH, this is equivalent to $(a+b)(a+b)^{n}=(a+b)\left(\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}\right)=$ $\binom{n}{0} a^{n+1}+\left(\binom{n}{0}+\binom{n}{1}\right) a^{n} b+\left(\binom{n}{1}+\binom{n}{2}\right) a^{n-1} b^{2}+\cdots+\left(\binom{n-1}{n-1}+\binom{n}{n}\right) a b^{n}+\binom{n}{n} b^{n}$. Since $\binom{n}{0}=1=\binom{n+1}{0}$ and $\binom{n}{n}=1=\binom{n+1}{n+1}$, this is equivalent to $\binom{n+1}{0} a^{n+1}+\binom{n+1}{1} a^{n} b+\binom{n+1}{2} a^{n-2} b+\cdots+\binom{n+1}{n} a b^{n}+\binom{n+1}{n+1} b^{n+1}$

Exercise 1.3. Ross 2.1
Proof. Observe that for any positive integer c, \sqrt{c} solves the equation $x^{2}-c=0$ so we can apply the rational roots test to this polynomial to determine if c is rational.
$\sqrt{3}$ solves $x^{2}-3=0$ so the possible rational roots are $\pm 1, \pm 3$. Since $1=\sqrt{1}<$ $\sqrt{3}<\sqrt{4}=2$, none of these roots work so $\sqrt{3}$ is irrational.
Similarly since 5,7 , and 31 are all prime, using the bounds $2=\sqrt{4}<\sqrt{5}<$
$\sqrt{3}=9,2=\sqrt{4}<\sqrt{7}<\sqrt{3}=9$, and $5=\sqrt{25}<\sqrt{31}<\sqrt{36}=6$ we can see that $\sqrt{5}, \sqrt{7}$, and $\sqrt{31}$ are irrational.
For $\sqrt{24}$, observe that $\sqrt{24}=2 \sqrt{6}$ so it suffices to show $\sqrt{6}$ is irrational. The polynomial equation $x^{2}-6=0$ has possible roots $\pm 1, \pm 2, \pm 3, \pm 6$. Observing $2=\sqrt{4}<\sqrt{6}<\sqrt{9}=3$, gives the desired result.

Exercise 1.4. Ross 2.2

Proof. Using the inequalities $1=\sqrt[3]{1}<\sqrt[3]{2}<\sqrt[3]{8}=2,1=\sqrt[7]{1}<\sqrt[7]{5}<\sqrt[7]{128}=$ $2,1=\sqrt[4]{1}<\sqrt[4]{13}<\sqrt[4]{16}=2$ and similar reasoning as 2.1 we can conclude all are irrational.

Exercise 1.5. Ross 2.7
Proof. a. Suppose $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=x$. Rearranging yields this yields $x^{2}+$ $2 \sqrt{3} x-1-2 \sqrt{3}=0$ which implies the sum is rational. So if we assume x is rational, x^{2} is rational so we can subtract out $x^{2}-1$ and still have a rational number. Thus $2 \sqrt{3}(x-1)$ is rational. Since we assumed x to be rational, $x-1$ is rational. So since $2 \sqrt{3}$ is irrational in order for the product to be rational we must have $2 \sqrt{3}(x-1)=0$ so $x=1$. Plugging this in, we see it satisfies the original relation so $x=1$.
b. Suppose $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=x$. Rearranging yields this yields $x^{2}+2 \sqrt{2} x-4-$ $4 \sqrt{2}=0$. Applying similar reasoning as part a we see $2 \sqrt{2} x-4 \sqrt{2}=2 \sqrt{2}(x-2)$ is rational so $x=2$.

Exercise 1.6. Ross 3.6
Proof. a. Applying the triangle inequality twice we see $|a+b+c|=|(a+b)+c| \leq$ $|a+b|+|c| \leq|a|+|b|+|c|$.
b. For $n=1$, observe $\left|a_{1}\right| \leq\left|a_{1}\right|$ is true.

Suppose $P(n)$ is true and consider $\left|a_{1}+\cdots+a_{n}+a_{n+1}\right|$. Applying the triangle inequality then the IH we see, $\left|a_{1}+\cdots+a_{n}+a_{n+1}\right|=\left|\left(a_{1}+\cdots+a_{n}\right)+a_{n+1}\right| \leq$ $\left|a_{1}+\cdots+a_{n}\right|+\left|a_{n+1}\right| \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|+\left|a_{n+1}\right|$, as desired.

Exercise 1.7. Ross 4.11
Proof. For $a, b \in \mathbb{R}$, suppose there finitely many rationals q_{1}, \ldots, q_{n} such that $a<q_{1}<\cdots<q_{n}<b$. Viewing q_{n} as a real number we see that by the denseness of \mathbb{Q}, there exists a rational number q_{n+1} such that $q_{n}<q_{n+1}<b$. This contradicts our original assumption, thus there cannot be infinitely many rational between a and b.

Exercise 1.8. Ross 4.14
Proof. a. It is evident $\sup A+\sup B$ is an upper bound since for $a+b \in$ $A+B, a+b \leq \sup A+b \leq \sup A+\sup B$. To prove that $\sup A+\sup B$ is the supremum, it suffices to show that for each $\varepsilon>0$ there exists $c \in A+B$ such that $\sup A+\sup B-\varepsilon<c<\sup A+\sup B$.
Let $\varepsilon>0$ be arbitrary. By properties of sup, we can choose a^{\prime} and b^{\prime} such
that $\sup A-\frac{\varepsilon}{2}<a^{\prime}<\sup A$ and $\sup B-\frac{\varepsilon}{2}<b^{\prime}<\sup B$. Since $a^{\prime}+b^{\prime}$ is an element of $A+B$, we see that combining theses two inequalities yields $\sup A+\sup B-\varepsilon<a^{\prime}+b^{\prime}<\sup A+\sup B$.
b. It is evident $\inf A+\inf B$ is a lower bound since for $a+b \in A+B, a+b \geq$ $\inf A+b \geq \inf A+\inf B$. To prove that $\inf A+\inf B$ is the infimum, it suffices to show that for each $\varepsilon>0$ there exists $c \in A+B$ such that $\inf A+\inf B<c<$ $\inf A+\inf B+\varepsilon$.
Let $\varepsilon>0$ be arbitrary. By properties of inf, we can choose a^{\prime} and b^{\prime} such that $\inf A<a^{\prime}<\inf A+\frac{\varepsilon}{2}$ and $\inf B<b^{\prime}<\inf B+\frac{\varepsilon}{2}$. Since $a^{\prime}+b^{\prime}$ is an element of $A+B$, we see that combining theses two inequalities yields $\inf A+\inf B<$ $a^{\prime}+b^{\prime}<\inf A+\inf B+\varepsilon$.

Exercise 1.9. Ross 7.5
Proof. a. $s_{n}=\sqrt{n^{2}+1}-n=\left(\sqrt{n^{2}+1}-n\right) \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{n^{2}}}$ so $\lim s_{n}=0$
b. $s_{n}=\sqrt{n^{2}+n}-n=\left(\sqrt{n^{2}+n}-n\right)\left(\frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n}=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{\left(\frac{1}{n}\right) n}{\frac{1}{n} \sqrt{n^{2}+n}+n}=\right.$ $\frac{1}{\sqrt{1+\frac{1}{n}+1}}$ so $\lim s_{n}=\frac{1}{2}$
c. $s_{n}=\sqrt{4 n^{2}+n}-2 n=\left(\sqrt{4 n^{2}+n}-2 n\right) \frac{\sqrt{4 n^{2}+n}+2 n}{\sqrt{4 n^{2}+n}+2 n}=\frac{n}{\sqrt{4 n^{2}+n}+2 n}=\frac{\left(\frac{1}{n}\right) n}{\left(\frac{1}{n}\right) \sqrt{4 n^{2}+n}+2 n}=$ $\frac{1}{\sqrt{4+\frac{1}{n}}+2}$ so $\lim s_{n}=\frac{1}{4}$

