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Exercise 1.1 (Ross 9.9). Suppose there exists N0 such that sn ≤ tn for all
n > N0.

(a) Prove that if lim sn = +∞, then lim tn = +∞.

(b) Prove that if lim tn = −∞, then lim sn = −∞.

(c) Prove that if lim sn and lim tn exist, then lim sn ≤ lim tn.

Proof.

(a) Let M ∈ R be arbitrary. Since lim sn = +∞, we can choose N1 such that
if n > N1, then sn > M . Taking N = max{N0, N1}, we see that if n > N ,
then tn ≥ sn > M so lim tn = +∞.

(b) Let M ∈ R be arbitrary. Since lim tn = −∞, we can choose N1 such that
if n > N1, then tn < M . Taking N = max{N0, N1}, we see that if n > N ,
then sn ≤ tn < M so lim sn = −∞.

(c) Let lim sn = s and lim tn = t. Suppose for contradiction, s > t. Then,
s− t = ε > 0 and we can choose N1 such that if n > N1, then |sn− s| ≤ ε

2
and N2 such that if n > N2, then |tn − t| ≤ ε

2 . This implies that if we
take N = max{N0, N1, N2} and n > N , then

t− ε

2
< tn < t+

ε

2
= s− ε

2
< sn < s+

ε

2
.

This contradicts our assumption that sn ≤ tn for n > N0 so we must have
lim sn ≤ lim tn.

Exercise 1.2 (Ross 9.15). Show that limn→∞
an

n! = 0 for all a ∈ R.

Proof. First, observe that if a = 0, this gives a sequence of all 0s which converges
to 0.
Suppose a ̸= 0. If a > 0, then by the Archimedean principle we can choose a′
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such that a′ is an integer and a′ ≥ a. Also note that for all n, 0 < an

n! ≤ (a′)n

n!

so to show lim an

n! = 0, it suffices to show lim (a′)n

n! = 0.
Observe that for n > 2a′,

(a′)n

n!
=

(a′)2a
′
(a′)n−2a′

(2a′)!(2a′ + 1)(2a′ + 2) · · · (2a′ + (n− 2a′))

≤ (a′)2a
′
(a′)n−2a′

(2a′)!(2a′)(2a′) · · · (2a′)

=
(a′)2a

′

(2a′)!2n−2a′ =
(a′)2a

′
22a

′

(2a′)!
· 1

2n

Let ε > 0, be arbitrary. Since lim 1
2n = 0, we can choose N1 such that if n > N1,

then
1

2n
≤ ε · (2a′)!

(2a′)2a′ ⇐⇒ (2a′)2a
′

(2a′)!
· 1

2n
< ε.

Taking N = max{2a,N1}, we see that if n > N , (a′)n

n! ≤ (2a′)2a
′

(2a′)! · 1
2n < ε so

lim (a′)n

n! = 0.

Similarly, if a < 0, we see that −a > 0 so by the above reasoning lim (−a)n

n! = 0

so lim−an

n! = 0 as well. Since for all n, an

n! = (−a)n

n! or = −an

n! and both sequences

converge to 0, an

n! converges to 0 as well.

Exercise 1.3 (Ross 10.7). Let S be a nonempty bounded subset of R such
that supS is not in S. Prove there is a sequence (sn) of points in Sn that
lim sn = supS.

Proof. Construct the sequence as follows: Let si be a point in S such that
supS − 1

i < si < supS. Such a point exists by definition of supS and since
supS ̸∈ S.
Considering the sequence (sn) defined above, let ε > 0 be arbitrary. By the
archimedean principle there exists an integer N such that 1

N < ε. So by con-
struction, we see that for n > N , |sn − supS| < 1

N < ε so lim sn = supS.

Exercise 1.4 (Ross 10.8). Let (sn) be an increasing sequence of positive num-
bers and define σn = 1

n (s1 + · · ·+ sn). Prove (σn) is an increasing sequence.

Proof. We will show σn ≤ σn+1 for all n. First, observe that

σn ≤ σn+1 ⇐⇒ 1

n
(s1 + · · ·+ sn) ≤

1

n+ 1
(s1 + · · ·+ sn + sn+1)

⇐⇒ (n+ 1)(s1 + · · ·+ sn) ≤ n(s1 + · · ·+ sn + sn+1)

⇐⇒ s1 + · · ·+ sn ≤ nsn+1

Here, the last equality holds since sn+1 ≥ sm for all m < n+1 so s1+ · · ·+sn ≤
sn+1 + · · · + sn+1 = nsn+1. Thus, σn ≤ σn+1 for all n so the sequence is
increasing.
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Exercise 1.5 (Ross 10.9). Let s1 = 1 and sn+1 = ( n
n+1 )s

2
n for n ≥ 1.

(a) Find s2, s3, and s4.

(b) Show lim sn exists.

(c) Prove lim sn = 0.

Proof.

(a) s1 = 1, s2 = 1
2 , s3 = 1

6 , s4 = 1
48 .

(b) To show (sn) converges it suffices to show it is monotone and bounded.
Claim: 1 ≥ sn ≥ sn+1 ≥ 0 ∀n.
We will proceed by induction.
Basis Step: Observe that P (1) is true since 1 ≥ 1 = s1 ≥ 1

2 = s2 ≥ 0.
Inductive Step: Assume P (n) is true. Then 1 ≥ sn ≥ sn+1 ≥ 0. Observe
that since 1 ≥ sn+1 ≥ 0, sn+1 ≥ s2n+1 ≥ 0. Also, since 0 < n+1

n+2 < 1 it

follows that 0 ≤ sn+2 = (n+1
n+2 )s

2
n+1 ≤ sn+1 ≤ 1, as desired.

(c) Since lim sn exists, let lim sn = s. Applying limn→∞ to both sides of the
equality sn+1 = ( n

n+1 )s
2
n yields, s = s2 so s = 0 or 1. Since (sn) is a

decreasing sequence which contains terms strictly less than 1 we see that
s = 0.

Exercise 1.6 (Ross 1.10). Let s1 = 1 and sn = 1
3 (sn + 1) for n ≥ 1.

(a) Find s2, s3, and s4.

(b) Use induction to show sn > 1
2 for all n

(c) Show (sn) is a decreasing sequence.

(d) Show lim sn exists and find lim sn.

Proof. (a) s1 = 1, s2 = 2
3 , s3 = 5

9 , s4 = 14
27

(b) We will proceed by induction.
Basis Step: P (1) is true since s1 = 1 > 1

2 . Inductive Step: Assume P (n)
is true. Then sn > 1

2 so sn + 1 > 3
2 so 1

3 (sn + 1) > 1
2 , as desired.

(c) We will proceed by induction.
Basis Step: P (1) is true since s2 = 1

2 < 1 = s1.
Inductive Step: Assume P (n) is true. Then, sn+1 < sn so sn+1+1 < sn+1
so sn+2 = 1

3 (sn+1 + 1) < 1
3 (sn + 1) = sn+1, as desired.

(d) By parts (b) and (c), (sn) is monotone and bounded so it converges.
Suppose lim sn = s. Applying limn→∞ to both sides of the equality sn+1 =
1
3 (sn + 1) yields s = 1

3 (s+ 1) so s = 1
2 .
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Exercise 1.7 (Ross 1.11). Let t1 = 1 and tn+1 = [1− 1
4n2 ] · tn for n ≥ 1.

(a) Show lim tn exists.

Proof. (a) To show lim tn exists it suffices to show tn is decreasing and bounded.
First, observe that 0 < 1− 1

4n2 < 1 for all n so tn > [1− 1
4n2 ]tn = tn+1 for

all n.
Now, we claim tn > 0 for all n. To show this we will proceed by induction.
Basis Step: P (1) is true since t1 = 1 > 0
Inductive Step: Assume P (n) is true then. tn > 0. Since 0 < t − 1

4n2 ,
tn+1 = [1− 1

4n2 ]tn > 0.

Exercise 1.8 (Squeeze Test). Let an, bn, cn be three sequences such that
an ≤ bn ≤ bn, and L = lim an = lim cn. Show that lim bn = L.

Proof. Let ε > 0 be arbitrary. Since an and cn converge to L we can choose
N1 such that if n > N1 then |an − L| < ε, and N2 such that if n > N2 then
|cn − L| < ε. Taking N = max{N1, N2} we see that if n > N ,

L− ε < an < L+ ε

and
L− ε < cn < L+ ε.

Combining these inequalities and our assumption we see that

L− ε < an ≤ bn ≤ cn < L+ ε

so |bn − L| < ε for n > N so lim bn = L.
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