MATH 104 HW1

Jad Damaj

January 2022

1 Hw 2

Exercise 1.1 (Ross 9.9). Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.
(a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
(b) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.
(c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Proof.
(a) Let $M \in \mathbb{R}$ be arbitrary. Since $\lim s_{n}=+\infty$, we can choose N_{1} such that if $n>N_{1}$, then $s_{n}>M$. Taking $N=\max \left\{N_{0}, N_{1}\right\}$, we see that if $n>N$, then $t_{n} \geq s_{n}>M$ so $\lim t_{n}=+\infty$.
(b) Let $M \in \mathbb{R}$ be arbitrary. Since $\lim t_{n}=-\infty$, we can choose N_{1} such that if $n>N_{1}$, then $t_{n}<M$. Taking $N=\max \left\{N_{0}, N_{1}\right\}$, we see that if $n>N$, then $s_{n} \leq t_{n}<M$ so $\lim s_{n}=-\infty$.
(c) Let $\lim s_{n}=s$ and $\lim t_{n}=t$. Suppose for contradiction, $s>t$. Then, $s-t=\varepsilon>0$ and we can choose N_{1} such that if $n>N_{1}$, then $\left|s_{n}-s\right| \leq \frac{\varepsilon}{2}$ and N_{2} such that if $n>N_{2}$, then $\left|t_{n}-t\right| \leq \frac{\varepsilon}{2}$. This implies that if we take $N=\max \left\{N_{0}, N_{1}, N_{2}\right\}$ and $n>N$, then

$$
t-\frac{\varepsilon}{2}<t_{n}<t+\frac{\varepsilon}{2}=s-\frac{\varepsilon}{2}<s_{n}<s+\frac{\varepsilon}{2} .
$$

This contradicts our assumption that $s_{n} \leq t_{n}$ for $n>N_{0}$ so we must have $\lim s_{n} \leq \lim t_{n}$.

Exercise 1.2 (Ross 9.15). Show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a \in \mathbb{R}$.
Proof. First, observe that if $a=0$, this gives a sequence of all 0 s which converges to 0 .
Suppose $a \neq 0$. If $a>0$, then by the Archimedean principle we can choose a^{\prime}
such that a^{\prime} is an integer and $a^{\prime} \geq a$. Also note that for all $n, 0<\frac{a^{n}}{n!} \leq \frac{\left(a^{\prime}\right)^{n}}{n!}$ so to show $\lim \frac{a^{n}}{n!}=0$, it suffices to show $\lim \frac{\left(a^{\prime}\right)^{n}}{n!}=0$.
Observe that for $n>2 a^{\prime}$,

$$
\begin{aligned}
\frac{\left(a^{\prime}\right)^{n}}{n!} & =\frac{\left(a^{\prime}\right)^{2 a^{\prime}}\left(a^{\prime}\right)^{n-2 a^{\prime}}}{\left(2 a^{\prime}\right)!\left(2 a^{\prime}+1\right)\left(2 a^{\prime}+2\right) \cdots\left(2 a^{\prime}+\left(n-2 a^{\prime}\right)\right)} \\
& \leq \frac{\left(a^{\prime}\right)^{2 a^{\prime}}\left(a^{\prime}\right)^{n-2 a^{\prime}}}{\left(2 a^{\prime}\right)!\left(2 a^{\prime}\right)\left(2 a^{\prime}\right) \cdots\left(2 a^{\prime}\right)} \\
& =\frac{\left(a^{\prime}\right)^{2 a^{\prime}}}{\left(2 a^{\prime}\right)!2^{n-2 a^{\prime}}}=\frac{\left(a^{\prime}\right)^{2 a^{\prime}} 2^{2 a^{\prime}}}{\left(2 a^{\prime}\right)!} \cdot \frac{1}{2^{n}}
\end{aligned}
$$

Let $\varepsilon>0$, be arbitrary. Since $\lim \frac{1}{2^{n}}=0$, we can choose N_{1} such that if $n>N_{1}$, then

$$
\frac{1}{2^{n}} \leq \varepsilon \cdot \frac{\left(2 a^{\prime}\right)!}{\left(2 a^{\prime}\right)^{2 a^{\prime}}} \Longleftrightarrow \frac{\left(2 a^{\prime}\right)^{2 a^{\prime}}}{\left(2 a^{\prime}\right)!} \cdot \frac{1}{2^{n}}<\varepsilon
$$

Taking $N=\max \left\{2 a, N_{1}\right\}$, we see that if $n>N, \frac{\left(a^{\prime}\right)^{n}}{n!} \leq \frac{\left(2 a^{\prime}\right)^{2 a^{\prime}}}{\left(2 a^{\prime}\right)!} \cdot \frac{1}{2^{n}}<\varepsilon$ so $\lim \frac{\left(a^{\prime}\right)^{n}}{n!}=0$.
Similarly, if $a<0$, we see that $-a>0$ so by the above reasoning $\lim \frac{(-a)^{n}}{n!}=0$ so $\lim -\frac{a^{n}}{n!}=0$ as well. Since for all $n, \frac{a^{n}}{n!}=\frac{(-a)^{n}}{n!}$ or $=-\frac{a^{n}}{n!}$ and both sequences converge to $0, \frac{a^{n}}{n!}$ converges to 0 as well.

Exercise 1.3 (Ross 10.7). Let S be a nonempty bounded subset of \mathbb{R} such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S_{n} that $\lim s_{n}=\sup S$.

Proof. Construct the sequence as follows: Let s_{i} be a point in S such that $\sup S-\frac{1}{i}<s_{i}<\sup S$. Such a point exists by definition of $\sup S$ and since $\sup S \notin S$.
Considering the sequence $\left(s_{n}\right)$ defined above, let $\varepsilon>0$ be arbitrary. By the archimedean principle there exists an integer N such that $\frac{1}{N}<\varepsilon$. So by construction, we see that for $n>N,\left|s_{n}-\sup S\right|<\frac{1}{N}<\varepsilon$ so $\lim s_{n}=\sup S$.
Exercise 1.4 (Ross 10.8). Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$. Prove $\left(\sigma_{n}\right)$ is an increasing sequence.
Proof. We will show $\sigma_{n} \leq \sigma_{n+1}$ for all n. First, observe that

$$
\begin{aligned}
\sigma_{n} \leq \sigma_{n+1} & \Longleftrightarrow \frac{1}{n}\left(s_{1}+\cdots+s_{n}\right) \leq \frac{1}{n+1}\left(s_{1}+\cdots+s_{n}+s_{n+1}\right) \\
& \Longleftrightarrow(n+1)\left(s_{1}+\cdots+s_{n}\right) \leq n\left(s_{1}+\cdots+s_{n}+s_{n+1}\right) \\
& \Longleftrightarrow s_{1}+\cdots+s_{n} \leq n s_{n+1}
\end{aligned}
$$

Here, the last equality holds since $s_{n+1} \geq s_{m}$ for all $m<n+1$ so $s_{1}+\cdots+s_{n} \leq$ $s_{n+1}+\cdots+s_{n+1}=n s_{n+1}$. Thus, $\sigma_{n} \leq \sigma_{n+1}$ for all n so the sequence is increasing.

Exercise $1.5(\operatorname{Ross} 10.9)$. Let $s_{1}=1$ and $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2}$ for $n \geq 1$.
(a) Find s_{2}, s_{3}, and s_{4}.
(b) Show $\lim s_{n}$ exists.
(c) Prove $\lim s_{n}=0$.

Proof.
(a) $s_{1}=1, s_{2}=\frac{1}{2}, s_{3}=\frac{1}{6}, s_{4}=\frac{1}{48}$.
(b) To show $\left(s_{n}\right)$ converges it suffices to show it is monotone and bounded.

Claim: $1 \geq s_{n} \geq s_{n+1} \geq 0 \forall n$.
We will proceed by induction.
Basis Step: Observe that $P(1)$ is true since $1 \geq 1=s_{1} \geq \frac{1}{2}=s_{2} \geq 0$.
Inductive Step: Assume $P(n)$ is true. Then $1 \geq s_{n} \geq s_{n+1} \geq 0$. Observe that since $1 \geq s_{n+1} \geq 0, s_{n+1} \geq s_{n+1}^{2} \geq 0$. Also, since $0<\frac{n+1}{n+2}<1$ it follows that $0 \leq s_{n+2}=\left(\frac{n+1}{n+2}\right) s_{n+1}^{2} \leq s_{n+1} \leq 1$, as desired.
(c) Since $\lim s_{n}$ exists, let $\lim s_{n}=s$. Applying $\lim _{n \rightarrow \infty}$ to both sides of the equality $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2}$ yields, $s=s^{2}$ so $s=0$ or 1 . Since $\left(s_{n}\right)$ is a decreasing sequence which contains terms strictly less than 1 we see that $s=0$.

Exercise 1.6 (Ross 1.10). Let $s_{1}=1$ and $s_{n}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3}, and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n
(c) Show $\left(s_{n}\right)$ is a decreasing sequence.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$.

Proof. (a) $s_{1}=1, s_{2}=\frac{2}{3}, s_{3}=\frac{5}{9}, s_{4}=\frac{14}{27}$
(b) We will proceed by induction.

Basis Step: $P(1)$ is true since $s_{1}=1>\frac{1}{2}$. Inductive Step: Assume $P(n)$ is true. Then $s_{n}>\frac{1}{2}$ so $s_{n}+1>\frac{3}{2}$ so $\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{2}$, as desired.
(c) We will proceed by induction.

Basis Step: $P(1)$ is true since $s_{2}=\frac{1}{2}<1=s_{1}$.
Inductive Step: Assume $P(n)$ is true. Then, $s_{n+1}<s_{n}$ so $s_{n+1}+1<s_{n}+1$ so $s_{n+2}=\frac{1}{3}\left(s_{n+1}+1\right)<\frac{1}{3}\left(s_{n}+1\right)=s_{n+1}$, as desired.
(d) By parts (b) and (c), (s_{n}) is monotone and bounded so it converges. Suppose $\lim s_{n}=s$. Applying $\lim _{n \rightarrow \infty}$ to both sides of the equality $s_{n+1}=$ $\frac{1}{3}\left(s_{n}+1\right)$ yields $s=\frac{1}{3}(s+1)$ so $s=\frac{1}{2}$.

Exercise 1.7 (Ross 1.11). Let $t_{1}=1$ and $t_{n+1}=\left[1-\frac{1}{4 n^{2}}\right] \cdot t_{n}$ for $n \geq 1$.
(a) Show $\lim t_{n}$ exists.

Proof. (a) To show $\lim t_{n}$ exists it suffices to show t_{n} is decreasing and bounded. First, observe that $0<1-\frac{1}{4 n^{2}}<1$ for all n so $t_{n}>\left[1-\frac{1}{4 n^{2}}\right] t_{n}=t_{n+1}$ for all n.
Now, we claim $t_{n}>0$ for all n. To show this we will proceed by induction. Basis Step: $P(1)$ is true since $t_{1}=1>0$
Inductive Step: Assume $P(n)$ is true then. $t_{n}>0$. Since $0<t-\frac{1}{4 n^{2}}$, $t_{n+1}=\left[1-\frac{1}{4 n^{2}}\right] t_{n}>0$.

Exercise 1.8 (Squeeze Test). Let a_{n}, b_{n}, c_{n} be three sequences such that $a_{n} \leq b_{n} \leq b_{n}$, and $L=\lim a_{n}=\lim c_{n}$. Show that $\lim b_{n}=L$.

Proof. Let $\varepsilon>0$ be arbitrary. Since a_{n} and c_{n} converge to L we can choose N_{1} such that if $n>N_{1}$ then $\left|a_{n}-L\right|<\varepsilon$, and N_{2} such that if $n>N_{2}$ then $\left|c_{n}-L\right|<\varepsilon$. Taking $N=\max \left\{N_{1}, N_{2}\right\}$ we see that if $n>N$,

$$
L-\varepsilon<a_{n}<L+\varepsilon
$$

and

$$
L-\varepsilon<c_{n}<L+\varepsilon
$$

Combining these inequalities and our assumption we see that

$$
L-\varepsilon<a_{n} \leq b_{n} \leq c_{n}<L+\varepsilon
$$

so $\left|b_{n}-L\right|<\varepsilon$ for $n>N$ so $\lim b_{n}=L$.

